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Abstract
Ideally shotgun proteomics would facilitate the identification of an entire proteome with 100%
protein sequence coverage. In reality, the large dynamic range and complexity of cellular
proteomes results in oversampling of abundant proteins, while peptides from low abundance
proteins are undersampled or remain undetected. We tested the proteome equalization technology,
ProteoMiner, in conjunction with Multidimensional Protein Identification Technology (MudPIT)
to determine how the equalization of protein dynamic range could improve shotgun proteomics
methods for the analysis of cellular proteomes. Our results suggest low abundance protein
identifications were improved by two mechanisms: (1) depletion of high abundance proteins freed
ion trap sampling space usually occupied by high abundance peptides and (2) enrichment of low
abundance proteins increased the probability of sampling their corresponding more abundant
peptides. Both mechanisms also contributed to dramatic increases in the quantity of peptides
identified and the quality of MS/MS spectra acquired due to increases in precursor intensity of
peptides from low abundance proteins. From our large data set of identified proteins, we
categorized the dominant physicochemical factors which facilitate proteome equalization with a
hexapeptide library. These results illustrate that equalization of the dynamic range of the cellular
proteome is a promising methodology to improve low abundance protein identification
confidence, reproducibility, and sequence coverage in shotgun proteomics experiments, opening a
new avenue of research for improving proteome coverage.
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Many diseases are caused by the dysfunction of low abundance proteins and post-
translational modifications.1–3 In order to speed the discovery of low abundance proteins
involved in disease, a high-sensitivity, comprehensive proteomics method is essential. The
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state-of-the-art analysis method which fulfills these requirements is mass spectrometry-
based shotgun proteomics. Thousands of proteins can be identified and quantified within a
single analysis, leading to many relevant biological discoveries.4,5 However, the
reproducible, simultaneous, and comprehensive analysis of all proteins within the cell using
mass spectrometry is currently limited by the large concentration dynamic range of the
cellular proteome (> 109).

Shotgun proteomics combines technologies to identify peptides produced by proteolytic
digestion of proteins.6,7 After the introduction of SEQUEST, an automated search algorithm
for tandem mass spectra of peptides,8 a dramatic leap in sensitivity and comprehensiveness
was first introduced through automated, online fractionation of peptides using strong cation
exchange and reverse-phase liquid chromatography called MudPIT.9,10 Further variations to
methodologies of separations at the peptide level have produced complementary peptide
identifications, yet only modest improvements in protein identifications.11–17 Advances in
the sensitivity, speed, and mass accuracy of ion trap mass spectrometers consistently yields
improvements in the number of protein identifications per time.18–25 These trends appear to
indicate that current proteomics technology is not separation-limited at the peptide level, but
instead mass spectrometer-limited. Fundamentally, the finite ion capacity of ion trap mass
spectrometers used in many shotgun proteomics experiments limit the isolation,
fragmentation, and detection of low abundance peptide ions, and thus the identification of
low abundance proteins. We expect continued improvements in mass spectrometers to
achieve greater proteomic coverage of the substantial dynamic range of the proteome. Until
that time is reached, another complementary alternative is adjusting the concentration
dynamic range of the proteome to the detectable dynamic range of mass spectrometers.

A robust method has emerged for minimizing the protein concentration dynamic range of
bodily fluid samples through the use of a combinatorial hexapeptide-bead library, marketed
as ProteoMiner by Bio-Rad.26 The random generation of hexapeptides creates a substantial
ligand library (64 million) for which proteins can selectively bind.27,28 A complex protein
sample is incubated in excess of the protein mass binding capacity of the bead-conjugated
hexapeptide ligands and unbound proteins are washed away. The protein to ligand excess
creates conditions where proteins saturate the ligands. Thus the final concentration of the
proteins in the sample are defined by the amount of the ligand present. In the case of high
abundance proteins this is expected to result in their depletion, while for low-abundance
proteins, enrichment.

Plasma is one of the most difficult samples to analyze with shotgun proteomics. Not only are
proteins from every cell type potentially present, but the protein concentration dynamic
range is 12 orders of magnitude.29 The ProteoMiner technology has likely worked
particularly well for depletion of high abundance proteins in plasma since only three
proteins (hemoglobin, albumin, and immunoglobin G) make up the top 103 of the protein
concentration dynamic range. Recently, the use of ProteoMiner in conjunction with
glycopeptide and phosphopeptide enrichment aided in the analysis of post-translational
modifications in saliva using LC-MS/MS.30,31 Herein we examine the use of a hexapeptide
library to equalize the protein concentration dynamic range of a human cell lysate to
improve several shotgun proteomic metrics and identify binding trends to the hexapeptide
library to better understand the mechanisms of enrichment and depletion. For such, we
tested the ProteoMiner technology on HeLa cell lysates and analyzed the samples using
MudPIT.
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METHODS AND MATERIALS
Reagents and Chemicals

Unless otherwise noted all chemicals were purchased from Thermo Fisher Scientific
(Waltham, MA). Deionized water (18.2 MΩ, Barnstead, Dubuque, IA) was used for all
preparations.

