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Abstract
Retinoic acid (RA) is the active metabolite of vitamin A (retinol) that controls growth and
development. The first step of RA synthesis is controlled by enzymes of the alcohol
dehydrogenase (ADH) and retinol dehydrogenase (RDH) families that catalyze oxidation of
retinol to retinaldehyde. The second step of RA synthesis is controlled by members of the
aldehyde dehydrogenase (ALDH) family also known as retinaldehyde dehydrogenase (RALDH)
that further oxidize retinaldehyde to produce RA. RA functions as a ligand for DNA-binding RA
receptors that directly regulate transcription of specific target genes. Elucidation of the vitamin A
metabolic pathway and investigation of the endogenous function of vitamin A metabolites has
been greatly improved by development of mouse ADH, RDH, and RALDH loss-of-function
models. ADH knockouts have demonstrated a postnatal role for this enzyme family in clearance of
excess retinol to prevent vitamin A toxicity and in generation of RA for postnatal survival during
vitamin A deficiency. A point mutation in Rdh10 generated by ethylnitrosourea has demonstrated
that RDH10 generates much of the retinaldehyde needed for RA synthesis during embryonic
development. Raldh1, Raldh2, and Raldh3 knockouts have demonstrated that RALDH1,
RALDH2, and RALDH3 generate most of the RA needed during embryogenesis. These mouse
models serve as instrumental tools for providing new insight into retinoid function.
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1. Introduction
Among the various diffusible cell-cell signaling factors that naturally direct developmental
processes, retinoic acid (RA) is unique in that it is a small lipophilic molecule (MW = 300)
derived from vitamin A that directly regulates gene expression. Over the years many lessons
have been learned about the developmental roles of RA signaling from studies on vitamin A
deficiency [1–3] and RA receptor null mice [4, 5]. In addition, recent studies using model
organisms carrying genetic defects in enzymes that convert vitamin A to RA (either in the
whole embryo or in specific tissues) have provided great insight into the mechanism of RA
signaling during development. Such studies are the result of many years of research on
retinoid-metabolizing enzymes which finally led to the discovery of enzymes necessary for
RA synthesis in vivo [6].

The retinoid metabolic pathway provides mechanisms to store vitamin A, to generate RA for
signaling processes, and to degrade excess RA (Fig. 1). Cleavage of beta-carotene
(provitamin A) by carotenoid-15,15′-oxygenase (CMO1) generates all-trans-retinaldehyde
which can be reduced to all-trans-retinol for storage as vitamin A [7, 8]. For long-term
storage of vitamin A, all-trans-retinol is esterified with a fatty acid to form retinyl esters that
are stored as lipid droplets; this reaction is catalyzed by lecithin-retinol acyltransferase
(LRAT) with the help of cellular retinol-binding protein-1 (CRBP1) [9–11]. Hydrolases that
remove the ester group to regenerate retinol have been identified [12, 13].

Mobilization of vitamin A for RA synthesis is a two-step metabolic process in which retinol
is first oxidized to retinaldehyde in a reversible reaction, followed by an irreversible second
oxidation which metabolizes retinaldehyde to RA. Several enzymes have been linked to
physiological roles in RA synthesis through genetic loss-of-function studies. In the first step,
retinol is oxidized to retinaldehyde by either alcohol dehydrogenases (ADH1, ADH3, and
ADH4) [14, 15] or retinol dehydrogenases that are members of the short-chain
dehydrogenase/reductase family (RDH1 and RDH10) [16, 17] (Table 1). Due to the
reversible nature of the first step, retinaldehyde can be reduced back to retinol through the
action of some RDHs such as RDH12 or by some aldo-keto reductases such as AKR1B10
[18–20]. In zebrafish, a retinol dehydrogenase encoded by rdh1l (homolog of mouse Dhrs9)
was identified that is required for oxidation of retinol to retinaldehyde for RA synthesis in
certain tissues such as intestine [21, 22]. In Xenopus, an rdh10 homolog has been identified
which is required for RA synthesis in the hindbrain and other tissues [23]. Also in zebrafish,
an rdh10 homolog has been found which presumably oxidizes retinol to retinaldehyde, and
another retinol dehydrogenase encoded by dhrs3a was identified that reduces retinaldehyde
to retinol [24]. Retinaldehyde can be further oxidized to retinoic acid (RA) by retinaldehyde
dehydrogenases (RALDH1, RALDH2, and RALDH3) which are members of the aldehyde
dehydrogenase family (i.e. ALDH1A1, ALDH1A2, and ALDH1A3, respectively) [25–29].
In Xenopus, a raldh2 homolog has been identified which generates RA in early embryos
[30]. In zebrafish, a raldh2 homolog has been identified that is required for early embryonic
RA synthesis [31, 32] and an raldh3 homolog has been found but raldh1 is absent [33, 34].

