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The risk of distant recurrence in breast cancer patients is difficult to
assess with current clinical and histopathological parameters, and
no validated serum biomarkers currently exist. Using a recently
developed recombinant antibody microarray platform containing
135 antibodies against 65 mainly immunoregulatory proteins, we
screened 240 sera from 64 patients with primary breast cancer. This
unique longitudinal sample material was collected from each pa-
tient between 0 and 36mo after the primary operation. The velocity
for each serum protein was determined by comparing the samples
collected at the primary operation and then 3–6 mo later. A 21-
protein signaturewas identified, using leave-one-out cross-validation
together with a backward elimination strategy in a training cohort.
This signature was tested and evaluated subsequently in an inde-
pendent test cohort (prevalidation). The risk of developing distant
recurrence after primary operation could be assessed for each pa-
tient, using her molecular portraits. The results from this prevali-
dation study showed that patients could be classified into high-
versus low-risk groups for developing metastatic breast cancer
with a receiver operating characteristic area under the curve of
0.85. This risk assessment was not dependent on the type of adju-
vant therapy received by the patients. Even more importantly, we
demonstrated that this protein signature provided an added value
comparedwith conventional clinical parameters. Consequently, we
present here a candidate serumbiomarker signature able to classify
patients with primary breast cancer according to their risk of de-
veloping distant recurrence, with an accuracy outperforming cur-
rent procedures.
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Survival from breast cancer has improved during the past dec-
ades in the Western world. In Sweden, there has been a steady

decrease in age-standardized breast cancer mortality in women up
to 70 y of age during the past 5 decades, and the decrease in
countries such as the United States, United Kingdom, Holland,
Germany, and France has been observed since the late 1980s
(1, 2). Major reasons for this substantial decrease are earlier sur-
gery of primary breast cancer because of the introduction of
mammography screening and adjuvant systemic therapy in the
form of both cytotoxic and antihormonal therapy. In particular, the
use of the antiestrogen tamoxifen in postmenopausal women and,
in more recent years, of the aromatase inhibitors has prolonged
the survival of many women. However, the number needed to treat
is around 10 even for the best cytotoxic combinations and ta-
moxifen (3) and is around 20–40 for the third-generation aroma-
tase inhibitors (4) because of the lack of optimal predictors of
these therapies. Furthermore, ∼30% of all patients with primary
breast cancer will develop distant recurrence (5), and then the
possibility of a cure is very limited. To improve survival further, we
need to offer better treatments with increased efficacy and lower
toxicity, with the therapy for the individual patient based on the
clinical and molecular characteristics of the tumor. Traditional

prognostic indices, such as theNottingham Prognostic Index (6, 7),
have proven valuable in identifying patients with poor prognosis.
More recently, genomic studies have opened the possibility of
prognosticating recurrence-free survival, using expression analysis
of a multitude of different genes (8, 9). However, a simple way to
predict the likelihood of a later recurrence, i.e., an indicator that
allows risk assessment for breast cancer metastasis, would be
highly desirable. In this respect, in contrast to predictors based
upon tumor characteristics at the time of surgery, serum is a par-
ticular valuable source, because it is useful not only for the initial
screening of the disease but also for continuous monitoring of the
therapeutic effect.
The serum biomarkers proposed to date have not yet demon-