HeLa cell growth and lysis
Cells were cultured in 10 cm plates and DMEM with 10% FBS. Harvesting was performed
at ~80% confluence, each plate contained about 3–3.5 million cells. Cells were scraped into
ice cold PBS and frozen in dry ice immediately after a short spin and supernatant aspiration.
Cells were lysed to 25 mg/mL in 50 mM Tris(hydroxyethylamine) pH 7.8, 150 mM NaCl, 1
mM EDTA, 2 mM PMSF, 1% SDS, and 1X protease inhibitor (Roche).

ProteoMiner Enrichment
Instructions from the ProteoMiner Small-Capacity Kit (Bio-Rad, Hercules, CA, cat #163–
3006) were followed. Briefly, ProteoMiner columns containing 20 μL beads were washed
thrice with 1X PBS with 5 min incubations and 1,000 × g spins. Lysates were diluted to
0.1% SDS using 1X PBS. ProteoMiner beads were transferred to a higher volume centrifuge
tube by repetitively creating bead-sample slurries until all the beads were transferred. The
final bead-sample slurry was incubated for two hours at room temperature with rotation. The
unbound proteins were separated from the ProteoMiner beads by repetitively transferring
smaller volumes of the bead-sample slurry back to the ProteoMiner columns and briefly
spinning at 1,000 × g. Additionally, the remaining ProteoMiner beads with bound proteins
were again washed thrice with 1X PBS.

2-D gel analysis
Proteins were eluted off of the ProteoMiner beads thrice by incubating with 100 μl of elution
buffer (9 M urea, 2% CHAPS, 100 mM acetic acid) and spun at 1,000 × g for 30 sec. The
fractions were pooled and analyzed by protein assay. Proteins eluted from ProteoMiner
beads were precipitated with the 2-D Cleanup Kit (Bio-Rad) to remove any ionic
contaminants and solubilized in 2-D rehydration buffer (7 M Urea, 2 M thiourea, 2%
CHAPS, 50 mM dithiothreitol, 2 mM tributylphosphine, 0.2% Bio-Lyte ampholyte pH 5–8
and bromophenol blue to desired color). For the 1st dimension of 2-D electrophoresis, 100
μg of protein was loaded onto an 11 cm ReadyStrip IPG strip, pH 5–8 (Bio-Rad). Isoelectric
focusing was performed using a PROTEAN IEF Cell (Bio-Rad) at 8000 volts for 35,000
volt-hours. For the 2nd dimension, the IPG strip was transferred onto a Criterion Tris-HCl 8–
16% gradient gel (Bio-Rad) and run for 1 hour at 200 volts. Gels were stained with
Flamingo fluorescent gel stain (Bio-Rad) and imaged on the Molecular Imager PharosFX
system (Bio-Rad). The resultant gel images were analyzed with PDQuest 2-D Analysis
Software (Bio-Rad).

MudPIT analysis
Proteins (~200 μg) were digested off of the ProteoMiner beads by first denaturing and
reducing in 120 μL 8 M urea, 100 mM Tris(hydroxyethylamine) pH 8.5, and 5 mM tris(2-
carboxyethyl)phosphine for 30 min. Cysteine residues were acetylated with 10 mM
iodoacetamide for 15 min in the dark. The sample was diluted to 2 M urea with 100 mM
Tris(hydroxyethylamine) pH 8.5. Trypsin (4μg as 0.5 μg/μL) was added at a 1:50
protease:protein ratio (~200 μg ProteoMiner bead protein capacity) along with CaCl2 to 1
mM for an overnight digestion at 37°C. Peptides were spun off of the ProteoMiner column
at 1,000 × g, split into two aliquots, and stored at −80°C until the day of analysis. On the
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day of analysis peptide samples were acidified to 5% formic acid and spun at 18,000 × g.
The same digestion procedure was carried out for digestion of 100 μg HeLa protein lysate
Control samples.

Capillary columns were prepared in-house for LC-MS/MS analysis from particle slurries in
methanol. An analytical RPLC column was generated by pulling a 100 μm ID/360 μm OD
capillary (Polymicro Technologies, Inc, Phoenix, AZ) to 5 μm ID tip. Reverse phase
particles (Jupiter C18, 4 μm dia., 90 Å pores, Phenomenex, Torrance, CA) were packed
directly into the pulled column at 800 psi until 15 cm long. The column was further packed,
washed, and equilibrated at 100 bar with buffer B followed by buffer A. A MudPIT trapping
column was prepared by creating a Kasil frit at one end of an undeactivated 250 μm ID/360
μm OD capillary (Agilent Technologies, Inc., Santa Clara, CA), then successively packed
with 2.5 cm strong cation exchange particles (Luna SCX, 5 μm dia., 100 Å pores,
Phenomenex) and 2.5 cm reverse phase particles (Aqua C18, 5 μm dia., 125 Å pores,
Phenomenex). The Kasil frit was prepared by briefly dipping a 20 cm capillary in well-
mixed 300 μL Kasil 1624 (PQ Corporation, Malvern, PA) and 100 μL formamide, curing at
100°C for 4 hrs, and cutting the frit to ~2 mm in length. The MudPIT trapping column was
equilibrated using buffer A for 15 min at 400 bar. Peptide samples (~100 μg) were loaded
onto columns at 400 bar. MudPIT and analytical columns were assembled using a zero-dead
volume union (Upchurch Scientific, Oak Harbor, WA).