Further oxidation of RA to form 4-hydroxy-RA and 4-oxo-RA is carried out by cytochrome
P450s CYP26A1 [35–37], CYP26B1 [38], and CYP26C1 [39]. This reaction is considered
the first step of RA degradation as it adds a hydrophilic group which results in the formation
of RA metabolites that are more easily excreted than RA itself [40]. Although polar
metabolites such as 4-oxo-RA have been found to act similarly to RA as a teratogen when
introduced to embryos [41], they are unnecessary for endogenous RA signaling [42]. The
unique tissue-specific expression patterns of Cyp26 genes influence where RA signaling is
able to occur and provides some level of protection against teratogenic or toxic exposure to
retinoids as demonstrated by Cyp26 gene knockout studies [43].
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The effect of RA signaling on gene regulation is due to its ability to enter the nucleus and
activate DNA-bound RA receptors (RARα, RARβ, and RARγ) which directly regulate
specific genes via effects on transcriptional co-repressors and co-activators [44]. Each RAR
binds to DNA as a heterodimer with one of the retinoid X receptors (RXRα, RXRβ, and
RXRγ) [45]. RARs bind the abundant form of RA known as all-trans-RA as well as a very
low-abundance isomer known as 9-cis-RA, whereas RXRs bind only 9-cis-RA [46].
However, 9-cis-RA is undetectable [47–51] except under conditions of vitamin A excess
[52, 53]. Thus, it appears that 9-cis-RA plays a pharmacological but not physiological role,
suggesting that RXR has a different physiological ligand or functions without a ligand. The
overall function of RXR transcends its role in retinoid signaling as it forms heterodimers not
only with RAR but also with at least ten additional nuclear receptors including thyroid
hormone receptor (TR), vitamin D receptor (VDR), peroxisome-proliferator activated
receptor (PPAR), and liver X receptor (LXR), demonstrating that RXR is involved in many
different signaling pathways [54]. In the case of signaling through RA, thyroid hormone, or
vitamin D, in vitro studies have shown that RAR-RXR, TR-RXR, and VDR-RXR
heterodimers are stimulated by all-trans-RA, thyroid hormone, or vitamin D3, respectively,
but not by RXR ligands due to allosteric RXR subordination which presumably prevents
signaling pathway promiscuity [55–58]. Also, binding of a retinoid ligand to RXR is
unnecessary for RA signaling in vivo [53, 59]. The polyunsaturated fatty acid
docosahexaenoic acid present at high levels in brain has been found to function as an RXR
ligand in vitro, but its relevance in vivo is unclear [60]. Thus, whereas RXR is known to
facilitate DNA-binding of its heterodimer partners, whether RXR has a physiological ligand
required for normal development or adult homeostasis remains unknown [61].

2. Alcohol dehydrogenase and retinol dehydrogenase loss-of function
models

All cells have access to retinol via the circulatory system, but the ability of various cell types
to oxidize retinol to retinaldehyde varies greatly due to the expression levels of specific
retinol-metabolizing enzymes. Mouse genetic loss-of-function studies have led to the
identification of several enzymes that play a role in oxidation of retinol to retinaldehyde for
RA synthesis (Table 1).

2.1. Adh1 knockout
Class I ADH (ADH1) is expressed in many epithelial tissues and at very high levels in adult
liver where it serves as an important enzyme in the clearance of toxic alcohols including
ethanol [62, 63]. Adh1−/− mice exhibit normal survival to adulthood and normal fertility,
and when maintained on a vitamin A deficient diet during development they display a
similar degree of survival compared to wild-type [14]. However, Adh1−/− mice
administered a dose of retinol exhibit a marked reduction in metabolism of retinol to RA
compared to wild-type, and this failure to clear retinol results in a significant increase in
vitamin A toxicity as measured by a reduced LD50 value for retinol and by increased release
of cytosolic liver proteins into the serum indicating hepatic cell death [14, 64]. Adh1−/−
mice have thus revealed that metabolism of excess retinol to RA through ADH1 is an
important mechanism to avoid retinol toxicity in adult tissues, even though this pathway
may still generate enough RA to be teratogenic if the mouse is pregnant. Evidently there is
less toxicity to adult tissues when retinol is metabolized to RA through the NAD-dependent
ADH1 pathway than when retinol is metabolized by other mechanisms such as
hydroxylation by cytochrome P450s which can generate reactive oxygen species or other
toxic byproducts. Also, other metabolic routes are less efficient allowing high levels of
retinol to accumulate in various tissues which likely disrupts many cellular processes
through non-specific binding of retinol. This mechanism may be important not only
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pharmacologically for individuals taking vitamin A supplements, but also physiologically as
some foods such as liver contain high amounts of vitamin A which can be toxic if consumed
in high quantities.