strated enough prognostic accuracy in breast cancer (10). How-
ever, recent developments in affinity proteomics have advanced
the field of cancer biomarkers (11–13), and that approach was
adopted here to define predictive serum biomarkers associated
with tumor relapse in breast cancer patients. We hypothesized that
decoding patterns of immunoregulatory serum proteins could re-
veal important information about the risk of recurrence. Conse-
quently, using minute amounts of nonfractionated serum (14) and
a recombinant antibody microarray technology capable of ana-
lyzing large numbers of low- and high-abundance protein analytes,
we screened samples from breast cancer patients collected over a
3-y period. The samples were collected from breast cancer patients
before resection of the primary tumor and then postoperatively
every 6–12 mo, resulting in three to five samples per patient. By
analyzing the velocity (i.e., the change over time) of the markers,
we could stipulate for each patient the risk of developing metas-
tasis after the end of adjuvant systemic therapy. Changes in bio-
marker serum levels have been used previously, e.g., in calculating
prostate-specific antigen (PSA) velocity for the diagnosis of pros-
tate cancer (15). This longitudinal study demonstrates, that a
simple blood sample harbors information of tumor relapse in
breast cancer patients, brings added value to existing clinical pre-
dictors, and outperforms previous attempts to risk classify breast
cancer patients. This information would allow refinements in the
planning of future clinical studies, improving the current state-of-
the-art for adjuvant therapy of primary breast cancer patients.
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Results
Serum Biomarker Signature Associated with Tumor Relapse. In an
attempt to identify a serum biomarker signature predictive of
distant recurrence in breast cancer, we analyzed samples pre-
viously collected over a 3-yperiod from patients with primary
breast cancer (Fig. 1). Finding a classifier for metastatic disease by
comparing the absolute serum protein (analyte) levels from sam-
ples collected at the time of primary surgery was not possible, as
was evident by a receiver operating characteristic (ROC) area
under the curve (AUC) of 0.54. Instead, we usedmore information
in the samples by analyzing the analyte velocity. Using the velocity
calculated for samples collected 3–6 mo after surgery asthe clas-
sifier allowed stratification of patients as having high risk versus
low risk for tumor recurrence with anAUCof 0.88 (P=1.7× 10−5)
(Fig. 2). Hence, this approach demonstrated that there was enough
information in the dataset to identify a velocity-driven candidate
biomarker signature that allowed identification of a patient group
with high risk for developing a distant tumor relapse within a
follow-up time of 5 y.
Adopting the same strategy for de novo biomarker discovery but

using instead the samples collected at 12 mo after surgery, we
found a similar qualitative result but with less prediction power, as
illustrated by an ROC AUC of 0.75 (Fig. S1). This trend could not
be followed further, using samples collected at 24 and 36 mo,
because the cohorts of patients not diagnosed with metastatic
disease at these time points were too small for statistically relevant
de novo biomarker discovery.
Analysis of all analytes (Fig. S2A) showed that increasing analyte

velocitieswere clearly overrepresented inmetastatic patients during
this period, and the opposite was true for nonmetastatic patients.
When the predictive biomarker signature was analyzed in more
detail, Lewis X (P = 0.0005), IL-16 (P = 0.002), and CD40 (P =
0.0003) were shown to differ the most in velocity between patients
with recurring versus nonrecurring breast cancer during the first 6
mo after surgery, as determined by Wilcoxon signed-rank test. In
Fig. S2B–D, which shows the dynamics for these three analytes, it is
evident that a significant increase in the velocity of these analytes
during thesefirstmonths after surgerywasmore frequent inpatients
who developed a distant tumor relapse at a later time point.