LC-MS/MS analysis was performed using an Agilent 1100 HPLC pump and Thermo LTQ
XL using an in-house built electrospray stage. Electrospray was performed directly from the
analytical column by applying the ESI voltage at a tee (150 μm ID, Upchurch Scientific)
directly downstream of a 1:1000 split flow used to reduce the flow rate to 250 nL/min
through the columns. 12-step MudPIT experiments were performed where each step
corresponds to 0, 10, 15, 20, 25, 30, 40, 50, 60, 70, 85, and 100% buffer C being run for 5
min at the beginning of a 2 hr gradient. The repetitive 2 hr gradients were from 100 % buffer
A to 60% buffer B over 70 min, up to 100% B over 20 min, held at 100% B for 10 min, then
back to 100% A for a 10 min column re-equilibration. Buffer A was 5% acetonitrile 0.1%
formic acid, B was 80% acetonitrile 0.1% formic acid, and C was 500 mM ammonium
acetate. Data-dependent acquisition of MS/MS spectra on the LTQ were performed with the
following settings: inlet capillary temperature − 200 °C, full scan automatic gain control
target − 20K ions, MSn scan automatic gain control target − 10K ions, ESI voltage − 2.5
kV, maximum injection time − 100 ms, dynamic exclusion time − 60 sec, and 5 MS/MS per
MS on the most intense precursor ions.

Tandem mass spectra were extracted from raw files using RawExtract 1.9.932 and were
searched against a combined UniProt Swiss-Prot and VarSplic database with reversed
sequences using ProLuCID.33 The search space included all fully-, semi-, and non-tryptic
peptide candidates. Carbamidomethylation of cysteine was considered as a static
modification. The validity of peptide spectrum matches were assessed computationally as
follows using an in-house software termed Search Engine Processor (SE Pro).
Identifications were grouped by charge state (+1, +2, and ≥ +3) and then by tryptic status
(fully tryptic, half-tryptic, or non-tryptic), resulting in nine distinct subgroups. For each
result, ProLuCID XCorr, DeltaCN and ZScore values were used to generate a Bayesian
discriminator. Outlier points in the two distributions having a Mahalanobis distance greater
than 4 were discarded. The identifications were sorted in a non-decreasing order according
to the discriminator score. A cut-off score was established to accept a false discovery rate of
1% based on the number of reverse and scrambled decoy proteins and similarly 0.1% based
on decoy peptides. This procedure was independently performed on each data subset,
resulting in a false-positive rate that was independent of tryptic status or charge state.
Additionally, a minimum sequence length of six amino acid residues was required.
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Data analysis
Identification comparisons of proteins and peptides between Control and ProteoMiner runs
were performed using PatternLab for Proteomics.34 Spectral counts of proteins and peptides
between Control and ProteoMiner runs were extracted using Census.35 Peptide precursor
intensities and XCorr values were extracted and integrated from MS spectra and filtered SE
Pro results using an in-house written script. Calculations and comparisons of peptide
precursor intensities and XCorr values were performed using Microsoft Excel. Unique
peptide sequences and protein isoforms were identified and compared using a modified
sparse matrix generator from PatternLab that only considers unique peptides. Isoelectric
point, molecular weight, and Kyte-Doolittle score of proteins were calculated in parallel
using an in-house written script. Gene ontology and protein class comparisons were made
using PANTHER.36 Recurrent protein domains were found by searching proteins with
Pfam37 enriched at least two-fold by spectral counts from the use of ProteoMiner. In silico
digestions of the UniProt Swiss-Prot database were performed using an in-house program
called Axe.

RESULTS AND DISCUSSION
ProteoMiner-2D Gel Results

ProteoMiner relies on the competitive binding of proteins from a lysate to at least one of the
64 million randomly generated hexapeptide ligands synthesized on beads. Thus, protein
quantity, concentration, and dynamic range are all critical parameters that define the number
of proteins that can be pulled out of a protein sample based on their affinity to the
hexapeptide library under competitive binding conditions. All three of these parameters are
expected to be significantly different between a clinical sample (i.e. plasma or saliva) and a
biological sample such as a cell lysate. Thus, we first used 2-D gel electrophoresis with
silver staining to evaluate whether the protein-hexapeptide incubation conditions were
adequate for a cell lysate by estimating the improvement in detectable proteins after using
ProteoMiner (Figure 1). From simply counting protein spots on the fluorescently stained
gels, a ~40% increase in proteins were detected, increasing from 315 to 435 spots. The
increase in detectable spots was attributed to enrichment of lower abundance proteins.
Similarly, the largest and darkest protein spots in the Control were smaller and lighter in the
ProteoMiner gel due to depletion of the most abundant proteins. Given the increased
functional complexity of the contents of a cell lysate compared to a clinical sample, such as
plasma or urine, we rationalized that there are many more protein-protein interactions which
could interfere with protein binding to hexapeptide ligands. We found that a low
concentration of detergent (0.1% SDS) was required to see an increase in protein spots. The
detergent likely serves multiple functions: (1) disrupts stable protein interactions of protein
complexes, (2) disrupts non-specific protein interactions of high abundance proteins to
others, (3) denatures proteins and further exposes high affinity epitopes, and (4) minimizes
non-specific hydrophobic protein-hexapeptide interactions.