As liver is the major site of detoxification, the expression patterns of ADHs and their
relative activities with retinol provide further evidence that ADH1 has an important function
in prevention of retinol toxicity. Thus, the physiological findings on vitamin A toxicity
obtained in Adh1−/− mice correlate with the observation that ADH1 exhibits high retinol
activity and is found at much higher levels in adult liver than ADH3 which exhibits low
retinol activity, and the observation that ADH4 (also with high retinol activity) is not
expressed in adult liver [15, 62].

An interesting relationship exists between cellular retinol-binding protein-1 (CRBP1) and
ADH1. Crbp1−/− mice are very sensitive to vitamin A deficiency due to greatly reduced
stores of liver retinyl esters [9]. Adh1−/− mice have higher than normal levels of liver
retinyl esters due to reduced oxidation of retinol, and Crbp1−/−;Adh1−/− double mutant
mice have relatively normal levels of liver retinyl esters and reduced sensitivity to vitamin A
deficiency [65]. Thus, ADH1 and CRBP1 exhibit opposing roles in the liver, with ADH1
ensuring that excess dietary retinol is metabolized to prevent vitamin A toxicity while
CRBP1 ensures that a large amount of retinol is stored as retinyl esters to prevent vitamin A
deficiency.

2.2. Adh3 knockout
Class III ADH (ADH3) is expressed ubiquitously from embryogenesis to adulthood [62].
Adh3−/− mice maintained on a normal diet survive to adulthood and are fertile, but they
exhibit 15% postnatal lethality and a growth deficiency resulting in adult body weights 30%
lower than normal [15]. Dietary retinol supplementation can rescue growth deficiency in
Adh3−/−, suggesting that other enzymes can replace ADH3 retinol activity. Although
ADH1 and ADH4 in vitro retinol oxidation activities are about 1000 times higher than that
of ADH3 [15], the ability of ADH3 to contribute to retinol oxidation in vivo may be due to
its ubiquitous expression.

A physiological role for ADH3 in retinol oxidation is also supported by studies showing that
developmental vitamin A deficiency conditions that result in 40% postnatal lethality in wild-
type mice result in 100% postnatal lethality in Adh3−/− mice [15]. ADH3 also participates
in prevention of retinol toxicity likely due to its ubiquitous expression. Adh3−/− mice
display reduced metabolism of a dose of retinol to RA and a lower LD50 value for retinol,
although these effects are smaller than those observed for Adh1−/− mice [64].

2.3. Adh4 knockout
Class IV ADH (ADH4) is expressed in several epithelial tissues with the notable exception
of the liver [62]. Adh4−/− mice survive to adulthood, display normal fertility, and do not
exhibit defects in growth or survival when maintained on a normal diet [14, 66]. However,
Adh4−/− mice exhibit 100% postnatal lethality when placed on a vitamin A deficient diet
under conditions where wild-type exhibits 40% postnatal lethality [14, 66]. As mentioned
above, Adh1−/− mice do not show a reduction in postnatal survival on a vitamin A deficient
diet, and Adh1−/−;Adh4−/− double mutants exhibit similar survival during vitamin A
deficiency compared to Adh4−/− mice [14]. Thus, ADH3 and ADH4 play overlapping roles
in retinol oxidation for RA synthesis during vitamin A deficiency, but ADH1 does not share
this function. As vitamin A deficiency is likely a common occurrence, especially for
terrestrial vertebrates in temperate climates, this function of ADH3 and ADH4 is likely to be
an important one for species survival.
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ADH4 does not play a significant role in oxidation of excess retinol to prevent retinol
toxicity. Following administration of a toxic dose of retinol, Adh4−/− mice metabolize
retinol similarly to wild-type whereas Adh1−/− and Adh1−/−;Adh4−/− double mutant mice
both exhibit a 10-fold decrease in RA production; also LD50 studies indicate only a small
increase in acute retinol toxicity for Adh4−/− mice [14].