Prevalidation of the Biomarker Signature Derived from the Discovery
Cohort. For implementation as risk assessment in clinical use,
a signature comprising a small number of biomarkers is desirable.
To define the smallest biomarker signature that retains predictive
accuracy, we used a backward-elimination strategy to condense
the total number of analytes down to the 21 nonredundant bio-
markers making the greatest contribution to the classification
(Fig. S3). Then, to test the strength of the classification derived
from the discovery cohort, two serum samples were analyzed from
each of the 26 new patients in the prevalidation cohort. The first
sample was collected at the time of the primary operation, and
the second was collected 3–6 mo later, following the same pro-
cedure used for the discovery cohort. Consequently, 52 in-
dependent samples were processed with our antibody microarray
platform, as described above, and the velocity of each biomarker
was determined. The classifier, now consisting of 21 biomarkers,
allowed a stratification of patients into high versus low risk for
tumor recurrence with an AUC of 0.85 in the independent
prevalidation cohort (Fig. 3A). Of note, our previously reported
cancer-associated biomarker signatures, defined using affinity
proteomics, overlapped by <30% with the present 21 biomarkers
(11, 13, 16). Importantly, our predictive signature did not reflect
a general inflammatory response (17).
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Fig. 1. Flowchart describing the retrospective study design. Seven patients
were excluded because of lack of samples collected at the relevant time
points (preoperative and 3–6 mo later). BC, breast cancer.
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Fig. 2. SVM analysis for prediction of metastatic breast cancer. Analyte
levels in samples collected 3–6 mo after surgery were compared with those
in samples taken at the time of surgery. The differences in all analytes as
identified on the arrays were fed to an SVM, which, using a leave-one-out
cross-validation procedure, was calibrated to classify the patient as one who
will develop metastatic cancer or one who will not. The analysis resulted in
a decision value for each patient, significantly separating the groups (Wil-
coxon P value of 1.7 × 10−5) and yielding an ROC AUC of 0.88. The heat map
shows all analytes displaying a Wilcoxon P value <0.05, with red indicating
an increase and green indicating a decrease in biomarker velocity.
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To investigate if the signal identified at 3–6 mo was still detect-
able after 12 mo, the support vector machine (SVM) model based
on the 21 biomarkers was applied on the 12-mo samples available in
the discovery cohort. The classification resulted in an AUC of 0.86,
showing that the identified signal still was present after 1 y.
The 21-biomarker signature was developed following the rele-

vant REMARK guidelines for tumor biomarker studies (16).
Furthermore, the effectiveness of the backward-elimination
strategy also was evaluated by comparing the performance of the
identified 21-biomarker signature with that of 1,000 randomly
selected signatures of the same size. Each random signature was
used to calibrate an SVMmodel in the same way described for the
original 21-candidate signature. The candidate signature was
shown to outperform 99.6% of the random signatures, based on
AUC values (Fig. S4), demonstrating that the backward-
elimination strategy indeed had produced a high-performing sig-
nature. Finally, a Kaplan–Meier plot was constructed to quantify
further how the velocity-driven biomarker signature classified the
patients into high- and low-risk groups. A log rank test based on
the decision values from the SVM indicated a highly significant
(P = 0.00037) difference between the groups (Fig. S5).
Furthermore, functional annotation of the signature proteins

provided some insight into the underlying mechanisms, because
several proteins [CCL2, CD40, factor B, IL-5, IL-6, IL-9, IL-13,
IL-18, IL-12α, Lewis X/sialyl Lewis X, TNF-β, and serpin pep-
tidase inhibitor, clade G (C1 inhibitor), member 1 (SERPING1)]
that displayed increasing velocities, indicating tumor recurrence,
are known to be involved in cell migration and infiltration. In
addition, several of the proteins in our biomarker signature, such
as IL-1β, IL-8, regulated on activation, normal t expressed and
secreted. (RANTES), and CD40L, are involved in the NF-κB
pathway, which has been implicated in metastatic breast cancer.

Effect of Adjuvant Therapy on Classification into High- or Low-Risk
Groups. To test if the classification, as displayed in Fig. 2, was
dependent on the therapy received by the patients in the discovery
cohort, we analyzed the effect of adjuvant chemotherapy on the
classification into high or low risk for breast cancer recurrence. In
Fig. 4, the SVM decision values for all patients, as well as patients
receiving chemotherapy during the first 3–6 postoperative months,
are indicated by arrows. No stratification of the individual patients
receiving chemotherapy could be detected. Similar results were
obtained with patients receiving adjuvant endocrine treatment and
patients treated with anti-inflammatory drugs; previously these
treatments had been identified as confounding factors when ab-
solute levels of analytes were measured (18). Hence, the classifi-
cation into high- and low-risk groups for distant tumor relapse was
not biased by a particular adjuvant therapy. Interestingly, because

a few patients who received chemotherapy still were classified after
6 mo as belonging to the high-risk group, any beneficial effect of
that particular therapy was not evident. Consequently, based on
the molecular portrait derived from our microarray analysis, these
patients could be selected for another treatment regime.