ProteoMiner-MudPIT Results
ProteoMiner used in combination with fluorescently stained 2D gels yielded a promising
increase in protein identifications, so we performed the same experiment with MudPIT as a
more comprehensive protein identification readout. Through simultaneous depletion of high
abundance proteins and enrichment of low abundance proteins, ProteoMiner treatment of a
cell lysate was expected to equalize protein abundance. In order to test this without a
visualization method such as a 2D gel, we used the spectral counts of proteins as a measure
of their relative abundances.38 The comparison of protein abundance change between
Control and ProteoMiner runs using their percent spectral count changes is shown in Figure
2A. When we grouped proteins by their relative abundance (protein spectral count order of
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magnitude) in Control runs, an obvious equalization trend was observed. Proteins identified
by 1000 or more spectral counts (“Thousands”) in Control runs, on average were identified
with 32% fewer peptide spectra in ProteoMiner runs. Conversely, proteins identified by less
than 10 spectral counts in Control runs (“Ones”) were on average identified by 226% more
spectra in ProteoMiner runs. The results for proteins identified by 10 to 99 spectral counts
(“Tens”) had a similar trend with a 68% increase in spectral counts from using ProteoMiner.
Proteins identified by “Hundreds” of spectral counts (100–999) showed no significant
change, indicating that ProteoMiner acts to equalize the protein dynamic range to an
abundance for which MudPIT can identify proteins by greater than 100 spectral counts.
Specific examples of the top ten most depleted and enriched proteins are listed in Tables 1
and 2, respectively. In Figure 2B the relative importance of protein concentration
equalization is illustrated based on initial protein abundances. That is, the proteins that have
the largest gains in spectral counts (“Ones” and “Tens”) are also the more frequently
identified. Thus, a relatively small decrease (32%) in spectral counts of 46 high abundance
proteins dramatically increased the spectral counts of 1288 (“Ones”) and 2016 (“Tens”)
proteins by, on average, 226 and 68%, respectively. Although protein identification
probability is not routinely quantified based on spectral counts,39 these increases in protein
spectral and sequence count both improve protein identification probability. Additionally,
the spectral count changes directly translated to changes in protein sequence coverage,
illustrated in Figure 2C. Similar to the trend from spectral count changes, small decreases in
a small number of high abundance proteins’ sequence coverage significantly increased the
relative sequence coverage of lower abundance proteins. Comparable observations have
been found with immunoaffinity depletion of serum using antibody columns to remove the
most abundant proteins.40

These trends are further illustrated, independently of protein abundance, by distribution plots
of sequence count and sequence coverage in Supplemental Figure 1A and 1B, respectively.
Sequence count is indicative of the number of peptides that contribute to identifying a
protein sequence. Although the maximum sequence count of 10 remained constant between
Control and ProteoMiner runs, shown in Supplemental Figure 1A, the sequence count
shifted to higher values from the use of ProteoMiner. Again, the sequence count results
directly correlated to sequence coverage. Thus, a similar trend is seen in the sequence
coverage plot shown in Supplemental Figure 1B, with an overall shift to higher sequence
coverages from the use of ProteoMiner.

MudPIT can routinely detect thousands of proteins in a single 24 hr analysis, approximately
an order of magnitude higher than a stained 2D gel. Thus, we were somewhat skeptical that
we could achieve the same 40% percent increase in protein identifications using
ProteoMiner in combination with MudPIT. However, even with a modest 10% increase in
new protein identifications from the use of ProteoMiner with MudPIT relative to Control
runs, we still increased new protein identifications by a factor of three over the 2D gel
results (316 versus 120 new proteins). A summary of the results from the MudPIT
experiments are listed in table 3. The most dramatic improvement we observed from the
ProteoMiner-MudPIT combination was a ~30% increase in both the average number of
peptides and unique peptides identified among triplicate Control and ProteoMiner runs.
Notably, the increased number of peptides identified was achieved from the same number of
acquired MS/MS spectra and peptide spectral matches (see Table 3). These results begin to
indicate that through the equalization of protein abundance from ProteoMiner the MS/MS
sampling space is more efficiently utilized.

Protein and Peptide Replicate Reproducibility Improvements
Due to undersampling of peptides selected for MS/MS in data-dependent acquisition,
reproducible identification of low abundance proteins between replicate analyses is often a
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challenge.38 Even as mass spectrometer sensitivity and dynamic range are improved, this
trend remains constant for the lowest abundance proteins detected within a shotgun
proteomics experiment. The equalization of protein dynamic range through the use of
ProteoMiner prior to MudPIT begins to actively address this problem. These results are
illustrated in Table 4. Comparison of the percent increase in proteins identified in duplicate
and triplicate analyses with and without ProteoMiner, reveals that ProteoMiner significantly
increases the number of proteins that can be reproducibly identified. A similar comparison at
the peptide level, also in Table 4, shows a more dramatic trend. That is, more reproducible
identification of peptides leads to more reproducible identification of proteins.