Overall, studies on ADH knockout mice indicate that ADH1 provides considerable
protection against vitamin A toxicity whereas ADH4 promotes survival during vitamin A
deficiency, demonstrating largely non-overlapping physiological functions for these two
enzymes in retinol metabolism. ADH3 appears to function redundantly both in prevention of
retinol toxicity and vitamin A deficiency, a role which is consistent with its ubiquitous
expression.

2.4. Rdh1 knockout
RDH1 was the first member of the short-chain dehydrogenase/reductase family found to
metabolize retinol to retinaldehyde [67]. The short-chain dehydrogenase/reductase enzyme
family is distinct from that of the ADH family, with a different overall structure and enzyme
mechanism [68]. Mice carrying a null mutation in Rdh1 survive to adulthood and are fertile,
but adult mice were found to have increased size and adiposity [16]. Rdh1−/− mice exhibit
altered vitamin A homeostasis, with increased retinyl ester levels in liver and kidney [16].
Thus, retinol metabolism by both RDH1 and ADH1 functions to maintain normal levels of
retinyl esters in the liver.

2.5. Rdh10 mutant derived by ethylnitrosourea mutagenesis
A forward genetic screen using ethylnitrosourea-induced mutagenesis resulted in the
identification of a mouse strain named trex which displays embryonic lethality at 13.5 days
of embryonic development (E13.5) and exhibits forelimb stunting but normal hindlimbs;
trex was found to harbor a missense point mutation in Rdh10 that eliminates retinol
dehydrogenase activity [17]. Rdh10 had previously been identified as a member of the short-
chain dehydrogenase/reductase family that is highly expressed in the adult eye where it
presumably plays a role as a retinol dehydrogenase in the visual cycle [69]. However, it is
now clear that Rdh10 is expressed in a tissue-specific fashion in several embryonic tissues
including the somitic and lateral plate mesoderm where it overlaps with Raldh2 expression
and the eye where it overlaps with Raldh1 and Raldh3 expression [17, 70, 71]. The severe
defects observed in Rdh10trex mutants have demonstrated conclusively that tissue-specific
control of RA synthesis in mouse can be controlled not only by enzymes catalyzing
oxidation of retinaldehyde to RA but also by enzymes catalyzing oxidation of retinol to
retinaldehyde. Earlier studies in zebrafish employing morpholino knockdown of rdh1l also
demonstrated that enzymes catalyzing retinol oxidation can control tissue-specific RA
synthesis [21].

Mouse Rdh10trex mutants carrying the RARE-lacZ RA-reporter transgene [72], which
detects sites of RA signaling, demonstrated that most RA activity is lost at E9.5 but some
RA activity is retained in the neural tube although at a reduced level compared to wild-type
[17]. All RA activity in the eye and craniofacial region is lost in Rdh10trex mutants which
display severe eye and craniofacial defects by E12.5 [17]. The RA activity remaining in the
neural tube of Rdh10trex mutant embryos may be necessary for survival to E13.5 as
Raldh2−/− embryos, which completely lack RA activity from E7.5-E8.5, exhibit lethality by
approximately E9.5 [25, 26]. Further studies on the relatively normal hindlimbs of Rdh10trex

mutants have demonstrated that mutant hindlimb buds completely lack RA activity from
initiation of the hindlimb field at E9.5 until E14.5 demonstrating that RA is unnecessary for
limb patterning along either the anteroposterior or proximodistal axes [73]. However, the
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stunted forelimb in this mutant supports the conclusion that RA plays an early role in
forelimb bud initiation, a conclusion also supported by studies using Raldh2−/− embryos
[74].

2.6. Rdh10 mutants carrying a deletion of the Adh family: Adh-del;Rdh10 mutants
Mice carrying Adh1, Adh3, Adh4, or Rdh10 loss-of-function mutations have shown that
oxidation of retinol to retinaldehyde is controlled in vivo by each of these genes postnatally.
Whereas ADH plays a role in RA synthesis postnatally, only Rdh10trex mutants display a
serious defect in embryonic RA synthesis resulting in embryonic lethality [17]. As Rdh10trex

mutant embryos still maintain a reduced level of RA signaling in the neural tube, additional
retinol dehydrogenase activity from another enzyme may account for the RA activity
detected, or the Rdh10trex mutant may be a severe hypomorph with residual RDH10 activity.
Thus, it is possible that Adh1, Adh3, or Adh4, all expressed in mouse embryos [62], may
produce retinaldehyde in embryos for RA synthesis.