Molecular Biomarker Signature Versus Conventional Diagnostic
Parameters. The power of molecular diagnostics sometimes has
been questioned, in particular in relation to the conventional
clinical parameters (19), such as lymph node status, tumor size,
histological grade, and estrogen receptor (ER) and progesterone
receptor (PgR) status. Therefore it is essential to compare the
performance of our serum predictor with the performance of
predictors based upon such clinical markers. We compared the
combination of conventional parameters with our serum bio-
marker signature, which displayed an ROCAUCof 0.85 (Fig. 3A).
Two additional SVM models were calibrated in the discovery
dataset, using the clinical data and a combination of the clinical
and microarray data, respectively. The models were tested using
the patients in the prevalidation cohort, and the result was dis-
played as ROC curves. The AUC for the predictor using the
conventional clinical parameters was 0.66. Consequently, the mo-
lecular signature based on analyte velocities had improved pre-
dictive power. Evenmore importantly, combining the conventional
clinical parameters with our 21-biomarker signature as an ap-
proach for risk classification resulted in an AUC of 0.90 (Fig. 3B).
Consequently, the two different sets of variables did not contain
overlapping information with respect to the clinical outcome, as
evident by a Pearson correlation analysis, which showed that the
analyte velocities had weak correlations (≤0.35) with the conven-
tional clinical markers. This analysis supports the fact that our
protein serum approach identified unique information not present
in conventional markers, in contrast to correlations observed be-
tween clinical markers and gene microarray profiling (19). For
further comparison of our data and available decision-making
tools, we investigated Adjuvant! Online (www.adjuvantonline.
com), which estimates the risk for tumor relapse in breast cancer.
The patient age, ER status, tumor grade, tumor size, and the
number of positive nodes were entered online, and the calculated
risk for relapse within 10 y was recorded for each patient. The
patients then were sorted according to their estimated risk, and,
using the true outcome for the patients in relation to distant re-
currence, an ROC displaying an AUC of 0.60 was generated. This
result based on conventional clinical parameters is in agreement
with our analysis, which gave an AUC of 0.66. The disease-free
follow-up time was 5 y in our prevalidation cohort.

Discussion
Breast cancer patients are treated either with local-regional
therapy alone or by the addition of systemic therapy, resulting in
improved clinical outcome. However, a considerable number of
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patients are overtreated, resulting in side effects for the patients
and increasing costs for the health care providers. Consequently,
prognostic parameters that would aid inmaking rational treatment
decisions by stratifying patients into different risk groups are in
high demand. Furthermore, predictive parameters for monitoring
disease progression and therapy efficacy would be highly desirable,
allowing evidence-based selection of adjuvant therapies and
avoidance of overtreatment. Patients with the same stage of dis-
ease can respond very differently to therapy, showing that tradi-
tional parameters fail to classify breast cancer patients accurately
according to their clinical need. However, recent progress in gene-
expression profiling has shown promise in predicting the clinical
outcome of breast cancer (8, 9) and in predicting the risk of de-
veloping local recurrence after breast-conserving surgery (20), as
well as in earlier diagnosis (21). Because prediction of clinical
outcome of breast cancer based on gene-expression profiles
requires tumor tissue, gene-based approaches do not allow con-
tinuous disease monitoring and assessment of treatment efficacy
after the initial tumor resection. For serial sampling, the preferred
choice would be serum, but serum analysis using traditional pro-
teomic approaches has not been possible because of technical
limitations. (22). Furthermore, single biomarkers have not dem-
onstrated added value clinically and consequently have not been
accepted as routine tests in the breast cancer clinic (10). However,
with the introduction of affinity proteomics in the microarray
format (23, 24), the complexity of the proteome (25) has become
much less of an issue (26).
In addition to the more classical plasma proteins, serum also

