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Cyanovirin-N (CV-N) is a small, cyanobacterial lectin that neutralizes
many enveloped viruses, including human immunodeficiency virus
type I (HIV-1). This antiviral activity is attributed to two homo-
logous carbohydrate binding sites that specifically bind high man-
nose glycosylation present on envelope glycoproteins such as HIV-1
gp120. We created obligate CV-N oligomers to determine whether
increasing the number of binding sites has an effect on viral
neutralization. A tandem repeat of two CV-N molecules (CVN2)
increased HIV-1 neutralization activity by up to 18-fold compared
to wild-type CV-N. In addition, the CVN2 variants showed extensive
cross-clade reactivity and were often more potent than broadly
neutralizing anti-HIV antibodies. The improvement in activity and
broad cross-strain HIV neutralization exhibited by these molecules
holds promise for the future therapeutic utility of these and other
engineered CV-N variants.
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Cyanovirin-N (CV-N), a cyanobacterial lectin, is uniquely posi-
tioned to become a therapeutic and prophylactic for diseases

caused by enveloped viruses. CV-N is a small, two-domain protein
that neutralizes HIV by specifically binding to high mannose
glycans on the envelope glycoprotein gp120, thereby preventing
interaction of the virus with a host cell (1, 2). In addition to its
potent activity against HIV, CV-N is also active against a number
of other enveloped viruses including influenza (3, 4), Ebola (5, 6),
hepatitis C (7), and herpesvirus 6 (2).

The two domains of CV-N are homologous in both their se-
quence [32% sequence identity and 58% sequence similarity (8)]
and their three-dimensional structure (9, 10). Wild-type (WT)
CV-N exists mainly as a monomer in solution and a domain-
swapped dimer in crystals (Fig. S1). NMR structures of the mono-
mer show that the protein is an ellipsoid with ten β-strands and
four 310-helical turns, approximately 55 Å in length and 25 Å wide
(Fig. S1A). Each CV-N monomer contains two symmetrically re-
lated structural domains (A and B), with each domain containing
a carbohydrate binding site that specifically interacts with α(1-2)
linked oligomannose moieties within Man-8 or Man-9 glycans
(9, 11–13). Domain A contains the N and C termini and includes
residues 1–39 and 90–101, and domain B contains residues 40–89.
Although purified as a monomer, a trapped, metastable domain-
swapped dimer can be formed during folding and crystallization,
andWTCV-N crystallizes exclusively as a domain-swapped dimer
(10, 14, 15). In the domain-swapped dimer structure, domain
A interacts with B′ to form a “monomer-like unit,” whereas do-
main A′ and B interact to form the second “monomer-like unit”
(Fig. S1 B and C). The domain swapping does not result in addi-
tional intramolecular interactions, but instead results from the
extension of residues 50 to 53 across the interface. Carbohydrate
binding is similar in the domain-swapped crystal structures and
monomeric NMR structures, although binding in the B and B′
domains is not seen in crystal structures due to potential steric
constraints or crystal packing artifacts (15) (Fig. S1 A and B).

The two binding sites in monomeric CV-N exhibit distinct
affinities for carbohydrate in solution: the binding site in domain

B, located distal from the N and C termini, has an equilibrium
dissociation constant (KD) of approximately 140 nM for
Manα1 → 2Man disaccharide, which is about 10-fold higher affi-
nity than the binding site in domain A, located near the termini,
which binds to Manα1 → 2Man disaccharide with a KD of about
1.5 μM (9). Numerous studies have shown, however, that both
sites are necessary for viral neutralization and that destruction of
either site renders the CV-N variant inactive (16, 17). However, a
recent study showed that in the context of a CV-N dimer that was
covalently crosslinked using disulfide bonds, two out of the four
possible binding sites are sufficient to maintain neutralization
activity, indicating that it is the number and not the identity of
sites that is important for neutralization (18, 19). These results
point toward a key role for avidity in the viral neutralization
activity of CV-N.

A number of groups have attempted to study the oligomeriza-
tion of CV-N to determine whether the domain swapping is a
crystallization artifact or a biologically relevant state. However,
because the domain-swapped dimer of WT CV-N is not stable
at physiological temperatures, a significant amount of purified
dimer may revert to monomer during the course of a viral neu-
tralization assay (14). Therefore, mutations have been used to
stabilize either the monomer (14) or the domain-swapped dimer
(14, 20, 21). The effect of dimerization remains unclear, as some
groups have concluded that the dimeric state is more active than
monomeric WT CV-N (21), whereas others find that monomeric
and dimeric variants have similar antiviral activities (20).