Our studies of Adh knockout mice have led to the generation of an Adh-del compound
knockout lacking all six ADH genes located close together on chromosome 3 (Fig. 2). The
rationale for knocking out all ADH genes is based upon the knowledge that not only ADH1,
ADH3, and ADH4 catalyze oxidation of retinol to retinaldehyde [15], but also ADH2 (class
II ADH) can perform this reaction [75]; ADH5a or ADH5b (class V ADH) protein cannot be
detected in any organs and cannot be generated by in vitro translation, thus this form of
ADH may be an unstable protein with no function [76]. In order to remove all potential
retinol oxidation by ADHs, a 250 kb deletion was generated using Cre-loxP technology.
Homozygous Adh-del knockout mice survive postnatally and are fertile (SK and GD,
unpublished).

After crossing Rdh10trex mutant mice with Adh-del mice, we found that E10.5 homozygous
Adh-del;Rdh10 compound mutant embryos appear similar to Rdh10trex mutant embryos,
exhibiting similar stunted forelimbs but normal hindlimbs (Fig. 3). The RARE-lacZ RA-
reporter transgene was introduced into Adh-del;Rdh10 mutants to monitor RA signaling
activity. We found that E10.5 Adh-del;Rdh10 mutants display the same pattern of RA
activity as Rdh10trex mutants, particularly loss of RA activity in most mesodermal tissues
and eye/nasal pit but retention of RA activity in the neural tube (Fig. 3). Thus, ADH retinol
activity is not responsible for the RA activity remaining in Rdh10trex mutants at E10.5.
Recent studies have shown that the P450 enzyme CYP1B1 is able to oxidize retinol to
retinaldehyde, and Cyp1b1 is expressed in the neural tube of chick and mouse embryos [77,
78]. Thus, RA activity observed in the neural tube of Rdh10trex mutants may be the result of
retinol oxidation catalyzed by CYP1B1.

3. Aldehyde dehydrogenase loss-of function models
Loss-of-function studies in mice have identified several ALDH enzymes that play a role in
oxidation of retinaldehyde to RA (Table 1). Oxidation of retinaldehyde to RA is irreversible
and all three RALDHs identified as catalysts for this reaction (RALDH1, RALDH2, and
RALDH3) are expressed in non-overlapping dynamic spatiotemporal patterns during
development indicating that this step is tissue-restricted and time-restricted [26, 79]. All
three RALDHs contribute to physiological generation of RA activity as monitored using a
transgenic RA-reporter mouse strain (RARE-lacZ) which contains lacZ linked to a RA
response element [72].

3.1. Raldh1 knockout
During mouse embryonic development, Raldh1 expression is first observed at E9.5 in the
dorsal retina where it remains until adulthood [27, 80]. Later in development a few other
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sites of Raldh1 expression exist [79], and by adulthood Raldh1 is expressed in many
epithelial tissues and at very high levels in liver similar to ADH1 [81]. Raldh1−/− mice
exhibit normal survival to adulthood, they are fertile, and they exhibit no obvious defects
[27]. Although Raldh1−/− mutants do not exhibit an ocular phenotype, Raldh1−/
−;Raldh3−/− double mutant embryos do exhibit a severe eye defect as described below.

As mentioned above, ADH1 clears excess retinol in adult liver by oxidizing it to
retinaldehyde which is further oxidized to RA. Treatment of Raldh1−/− mice with a toxic
dose of retinol results in an increase in retinaldehyde in the serum, a large reduction in the
appearance of RA, and a reduced LD50 for retinol toxicity [82]. Thus, RALDH1 is the
primary enzyme which further oxidizes retinaldehyde to RA in adult liver, demonstrating
that ADH1 and RALDH1 cooperate to eliminate excess vitamin A.

Adult Raldh1−/− mice were found to exhibit resistance to diet-induced obesity suggesting
that accumulation of retinaldehyde in adipose tissue protects against weight increase [83].
Further studies on Raldh1−/− mice or other retinoid-deficient model organisms may be
useful to dissect the underlying mechanism behind this relationship between retinoids and
obesity.