consists of tissue leakage proteins (25), and much evidence sug-
gests today that among these tissue leakage proteins are proteins
indicative of a variety of human diseases. For example, because
the human immune system is a very early indicator of disturbances
in homeostasis caused by disease (27), a proteomic screen of
nonimmunoglobulin low- and high-abundance immunoregula-
tory serum proteins might reveal a growing tumor. Based on this
rationale, we designed a recombinant antibody microarray plat-
form (28–30) displaying high sensitivity and reproducibility and
focused on serum proteins associated with the immune system.
This affinity proteomics approach recently has allowed the iden-
tification of several serum biomarker signatures distinguishing
between different cancer indications and healthy individuals (11,
12, 18, 31), thereby demonstrating the power of the platform.
To investigate whether information transiently stored in serum

could be deciphered and aid in the management of breast cancer,
we screened 240 sera from a total of 64 patients with primary
breast cancer for molecular portraits associated with the risk of
developing distant relapse. Comparing samples collected longitu-
dinally over a period of 3 y, we could not decipher molecular
patterns in the serum proteome using static analyte levels; this
result indicated that the signals either were too weak or were
composed of parallel rather than orthogonal variability vectors.
However, when instead we analyzed the change in analyte intensity
over time, we could classify the patients successfully into groups at
high and low risk for developing metastatic breast cancer. It was
clear that the discriminatory biomarkers increased in intensity
during the first 3–6 mo if a patient belonged to the high-risk group,
and vice versa for the low-risk patients. De novo biomarker dis-
covery at 12 mo resulted in patterns with less accuracy for risk
assessment, as illustrated in Fig. S1. This reduced accuracy might
be explained by diminishing signal integrity or by a decrease in the
signal-to-noise ratio. Most previous proteomic studies are limited
by the use of only a single cohort of patients to discover potential
biomarkers. The present study used longitudinally collected sam-
ples, which are scarce and consequently were limited in number,
from breast cancer patients. Clinical studies in which the number
of samples is limited and a large number of marker candidates are
analyzed are inherently susceptible to overfitting. To minimize
confounding factors and to determine if our velocity-driven bio-
marker signature truly was associated with a risk for tumor relapse,
it was necessary first to fix the classifier signature and then to apply
it to samples from a completely independent patient cohort.

Consequently, we first condensed the number of analytes to a 21-
candidate biomarker signature, using our unbiased backward-
elimination strategy (SI Materials and Methods). This strategy
resulted in the identification of the smallest discriminatory signa-
ture, which was composed of members recognizing orthogonal
patterns in the dataset, thus minimizing the risk of classifier
overfitting. This biomarker signature is unlike a list that includes
biomarkers only on the basis of low P values. An SVM classifier
then was calibrated, using the identified biomarkers in the dis-
covery cohort, and was used to test blindly the patients in the in-
dependent prevalidation cohort (with a sample size estimated to
yield sufficient statistical power). It should be noted that the new
samples were analyzed using a new batches of arrays and anti-
bodies, thereby minimizing any systematic biases. This blind clas-
sification of the independent cohort yielded an AUC of 0.85. This
small decrease of predictive power, compared with that observed
in the discovery cohort, was expected, because classifiers always
perform better in the dataset from which they originally were de-
rived. Still, the AUC of 0.85 obtained in the secondary, in-
dependent cohort demonstrates is that the information harbored
in a serum sample can be decoded, paving the way for developing a
more personalized approach to the treatment of breast cancer
patients. Of note, the signature did not seem to be affected by the
adjuvant therapy received by the patients. This observation by
itself demonstrates the need for an accurate prediction of meta-
static breast cancer, because several of the patients in the high-risk
group might have benefitted from a consecutive and different
adjuvant treatment, just as some of the patients in the low-risk
group may have been overtreated. It also should be noted that the
identified candidate-biomarker signature was shown to be pre-
dictive only during the 5-y follow-up time, although breast cancer
patients can have recurrences more than10 y after primary oper-
ation. Consequently, the predictive power of this proteomic sig-
nature still is limited in this regard.
Finally, the backward-elimination strategy also was interrogated