ProteoMiner-MudPIT Peptide Identification Improvements
Ultimately, the aforementioned increases in protein spectral and sequence counts, sequence
coverage, and identification reproducibility are due to identification of ~30% more peptides
using ProteoMiner. This increase in peptide identifications was facilitated by equalization of
the protein dynamic range. However, since we are directly identifying peptides to infer
protein presence, we wondered what aspects of peptide identification improvements
facilitated this enhancement in protein detection. Theoretically, the reduction of higher
abundance proteins, and thus their corresponding peptides, significantly opens the liquid
chromatography separation and ion trap sampling spaces. The opening of separation and
sampling space reduces ion suppression during the electrospray and precursor ion selection
processes, respectively, making sampling of low abundance peptides more probable and thus
more reproducible between experiments. The most indicative attribute that could solidify
this concept is increases in peptide precursor ion intensity. If fewer high abundance peptides
are present to suppress low abundance peptide signals, then an overall increase in peptide
precursor ion intensity should be observed. Indeed this was the case as illustrated in
Supplemental Figure 1C. The majority of the difference in the two distributions can be
attributed to a larger number of peptide identifications using ProteoMiner since their
maxima are nearly the same (see Table 3). However, the ProteoMiner peptide precursor ion
intensity distribution is slightly shifted to higher values, partially disguised by the
logarithmic x-axis.

In order to better illustrate the overall increase in precursor ion intensity from using
ProteoMiner we plotted the frequency of change in the average peptide precursor intensity
for a peptide (Figure 3A) and the peptides identifying a protein (Figure 3B). As can be seen
in the figures, the magnitudes and frequencies of increases in the average peptide precursor
intensity at the peptide and protein level both outweigh the magnitudes and frequencies of
decreases in peptide precursor intensity. Additionally, we plotted these results as a function
of peptide and protein abundance (spectral counts), indicating that peptides identified by 10–
99 spectral counts most frequently had their precursor intensities increase by 106, followed
in frequency by peptides identified by 1–9 spectral counts, then 100–999 spectral counts.
Similarly, in Figure 3B, the most frequent average protein precursor intensity increase was
106 for proteins identified by 1–9 spectral counts, followed by 10–99 spectral counts and a
105 improvement of proteins also identified by 1–9 spectral counts. Both of the peptide
precursor intensity increases averaged at the peptide and protein levels are astonishing.
Ultimately, the most important result in a shotgun proteomics experiment focused on
identification and expression profiling correspond to the improvements at the protein level.
Along these lines, higher intensity precursor ion intensities of peptides for low abundance
proteins, identified in the Control by 1–9 spectral counts, are at the core for the overall
improvements at the protein level. Considering a recent publication confirmed our
hypothesis that peptide precursor intensity is the limiting factor in most shotgun proteomics
experiments,41 we believe the increases in peptide precursor intensities we observed with
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ProteoMiner begin to address a significant problem in shotgun proteomics and provides a
basis for future improvements.

It is logical that higher precursor ion intensities must be beneficial to identification of more
peptides, but we interrogated the data further to find a correlation that would directly
indicate why more peptides were identified using ProteoMiner. Supplemental Figure 1D
shows that there was also a systematic increase in the XCorr of peptides identified using
ProteoMiner, so we wondered if the two improvements were related. What we found was a
direct correlation between the relative peptide precursor intensity increase and the absolute
increase in XCorr values. These results are plotted in Figures 4A and 4B. We compared the
changes in the average peptide XCorr at the peptide and protein level in relation to their
frequency. At the peptide level, the most frequent improvement was a 5-fold increase in
average precursor intensity that correlated to a 0.2 increase in XCorr. Similarly, at the
protein level the most frequent increase in the average peptide XCorr was 0.1 from a 50%
increase in average precursor intensity. Thus, equalization of protein dynamic range using
ProteoMiner increases peptide precursor intensities, leading to more confident identification
of peptides and thus proteins.

Increased sequence coverage yields improved differentiation of isoforms and redundant
proteins

Due to alternative splicing and genetic duplication, many proteins have largely related
sequences, yet different functions. Differentiation of these protein isoforms and their roles in
biology and disease creates a formidable challenge in any proteomic analysis. In the context
of shotgun proteomics, at least one peptide with a unique sequence from a particular protein
isoform must be identified to have any confidence that it is present within the sample.42

However, common peptide sequences among redundant proteins are more easily identified
since they are innately more abundant. Identification of the less abundant unique peptides is
similar to identification of low abundance proteins, meaning their identification is governed
by the inherent undersampling of data-dependent acquisition in shotgun proteomics.38 Thus,
methods which increase the probability of sampling these unique peptides would be highly
beneficial to proteomic analysis. We found that protein abundance equalization using
ProteoMiner is a promising option for differentiating protein isoforms. Figure 5A shows that
we identified ca. 7500 more unique peptide sequences using ProteoMiner. The distribution
of the changes in unique peptide sequences at the protein level is illustrated in Figure 5B.
The majority of unique sequences per protein increased by one to three sequence counts, but
many also increased by more than 10 counts. The increases in unique sequence counts from
the use of ProteoMiner led to identification of ~20 more protein isoforms than Control as
shown in Figure 5C. Of the 46 protein isoforms identified only in ProteoMiner we selected
an example to illustrate this concept. Figure 5D represents the isoform sequences of Splicing
factor 1, the peptides identified from Control and ProteoMiner MudPIT runs, and the
identified peptides unique to isoform 5 and 6. As can be seen, two peptides were identified
only in ProteoMiner runs that directly led to differentiation of isoforms 5 and 6 from each
other and isoform 1. The annotated MS/MS spectra for the peptides that differentiate the
isoforms are shown in Figure 5E.