3.2. Raldh2 knockout
RARE-lacZ expression has demonstrated that RA signaling activity is first observed in
mouse embryos at E7.5 (late primitive streak stage) and RA activity increases to very high
levels in the developing trunk from E7.5-E8.5 [72]. This observation suggests that
endogenous RA synthesis initiates in the mouse at E7.5. Raldh2 is first expressed at E7.5 in
trunk presomitic mesoderm and by E8.5 displays expression in somites and lateral plate
mesoderm that appears quite similar to the pattern of RA localization using the RARE-lacZ
RA-reporter [26, 84]. Studies on Raldh2−/− mice carrying RARE-lacZ have shown that
RALDH2 is responsible for all RA signaling activity seen in the embryo from E7.5 to E8.5
[25, 26]. Loss of all RA signaling at this early stage results in a failure to undergo embryonic
turning to achieve the fetal position, a failure to develop beyond E8.75, and lethality by
E9.5-E10.5 [25, 26].

Raldh2−/− embryos have been quite useful for elucidating the mechanism of RA signaling
during early development as they completely lack RA activity in mesoderm, ectoderm, and
endoderm from E7.5 when RA is first detectable until E8.5 (after E8.5 RA is generated in
the eye and a few other tissues by Raldh1 and Raldh3). Thus, during early mouse
development the only source of RA is the trunk mesoderm which expresses Raldh2. Key to
understanding the mechanism has been the observation that RA synthesized in trunk
mesoderm is secreted and acts in a paracrine fashion on nearby cells [6]. Raldh2−/−
embryos exhibit defects in posterior neuroectodermal tissues including the hindbrain [85,
86] and spinal cord [87]; endodermal tissues including the lung [88, 89] and pancreas [90,
91]; and mesodermal tissues including the heart [92, 93], somites [94, 95], and forelimb bud
[74].

Early embryonic lethality in Raldh2−/− embryos can be rescued by maternal dietary RA
supplementation at a low dose below the teratogenic range which allows survival to E10.5–
E14.5 depending on the treatment plan [26, 92]. Interestingly, RA-rescued Raldh2−/−
embryos appear similar to Rdh10 mutants in that they have undergone embryonic turning
and they exhibit stunted forelimbs but normal hindlimbs [17, 26, 92]. By treating Raldh2−/−
embryos with RA for only a short period to rescue early embryonic lethality (i.e. E7.5–E8.5
or E7.5–E9.5), then examining them several days later when the administered RA has been
cleared, one creates a conditional rescue that allows the later functions of Raldh2 to be
examined. This method has been used to provide mechanistic insight into how RA controls
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limb interdigital development [96], kidney formation [97], and lung development [98], and
has shown that RA signaling acts in the liver rather than the heart to stimulate ventricular
myocardial expansion via an RA-EPO-IGF2 signaling axis [99, 100], and contrary to
previous findings Raldh2 mutants have demonstrated that RA is unnecessary for both limb
patterning [74] and meiotic initiation in embryonic ovary [101]. Use of these genetic and
dietary tools to manipulate RA availability and to visualize the locations of RA signaling,
makes it possible to determine which tissues require RA signaling and to examine in detail
the mechanism of RA action during organogenesis.

3.3. Raldh3 knockout
Raldh3 expression in mouse is first observed from E8.75–E9.5 in the optic vesicle and nasal
placode, then at E10.5 expression is seen in the ventral retina, nasal pit, otic vesicle, and
mesonephros, and at E12.5 the ventral telencephalon begins to express Raldh3 [102, 103].
Raldh3−/− mice exhibit lethality at birth due to a blockage of the nasal passages which
prevents efficient respiration [28]. Raldh3−/− embryos do not display obvious external
deformities and appear relatively healthy until birth. Therefore, Raldh3−/− mice have been
useful to examine the mechanism of RA signaling during development of the nasal pit [28],
eye [104, 105], forebrain [29], and kidney [97]. Raldh3−/− embryos carrying the RARE-
lacZ RA-reporter transgene exhibit a complete loss of nasal pit RA activity and a significant
reduction in eye RA activity, but some ocular RA activity remains due to Raldh1 expression
in the dorsal retina; these observations are consistent with Raldh3−/− embryos exhibiting a
lethal nasal defect but a relatively mild eye defect [28].