by sampling 1,000 random 21-marker signatures, calibrating SVM
models in the discovery cohort based on each of these signatures
and by comparing their predictive power in the prevalidation co-
hort with that of the original 21-biomarker signature (AUC of
0.85). The latter was found to outperform almost all randomly
sampled biomarker combinations, demonstrating that the ratio-
nale for our strategy was sound.
Interestingly, by applying the identified 21-biomarker signature

from the SVM calibrated using the 3- to 6-mo velocities to samples
collected at 12 mo, an accurate classification still could be achieved
(AUC 0.86). This result supports the notion that the signal-to-noise
ratio had decreased but that the information was still present
a year later when a predefined biomarker signature was applied. At
later time points the accuracy (as measured by AUC) decreased
significantly.
To have a clinical impact, the serum-based biomarkers must

outperform the traditional prognostic parameters of clinical sta-
tus (age, menopausal status), histopathological status (histologi-
cal grade, lymph node status, tumor size), and hormone receptor
(ER, PgR) status (14). Existing precalibrated predictors based
upon such parameters cannot be used straightforwardly in this
case, because they typically assume relapse times longer than the
5 y used in our study and would be disfavored in a comparison.
Therefore, we assessed the predictive power of the traditional
parameters by calibration and blind testing of an SVM, with these
markers as input values. We demonstrated that even their com-
bined power, represented by a ROC AUC 0.66, was significantly
lower than our prevalidated serum biomarker signature. Impor-
tantly, when we combined the traditional clinical parameters with
our 21-biomarker signature, the predictive power increased even
further, demonstrating that the serum markers provided clinically
added value. Of note, this combined predictive power was in-
dependent of classical patient- and tumor-related prognostic
factors, making it potentially useful for clinicians.
Finally, we performed a functional annotation using signal

pathway analysis focusing on the condensed biomarker signature.
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For example, CCL2, CD40, factor B, IL-5, IL-6, IL-9, IL-13, IL-18,
IL-12α, Lewis X/sialyl Lewis X, TNF-β, and SERPING1 have been
implicated previously in cell migration and infiltration. Briefly, IL-
6 is a multifunctional cytokine involved in angiogenesis, a process
crucial for tumor growth and progression (32). Serum levels of IL-
6 also have been associated previously with different cancers, in-
cluding metastatic breast cancer (33). IL-8 and IL-18 are autocrine
cytokines of the tumor also involved in angiogenic processes and
have been investigated previously as diagnostic and prognostic
factors for breast cancer (34, 35). Furthermore, RANTES (CCL5),
Monocyte chemotactic protein-1 (MCP-1), and IL-1β in our sig-
nature have been reported to support invasiveness in human breast
carcinoma cells and to play important roles in disease progression
(36, 37). TGF-β stimulates cell invasion, and activation of TGF-β
signaling has been identified as supporting breast cancer metas-
tasis (38, 39). Of note, IL-1β, IL-8, RANTES, and CD40 ligand are
all involved in the NF-κB pathway. Finally, overexpression of the
carbohydrate sialyl Lewis X has been identified on invasive breast
cancer cells and could be correlated to malignancy and a poor
prognosis (40). Taken together, the biological functions of several
of the defined biomarkers have been associated with metastatic
breast cancer, lending indirect support to our findings. However,
the rationale for using a network of the biomarkers for risk as-
sessment needs further investigation.
In conclusion, we have addressed a clinically defined problem

and demonstrated that serum biomarkers can deliver improved
clinical value, with high accuracy, outperforming other attempts to
classify breast cancer patients by risk of recurrence after primary
operation. Furthermore, the defined biomarker signature was not
a result of general inflammation but was associated specifically
with the risk of breast cancer relapse. Finally, the data indicated
that risk classification based on our serum signature provided a
bettermeans of guiding adjuvant therapy, reducing the rate of both
over- and undertreatment.