ProteoMiner-MudPIT Protein Equalization Mechanism
As expected and desired, protein abundance appeared to be the most important factor for
protein equalization using ProteoMiner. However, in addition to the differences in the
relative concentrations of proteins, their binding constants for specific hexapeptide
sequences also determine the extent of equalization of protein abundances. For instance, a
lower abundance protein with a stronger binding constant should outcompete a higher
abundance protein with a weaker binding constant for that specific ligand. Thus, we
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wondered what physicochemical properties were most influential in determining the binding
constant between proteins and ProteoMiner hexapeptides. These results are illustrated in
Figure 6. For all the proteins identified in both Control and ProteoMiner runs, we compared
their relative frequencies based on their abundance changes and their theoretical isoelectric
points, molecular weights, and hydrophobicities (Kyte-Doolittle score). For all three
physicochemical properties, the most highly depleted proteins (ca. −100% Δ spectral count)
showed the strongest correlation as red peaks in the surface plots. Although exact values can
be assigned to these maxima (MW – 40 kDa, pI – 6, and Kyte-Doolittle Score – 0), we can
generalize that small, slightly acidic, amphipathic proteins were preferentially depleted
through ProteoMiner equalization. We wondered if these physicochemical properties were
only a representation of the abundant protein properties and not of the depletion mechanism.
An analysis of the 43 most abundant proteins identified in Control runs (greater than 1000
spectral counts) indicated this was not the case. That is, small, slightly acidic, amphipathic
proteins appear to be selectively depleted. The physicochemical properties of all abundant
proteins identified in Control runs were, on average, larger in size (MW – 57 kDa), more
basic (pI – 7.0), and more hydrophobic (Kyte-Doolittle – −131.8) than the abundant proteins
selectively depleted by ProteoMiner treatment. These proteins and their physicochemical
properties are listed on the “Abundant Proteins” tab of Supplemental Material 2. Similar
concepts are illustrated in the subsequent paragraph which classifies the gene ontology and
protein class biases of ProteoMiner. In Figure 6C, the relative maxima remained essentially
constant with a Kyte-Doolittle score of zero, indicating that overall protein hydrophobicity
may have had little effect on protein enrichment or depletion. We rationalize that the use of
0.1% SDS may have minimized the selectivity of most hydrophobic protein-hexapeptide
interactions. However, the use of the Kyte-Doolittle score to calculate protein
hydrophobicity instead of identification of hydrophobic protein domains, as commonly used,
may not adequately represent this trend. A more informative trend was observed for
isoelectric point. As the maxima of the isoelectric point surface plot (Figure 6A) are
followed from depleted (−100% Δ spectral count) to enriched (250%) proteins it becomes
obvious that protein isoelectric point (i.e. electrostatic or ionic interactions) is the most
important physicochemical factor for enrichment of proteins from ProteoMiner equalization.
Instead of a single, prominent maxima at a pI of 6 for depleted proteins, a broad range of
proteins are uniformly enriched from pI 5 to 11 with a local maximum around a pI of 9. A
less prominent trend is observed in the molecular weight plot. The depletion maximum of 40
kDa was shifted slightly to an enrichment maximum between 50–60 kDa dependent on the
extent of enrichment. At the biochemical level, these results intuitively make sense if
binding cooperativity is considered. Larger proteins with more electrostatic interactions
would be expected to bind more tightly to more hexapeptide ligands.

Of the top ten most depleted proteins (Table 1), we noticed structural, chaperone, and
metabolism-related proteins so we wondered if certain gene ontology classes may be
selectively enriched or depleted based on their abundances. These analyses are shown as
Supplemental Figures 2–7 and Tables 1–2. Indeed we found the most commonly depleted
class of cellular components were structural and abundant, such as actin cytoskeleton,
cytoskeleton, and intracellular organelle structures (Supplemental Figure 5). Regarding
selective enrichment, proteins categorized as “binding” had the most frequent enrichments
(Supplemental Figures 2 and 4) with nucleic acid and RNA binding proteins dominating.
These results could be expected since ProteoMiner relies on a binding mechanism for
enrichment. This led us to investigate if certain protein domains could be implicated in the
ProteoMiner enrichment mechanism. From Supplemental Figure 8, many of the most
frequently ProteoMiner-enriched domains were found to contain repeat domains: WD40,
Ank, zf-C2H2, HEAT, spectrin, PH, TRP_1, and ARM domains. These domains are
composed of pairs of anti-parallel α-helices, β-sheets, or both and are known to be important
for facilitating multiple protein-protein interactions and often bind peptide ligands.43 Both of
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these protein binding characteristics are obviously relevant to the interactions between
protein domains and hexapeptides, adding further insight to the specific mechanism of
protein enrichment from the use of ProteoMiner. The entire list of enriched protein domains
and their frequency are listed in the “Protein Domains” tab in Supplemental Material 2.