In this study, we show that by linking two CV-N molecules
together in a head-to-tail fashion, we can stabilize the domain-
swapped dimeric form of the protein in solution. These linked
dimers show enhanced HIV neutralization compared to WT
CV-N against 33 strains from 3 clades. In addition, we show that
although two carbohydrate binding sites are sufficient for activity
as previously reported (18, 19), variants with more binding sites
(three or four) have increased neutralization activity.

Results
Design and Construction of CV-N Oligomers. To directly assay the
effects of multimerization on the activity of CV-N, we generated
CV-N dimers (CVN2s) containing tandem repeats of CV-N in
which the C terminus of one copy of CV-N was linked to the N
terminus of the next copy through a flexible polypeptide linker.
Because WT CV-N has the ability to domain swap, we hypothe-
sized that the oligomeric molecules would adopt either a mono-
meric-like linked structure in which the two CV-N repeats are
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folded as monomers and connected through the linker (Fig. 1 A
and B) or a domain-swapped linked structure that takes a form
similar to the domain-swapped dimeric crystal structures of WT
CV-N but contains a direct linkage between the two CV-N repeats
(Fig. 1 C and D). We generated different versions of CVN2 pro-
teins using 10 different linker lengths ranging from 0 to 20 amino
acids (Table S1). We also constructed trimers (CVN3) with linkers
containing 0, 5, or 10 amino acids and a tetramer (CVN4) in
which two CVN2L0 molecules were linked through a 20 amino
acid linker.

CV-N Oligomers Show Enhanced HIV Neutralization. CV-N and CV-N
oligomers were assayed for their ability to neutralize HIV in an
in vitro luminescence-based neutralization assay (Fig. 2A,
Table S2) (22). Initial characterizations of the CV-N proteins
were conducted by assaying activity against the clade B HIV
strain SC422661.8. WT CV-N showed half-maximal neutraliza-
tion at concentrations (IC50s) between 1.0 and 9.4 nM (0.012 to
0.12 μg∕mL) over 30 independent trials, with an average of
4.4� 2.6 nM (0.054� 0.032 μg∕mL), consistent with published
values (20, 23–25).

Most dimeric variants (CVN2s) exhibited more potent HIV
neutralization than WT CV-N, with enhancements of approxi-

mately 3- to 6-fold when correcting for the increased molecular
weight of the dimers (Fig. 2B). The single exception was
CVN2L20, which displayed an IC50 similar to that seen for WT
CV-N. In this case, the long linker may allow a different domain-
swapping state relative to variants with shorter linkers. Addition-
ally, CVN2L20 was only assayed on a single occasion (in tripli-
cate) and therefore the true behavior of the molecule may not be
accurately represented. Although there were significant increases
in potency for most of the dimers, the addition of the third CV-N
repeat to make the CVN3 proteins did not improve HIV neutra-
lization compared to the dimeric variants; in fact the trimers
showed decreased potency compared to the lower molecular
weight dimeric molecules (Fig. 2C). A tetrameric CV-N protein
(CVN4) showed similar activity to the CVN3 molecules (data not
shown).

CV-N Dimers Exhibit Broad Cross-Clade Reactivity and Are Comparable
or More Potent than Anti-HIVAntibodies.We then assayedWTCV-N
and two of our more potent dimers (CVN2L0 and CVN2L10)
for their ability to neutralize other strains of HIVacross different
clades. The proteins were tested against a total of 33 strains
from three clades. WT CV-N and the dimeric mutants effectively
neutralized all 33 HIV pseudoviruses (IC50s less than 300 nM)
(Table S3). Consistent with earlier results, the dimeric variants
were more potent than WT CV-N against all strains tested
(Fig. 3A). In 32 out of 33 cases, CVN2L0 neutralized virus with
greater potency than CVN2L10, whereas CVN2L10 was the most
potent against one clade C strain.