Materials and Methods
Samples and Array Analysis. Serum samples were collected from two in-
dependent cohorts of patients, denoted as the “discovery cohort” and the
“prevalidation cohort” (Table 1). In the discovery cohort, 188 samples were
collected from 38 patients diagnosed with primary breast cancer. Written in-
formed consents were collected during the preoperative visit at the De-
partment of Surgery (Lund University Hospital, Lund, Sweden), where the
serum samples were collected. Time and date were recorded when the blood
samples were drawn. Serum were stored at −80 °C for later analysis and la-
beled with serial codes to enable blinded analyses. For the majority of the
patients, the preoperative visit took place less than a week before the surgery.
Blood was drawn a second time at the first follow-up (3–6 mo later) and then
approximately every 12 mo for 3 y. This study was approved by the Regional

Ethical Committee (Lund, Sweden). In the prevalidation cohort, 52 serum
samples were drawn, as described for the discovery cohort, from 26 different
patients with newly diagnosed breast cancer. These samples were collected at
a later stage than the samples in the discovery cohort. In total 240 serum
samples were collected from the two cohorts. Patients with different tumor-
related prognostic factors as well as patients who received different adjuvant
therapies were selected (Table 1). Patients who did not develop distant re-
currence were followed up for 5 y (Table 1).

Table 1. Patient demographics and clinical parameters

Group

Discovery cohort Prevalidation cohort

Metastasis No metastasis Metastasis No metastasis

Number of patients 16 22 13 13
Age in y 54 (14)* 52 (12) 59 (13) 60 (9)
Sample 2, collection time after primary operation (in mo) 4.4 (1.1) 4.5 (1.1) 4.9 (2.1) 4.0 (1.0)
Sample 3, collection time after primary operation (in mo) 13 (1.0) 13 (1.2) — —

Time to relapse (months) 21 (10) — 19 (13) —

Tumor size (mm) 22 (10) 21 (11) 38 (23) 16 (11)
Pre-/postmenopausal 5/11 10/12 9/4 11/2
ER+/ER− 13/2† 18/4 9/4 11/1
PgR+/ PgR− 9/6 13/9 7/6 7/5
Lymph node+/lymph node− 12/4 10/11 6/5 3/9
Grade I/II/III 1/9/5 3/13/5 0/9/4 5/6/1
Ductal/lobular 16/‡ 20/2 11/2 11/2
Radiation/no radiation 11/5 14/8 11/2 9/4
Adjuvant therapy: hormonal (tamoxifen) 12 16 6 7
Adjuvant therapy: aromatase inhibitor 6 3 4 4

*Values in parenthesis are SDs.
†In cases where the sum is less than the number in the group, patient data are missing.
‡In the case of ductal/lobular tumor type, patients may have both, resulting in a sum larger than the number of patients in the group.

Table 2. Summary of biomarkers analyzed by microarray

Antigen (no. of clones) Antigen (no. of clones)

Alfa-10 (1) IL-8 (3)
Alfa-11 (1) IL-9 (3)*
Angiomotin (2) IL-10 (3)†

APOA4 (3)* IL-11 (3)
ATP5B (3)* IL-12 (4)*
β-Galactosidase (1) IL-13 (2)*,†

BTK (1)* IL-16 (2)
C1q (1)† IL-18 (3)*
C1s (1) INF-γ (2)
C1 esterase inhibitor (1)* JAK3 (1)
C3 (2) KIAA0882 (3)*
C4 (1) LDL (2)
C5 (2) Leptin (1)
CD40 (4)* Lewisx (2)*
CD40 ligand (1) Lewisy (1)
CHX10 (3)* Lumican (1)
Digoxin (1) OSBPL3 (2)*
DUSP9 (1) MCP-1 (3)*,†