Previous publications describing the use of ProteoMiner allude to the fact that certain
proteins are “lost” from weak binding or lack of complementary to hexapeptide ligands.44,45

These results were obtained through manual identification of proteins using mass
spectrometry from 2D gels. We were able to reinvestigate this concept with a different
sample type containing many more proteins using a more automated and comprehensive
analysis method. A Venn comparison of proteins identified between Control and
ProteoMiner runs is shown in Supplemental Figure 9. Among the ~1000 uniquely identified
proteins between Control and ProteoMiner runs, we looked for a trend consistent with loss
of proteins by characterizing their physicochemical properties and PANTHER protein
classes. The results from these analyses are on the “Uniquely Sampled Proteins” tab in
Supplemental Material 2. From a comparison of the averages and standard deviations of the
physicochemical properties of uniquely sampled proteins between Control and ProteoMiner
there doesn’t appear to be a physicochemical property which defines “lost” proteins from the
use of ProteoMiner. Similarly, we were unable to find a PANTHER protein class with a
strong P-value and high frequency that would indicate loss of a specific protein class by
ProteoMiner treatment. However, it should be noted that shotgun proteomics is inherently a
protein sampling method.38 This is illustrated for these experiments by the overlap of
proteins identified in triplicate Control and ProteoMiner runs shown in Supplemental Figure
10. Thus, a more comprehensive analysis of the proteins identified in Control and not
ProteoMiner runs would need to be performed to confidently define critical physicochemical
properties or protein classes that identification is prevented by the use of ProteoMiner.

A recent publication reported that hydrophobic interactions of proteins with the ProteoMiner
beads were the dominant binding mechanism.46 Additionally, they tested different
chromatography reverse phase and ion exchange resins and were able to achieve similar
equalization results as with ProteoMiner beads. Their results implied that electrostatic
interactions are irrelevant to protein-hexapeptide binding. What the authors failed to
recognize is that their methods only facilitated comparison of ~50 abundant proteins, an
extremely small portion of the proteome. As a result they were only probing the depletion
mechanism of hexapeptide beads and not the enrichment mechanism. Similarly, the
comparisons with other resins only probed their depletion capabilities, just half of the
mechanism of hexapeptide bead equalization. From the use of MudPIT as a protein readout
instead of a 2D gel, we were able to perform a more comprehensive analysis over four
orders of magnitude in protein abundance. As a result, the trends in protein physicochemical
properties could be better represented and may aid in further improvements to optimization
of protein abundance equalization using hexapeptide libraries.

CONCLUSIONS
We demonstrated that an equalization of cellular protein abundance using ProteoMiner
increases the quality and quantity of peptide identifications in a shotgun proteomics
experiment. Essentially, the large decreases in peptide spectral counts through depletion of a
small percentage of high abundance proteins had dramatic effects on the reproducibility and
sequence count of low abundance proteins. We were not surprised by this phenomenon since
removal of high abundance peptides allows for the ion trap to be filled with more of other
lower abundance peptides. The dramatic increases in peptide precursor intensities of all but
the highest abundant proteins are a strong indicator of this. Additionally, the largest gains in
average precursor intensity were observed for proteins with low abundance (“Tens”, 10–99
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spectral counts) in Control runs and not of very low abundance (“Ones”, 1–9 spectral
counts). If enrichment of low abundance proteins was the dominant mechanism of
improvement from the ProteoMiner-MudPIT combination, the largest gains would have
been expected for the very low abundance proteins and not low abundance proteins.

The use of a randomly generated hexapeptide library understandably affords the possibility
that a protein may not have a corresponding ligand. By coupling ProteoMiner equalization
with the comprehensive nature of MudPIT we found this to be much less of an issue than
anticipated. On top of the aforementioned 10% gain in protein identifications, the majority
of proteins identified (73%, data not shown) appeared in both experiments, indicating very
few proteins were lost through the use of ProteoMiner. We suspect larger protein
identification gains were not achieved since we investigated only one protein:bead
incubation ratio (100:1). The protein concentration dynamic range for which we enriched
using ProteoMiner was well matched to the detection dynamic range of MudPIT. In order to
shift this partially redundant overlap of dynamic ranges between ProteoMiner and MudPIT,
a further increase in the protein:bead ratio could facilitate protein-hexapeptide interactions
and enrichments of even lower abundance proteins that are randomly accessible by current
shotgun proteomics techniques. In fact, this type of strategy could be potentially used to
“zoom in” on order of magnitude “windows” of the proteome dynamic range.