Initial studies with Raldh1−/− mice demonstrated no ocular defects, suggesting that
RALDH1 is unnecessary for eye development despite its high level of expression in the
dorsal retina [27]. However, later studies demonstrated that Raldh1 (expressed in dorsal
retina) and Raldh3 (expressed in ventral retina) have redundant roles in RA synthesis needed
for embryonic eye development as Raldh1−/−;Raldh3−/− double mutants carrying RARE-
lacZ exhibit complete loss of RA activity whereas the single mutants do not [104, 105].
Studies on Raldh1−/−;Raldh3−/− double mutants revealed that RA synthesized in the retina
by either RALDH1 or RALDH3 does not control dorsoventral patterning of the retina as
originally proposed, but instead RA is secreted and travels to the surrounding neural crest-
derived perioptic mesenchyme where it prevents overgrowth of this tissue during formation
of the cornea and eyelids [104, 105]. This observation provides a great example of how RA
regulates developmental processes using a paracrine signaling pathway. Further studies on
Raldh1−/−;Raldh3−/− double mutants demonstrated that RA synthesized in the retina
functions in a paracrine fashion on the perioptic mesenchyme to induce Pitx2 [104] which
was found to contain a functional RA response element [106]. Interestingly, other studies
have shown that Pitx2 induces expression of Dkk2, a Wnt antagonist, in perioptic
mesenchyme [107]. Raldh1−/−;Raldh3−/− double mutants were found to have decreased
expression of Dkk2 and increased Wnt signaling in the perioptic mesenchyme, suggesting
that the ocular defects observed in these double mutants are due to a failure of RA to restrict
Wnt signaling in the perioptic mesenchyme [106].

Raldh3−/− mice have also been quite useful to examine the mechanism of RA action during
forebrain development. Raldh3 is expressed from E12.5 to birth in the lateral ganglionic
eminence (LGE), a neural progenitor zone located in the ventral telencephalon. RARE-lacZ
is not expressed in this region of the forebrain in mouse embryos, but RA activity has been
detected in the LGE using an in vitro assay in which tissue explants are grown on a lawn of
RARE-lacZ RA-reporter cells [108, 109]. Using this assay, Raldh3−/− LGE explants were
shown to completely lack RA activity [29]. Raldh3−/− embryos were found to have reduced
expression of dopamine receptor DRD2 in a restricted region of the basal ganglia that forms
the nucleus accumbens [29]. Raldh3−/− embryos were recently found to lack GABAergic
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differentiation throughout all LGE-derived striatal projection neurons and interneurons that
migrate to the forebrain and olfactory bulb [110]. Further studies using Raldh3−/− mice
should shed more light on the normal physiological role of RA signaling in forebrain neural
differentiation.

4. Conclusions
A requirement for vitamin A in growth and development has been known for several
decades, but we are still actively engaged in research to understand the mechanisms
involved. A major clue was revealed with the discovery that the vitamin A metabolite RA
directly regulates gene expression by functioning as a ligand for nuclear RA receptors. Since
then, there has been a great deal of interest in determining the physiological processes
controlled by RA and elucidating the target genes directly controlled by RA. Many
conclusions in the retinoid field have been drawn from experiments employing treatment
with non-physiological levels of RA or high levels of RA receptor antagonists which can
both result in non-specific effects. Thus, a major advantage of the genetic models described
here is that they result in loss of endogenous RA, thus providing a method which does not
suffer from the non-specific effects of adding RA. Mice lacking the ability to metabolize
vitamin A to RA in specific tissues are now a valuable resource for current studies designed
to understand the mechanisms related to vitamin A function in mammalian organisms.
Studies on RDH and RALDH mutant mice have revealed that RA activity can be reduced or
completely eliminated in certain tissues, thus providing very useful genetic loss-of-function
models to decipher the mechanism of RA signaling. It is now clear that vitamin A functions
mostly (or maybe only) through a paracrine RA signaling pathway rather than an endocrine
or autocrine pathway during embryonic development. Using this paradigm, it will be
interesting to see if paracrine signaling is also the preferred mechanism used by RA when it
acts in postnatal and adult tissues. In order to completely understand the RA signaling
pathway, future studies need to be designed to determine the sources of RA synthesis and
the actual target tissues/cells that respond to physiological levels of RA, i.e. the tissues/cells
where direct RA target genes are expressed. The observations made so far with ADH, RDH,
and RALDH mutant mice will thus guide future studies designed to understand vitamin A
function in embryonic, postnatal, and adult tissues.
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Fig. 1.
Retinoid metabolic pathway. All-trans-retinol (the alcohol form of vitamin A) can be
converted to retinyl esters for storage through the action lecithin-retinol acyltransferase
(LRAT) and cellular retinol-binding protein-1 (CRBP1). Alternatively, all-trans-retinol can
be oxidized to all-trans-retinaldehyde by either alcohol dehydrogenase (ADH) or retinol
dehydrogenase (RDH) using NAD as cofactor. All-trans-retinaldehyde can also be
generated by cleavage of beta-carotene (provitamin A) by carotenoid-15,15′-oxygenase
(CMO1). All-trans-retinaldehyde can be reduced to all-trans-retinol through the action of
RDHs that preferentially use NADPH as cofactor or by aldo-keto reductases (AKR). All-
trans-retinaldehyde can be further oxidized to all-trans-retinoic acid (RA) by retinaldehyde
dehydrogenases (RALDH1, RALDH2, and RALDH3) which are members of the aldehyde
dehydrogenase family (i.e. ALDH1A1, ALDH1A2, and ALDH1A3, respectively). RA can
be further oxidized to 4-hydroxy-retinoic acid by cytochrome P450s (CYP26A1, CYP26B1,
and CYP26C1) which is considered the first step of RA degradation as it leads to more
easily excreted metabolites. RA can initiate a signaling event through binding to nuclear RA
receptors (RARα, RARβ, and RARγ) that regulate transcription of target genes.
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Fig. 2.
Deletion of entire mouse ADH gene family. The Adh-del strain was made possible by the
fact that all six ADH genes in the mouse genome are located in a 250 kb stretch on
chromosome 3 with no other genes intermixed [111]. Double-targeted embryonic stem (ES)
cells were generated that had loxP sites introduced into both Adh4 and Adh3 located on
opposite ends of the complex; double-targeted ES cells were selected for resistance to both
neomycin (neo) and hygromycin (hygro). Mice generated from double-targeted ES cells
were mated to a germ-line Cre to create homozygous Adh-del knockout mice lacking this
250 kb stretch containing the ADH gene family.
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Fig. 3.
Embryogenesis and RA signaling in RDH and ADH mutants. RA activity was visualized in
E10.5 embryos carrying the RARE-lacZ RA-reporter transgene. At E10.5, the most obvious
phenotype of Rdh10trex mutants is the presence of a stunted forelimb while retaining
normal-sized hindlimbs; a very similar phenotype was observed in Adh-del;Rdh10
compound mutant embryos. Both Rdh10trex mutants (n = 4) and Adh-del;Rdh10 compound
mutants (n = 4) exhibited loss of most mesodermal RA activity and complete loss of eye/
nasal pit RA activity, but retention of neural tube RA activity. These findings demonstrate
that the ADH gene family is not responsible for generating retinaldehyde needed for the
lower level of RA synthesis still remaining in Rdh10trex mutants. e, eye/nasal pit; f, forelimb
bud; h, hindlimb bud; n, neural tube.