Eotaxin (3) MCP-3 (1)
Factor B (2)*,† MCP-4 (2)
GLP-1 (1) Myomesin (M-protein) 2 (2)
GLP-1 R (1) Procathepsin (1)
GM-CSF (3) Properdin (1)
IL-1α (3)* PSA (1)
IL-1β (3) Rantes (1)
IL-1ra (3) Sialyl Lewis X (1)*
IL-2 (3) TGF-β1 (2)
IL-3 (3) TM peptide (1)
IL-4 (3)† TNF-α (2)
IL-5 (3)*,† TNF-β (4)*
IL-6 (4)*,† UPF3 regulator of nonsense

transcripts homolog B (yeast) (3)
IL-7 (2)* VEGF (4)

*Included in the 21 biomarker signature.
†Antibody specificity against these antigens was validated further by mass
spectrometry, protein arrays, or ELISA.
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The recombinant antibody microarray platform contained 135 antibodies
against 65 different antigens; i.e., for quality assurance we used two to five
different antibody clones againstmost antigens (Table 2). Twenty-twoof these
antibodies were newly selected and directed against proteins previously
shown to be involved in breast cancer and therefore had not been used in our
earlier antibody array applications (11–13). The microarray analysis, including
sample preparation, antibody production, array fabrication, and normaliza-
tion, is described in detail in SI Material and Methods (11, 18).

To be able to compare the prediction for distant recurrence using con-
ventional clinical parameters, we assigned numeric values to each of the
available binary parameters: In each patient premenopausal/postmenopausal
status; expression/absence of ER and/or PgR; ductal/lobular type; and tumor-
free/-involved lymph nodes were assigned a value of 1 or −1, respectively, and
histological grades I, II, and III were assigned value of −1, 0, and 1, respectively.
Tumor sizewas graded continuously from −1 to 1. An SVM thenwas calibrated
in the discovery cohort, using either the conventional clinical data or a com-
bination of the clinical and microarray data.

Study Design. In this retrospective study,weusedpatientgroupsof similar size in
the discovery and prevalidation phase. The entire study design is outlined in
Fig. 1. Furthermore, a poweranalysis basedontheobserved SVMdecision values
derived from the discovery cohort was performed to estimate the number of
patients required to give a significant classification in the second, independent
patient cohort (the prevalidation cohort) (SI Materials and Methods). A cohort
size of at least 18 patients was estimated to be needed to reach a statistical
power above 80%. The prevalidation cohort contained 26 patients, 50% of
whomwere identified as having distant breast cancer metastasis within the 5-y
period. This sample size corresponded to an estimated statistical power of 93%.
The total follow-up time for recurrence-free patients was 5 y.

Data Analysis Using the SVM. The analyte velocity was defined as the change
(log ratio) in signal for each analyte between the first serum sample, drawn
preoperatively, and the postoperative sample drawn at a later time point. An
SVMwasused to classify the samplesasbelonging tooneof twodefinedgroups
(SI Materials and Methods). The analyte velocity was used to calibrate
(or “train”) and test the SVM classifier with leave-one-out cross-validation.
Because the number of samples is less than the number of analytes, one needs
to prune the latter to establish an SVM that is not overfitted and generalizes
well in new patient cohorts. To this end, we created an analyte subpanel
for the training cohort by selecting analytes that, in the training set, displayed
the highest combined discriminatory power. This selection of analytes was
made using a cross-validated backward-elimination strategy (SI Materials and
Methods). Using this approach, we compiled a list of 21 analytes with the
highest scores (Table 2) and calibrated a final SVM model, now termed
“frozen.”

During the prevalidation, serum samples from 26 different patients with
newly diagnosed breast cancer (the prevalidation cohort) were analyzed and
tested with the previously frozen SVM classifier, using the analyte velocities.
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