As mentioned earlier, the ultimate goal of shotgun proteomics would be to identify and
sequence the entire cellular proteome. Since even state-of-the-art mass spectrometers used
for shotgun proteomics are still primarily undersampling peptides of the lowest abundance
proteins we believe that equalization of the proteome dynamic range will be essential to
achieve this ultimate goal. We observed the most dramatic sequence coverage improvements
for the lowest abundance proteins, indentified by less than 10 spectral counts in Control
runs. Until the time when most MS/MS peptide spectra result in the identification of a new
protein or an increase in the sequence coverage of a protein, efforts should remain focused
on the equalization of protein, and thus peptide, abundance. To typify this challenge, in a 24
hour MudPIT run we identified ~35,000 peptides of which about a third contributed to an
increase in sequence coverage of a protein. An in silico digestion of the UniProt Swiss-Prot
database yielded 551,753 peptides with no missed trypsin cleavages from 20,248 protein
entries and 1,495,634 peptides with one missed cleavage. Both of these peptide counts are
sizeable, yet are within current MS/MS sampling rates due to improvements in the sampling
speed and sensitivity of current ion trap mass spectrometers.41 However, what cannot be
ignored is the fact that a single peptide may be present with 106 copies per cell while another
from a very low abundance protein may be present with one copy per cell. Until these
peptide abundance differences are addressed, the realization of sequencing the entire
proteome may not be achievable.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
2D gels of (A) Control and (B) ProteoMiner treated HeLa cell lysates.
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Figure 2.
(A) Protein abundance equalization visualization. Proteins were grouped based on spectral
counts in Control runs as an approximation of abundance. The average percent change in
protein spectral counts are plotted with standard error means for each spectral count order of
magnitude. (B) Protein spectral count frequency visualization. Proteins were again grouped
by spectral count abundance and counted. (C) Protein sequence coverage visualization. The
average percent change in sequence coverage is plotted with standard error means for each
spectral count order of magnitude.
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Figure 3.
Histograms of the changes in average peptide precursor intensities at the (A) peptide and (B)
protein level.
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Figure 4.
Correlation of the relative precursor intensity increases from ProteoMiner equalization to
increases in (A) average XCorr per peptide and (B) average peptide XCorr per protein. The
change in peptide XCorr are plotted as bars against the left y-axis and the frequency of
peptide identifications with the associated precursor intensity change as connected dots
against the right y-axis.
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Figure 5.
Improvements in protein isoform identification from the use of ProteoMiner. (A)
Comparison of unique peptides identified between Control and ProteoMiner runs. (B)
Histogram of changes from Control to ProteoMiner in the unique peptide sequence count at
the protein level. (C) Comparison of the protein isoforms identified between Control and
ProteoMiner. (D) Illustration of improved protein isoform differentiation from the use of
ProteoMiner of Splicing factor 1 isoforms 1, 5, and 6 and the unique peptides that facilitated
the differentiation. (E) MS/MS spectra of the unique peptides identified only in ProteoMiner
runs which differentiate the isoforms. Fragment ions are annotated as +1 (green), +2 (blue),
and +3 (red) charge states. Neutral loss of water (°) and ammonia (*) are also annotated.
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Figure 6.
Visualization and comparison of the effects of theoretical (A) isoelectric point, (B)
molecular weight, and (C) hydrophobicity, the physicochemical properties which influence
hexapeptide equalization of protein abundance, on the changes in spectral counts from
Control to ProteoMiner runs.
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Table 1

The 10 most enriched low abundance proteins based on percent change in spectral counts between Control and
ProteoMiner runs.

Low Abundance Protein Control ProteoMiner % Change

Origin recognition complex subunit 4 (ORC4L) 2 64 3100

Transcription elongation factor B polypeptide 3 (TCEB3) 4 125 3025

Isoform 1 of AT-rich interactive domain-containing protein 1B (ARID1B) 1 31 3000

Pentatricopeptide repeat-containing protein 1 (PTCD1) 1 27 2600

Isoform Long of Plakophilin-4 (PKP4) 1 26 2500

Isoform 1 of Serine/threonine-protein kinase PAK 4 (PAK-4) 3 67 2133

DNA polymerase subunit gamma-1 (POLG) 2 43 2050

Nucleolar protein 12 (NOL12) 1 21 2000

Isoform 1 of UPF0461 protein C5orf24 (C5orf24) 1 21 2000

Isoform 1 of Serine/threonine-protein kinase TAO1 (TAOK1) 1 21 2000
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Table 2

The 10 most depleted high abundance proteins based on decrease in spectral counts between Control and
ProteoMiner runs.

Highest Abundance Protein Control ProteoMiner ΔSpec Count

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 4290 127 −4163

Actin, cytoplasmic 1 (ACTB) 6908 3169 −3739

Isoform alpha-enolase of Alpha-enolase (ENO1) 3617 381 −3236

Elongation factor 1-alpha 1 (EEF1A1) 4519 2224 −3236

60 kDa heat shock protein, mitochondrial (HSPD1) 2164 252 −1912

Peptidyl-prolyl cis-trans isomerase A (PPIA) 1907 309 −1598

Tubulin alpha-4A chain (TUBA4A) 2841 1268 −1573

Fructose-bisphosphate aldolase A (ALDOA) 1723 194 −1529

Isoform 1 of Heat shock cognate 71 kDa protein (HSPA8) 2696 1498 −1198

Isoform 1 of Carbamoyl-phosphate synthase, mitochondrial (CPS1) 3212 2094 −1118
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