Kumar et al. Page 18

Biochim Biophys Acta. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Kumar et al. Page 19

Table 1

Mouse mutants for enzymes catalyzing conversion of retinol to retinoic acid (RA).

Gene Official gene name
Enzyme name and activity with
retinoids Major defects observed in null mutants

Adh1 Adh1 class I alcohol dehydrogenase oxidation
of retinol to retinaldehyde

non-lethal; adults fertile; hypersensitive to vitamin A toxicity due
to reduced ability to clear excess retinol; increased retinyl esters

Adh3 Adh5 class III alcohol dehydrogenase
oxidation of retinol to retinaldehyde

non-lethal; adults fertile; reduced postnatal survival during
vitamin A deficiency

Adh4 Adh7 class IV alcohol dehydrogenase
oxidation of retinol to retinaldehyde

non-lethal; adults fertile; reduced postnatal survival during
vitamin A deficiency

Rdh1 Rdh1 retinol dehydrogenase-1 oxidation of
retinol to retinaldehyde

non-lethal; adults fertile; increased body weight, adipose tissue,
and retinyl ester levels

Rdh10 Rdh10 retinol dehydrogenase-10 oxidation of
retinol to retinaldehyde

lethal at E13.5; craniofacial defects; small forelimbs

Raldh1 Aldh1a1 retinaldehyde dehydrogenase-1
oxidation of retinaldehyde to RA

non-lethal; adults fertile; hypersensitive to vitamin A toxicity due
to reduced ability to clear excess retinaldehyde; protects against
obesity in adult

Raldh2 Aldh1a2 retinaldehyde dehydrogenase-2
oxidation of retinaldehyde to RA

lethal at E9.5; failure in embryonic turning due to somite defect;
enlarged heart; forelimb field absent; posterior hindbrain absent;
posterior foregut absent

Raldh3 Aldh1a3 retinaldehyde dehydrogenase-3
oxidation of retinaldehyde to RA

lethal at birth; blockage of nasal passages; mild perioptic
mesenchyme defect (more severe in Raldh1;Raldh3 double
knockout); forebrain LGE/striatum defects
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