We were also interested in the overall potency of the CV-N
proteins compared to known broadly neutralizing anti-HIV anti-
bodies (NAbs): 4E10 (26), 2G12 (26, 27), 2F5 (26, 28), b12 (29),
PG9 (30), PG16 (30), and VRC01 (31). IC50 values for these
NAbs were taken from the literature (22, 32, 33) or determined
for this study (PG9, PG16, and VRC01) and converted to molar-
ity for comparisons with the smaller CV-N proteins. When
compared to each of the seven broadly neutralizing anti-HIV
antibodies, CVN2L0 showed similar or greater potency against
most of the strains tested (Fig. 3B). Because 2-fold differences in
IC50 values are generally not significant, we consider IC50s within
2-fold of the IC50 of the antibody to be similar. CVN2L0 has
similar or greater potency against 100% of the viruses compared
to 4E10, 2G12, and 2F5. Our molecule also fairs very well when
compared to the newly discovered broadly neutralizing antibodies
PG9 (72%), PG16 (66%), and VRC01 (77%).

CV-N Dimers Are Domain-Swapped in Crystal Structures. To elucidate
a mechanism for the enhanced neutralization activity of the
dimeric proteins, we solved crystal structures of CVN2L0 and
CVN2L10 (SI Text, Table S4, and Fig. S2). Both structures were
very similar to each other and were intramolecularly domain-
swapped with no major deviations relative to WT CV-N domain-
swapped structures. Small differences between the CVN2 struc-

Fig. 1. Two models of CVN2 proteins. (A, B) The linked monomer dimeric
model for CVN2s. (C, D) The linked domain-swapped dimeric model for
CVN2s. The CV-N repeats are shown in red and blue, and the flexible poly-
peptide linker is modeled in green. The N and C termini are labeled N and
C. Each of the four carbohydrate binding domains are labeled A, B, A′, or B′
in each model. Models (A) and (C) are based on solved WT CV-N structures
(10, 44) and (B) and (D) are block representations of the models in (A) and (C),
respectively.

Fig. 2. CV-N oligomers exhibit enhanced HIV neutralization. (A) Typical neutralization data and curve fits for WT CV-N and two variants run in triplicate on the
same 96-well plate. (B) The IC50s of HIV neutralization for WT CV-N and CVN2 dimers containing varying linker lengths. All linked dimers show significant
enhancements in their HIV neutralization compared to WT CV-N, and dimers containing 0 to 10 amino acid linkers are more potent than CVN2L20. N ≥ 4;
CVN2L20: N ¼ 1. (C) IC50s of HIV neutralization for CVN2s and CVN3s of the same linker length. N ≥ 3; CVN3L5 and CVN3L10: N ¼ 1. (A–C) Error bars ¼ SD.
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tures and previously published WT CV-N structures were noted
near the termini, as expected from the linkage, and also in the
region of the domain swap. These differences, however, are min-
or and are unlikely to be responsible for the observed differences
in antiviral activity.

Binding Site Mutants of CVN2L0 Show That It Is Domain-Swapped in
Solution. Although crystallographic studies definitively showed
that the CVN2 molecules are domain-swapped in crystals, it was
still possible that the dimeric proteins were folded as two linked
monomers (Fig. 1A) rather than as a domain-swapped dimer
(Fig. 1B) in solution. To address this issue, we generated variants
of CVN2L0 that contained previously described CV-N carbohy-
drate binding site knockouts (16, 34) (Fig. 4A). Each of the bind-
ing sites in a domain-swapped dimer (A, B, A′, and B′) are
formed from residues in both CV-N repeats, so we created var-
iants in which a binding site in either the A or B domain was
knocked out completely in the context of the linked monomer
dimeric model (CVN2L0ΔAmm, CVN2L0ΔBmm) or the domain-
swapped dimeric model (CVN2L0ΔA, CVN2L0ΔB) (Table S5).
In each case, if the model that the mutations were based on
is correct, the mutations would form a single full binding site
knockout (black squares in Fig. 4A). However, if the model is
incorrect, the mutations would form two half-site knockouts
(black triangles in Fig. 4A). We hypothesized that CVN2L0 mu-
tants with a complete binding site knockout in solution would
show decreased ability to neutralize HIV, whereas mutants with
two half-site knockouts would be less severely affected (34). Con-
trol variants with only a single half-site knockout showed only
modest decreases in potency, verifying that half-site knockouts
could be distinguished from complete binding site knockouts
(Table S5, Fig. S3).

Variants with binding site knockouts made in the context of
the domain-swapped dimeric model were significantly less active
against HIV than those designed based on the monomeric model

Fig. 3. CV-N dimers neutralize HIV broadly and potency is similar to broadly
neutralizing anti-HIV antibodies. (A) The designed dimers show enhanced
neutralization activity relative to WT CV-N across all 33 strains tested from
3 clades. CVN2L0 is more potent than CVN2L10 in 32 of 33 cases. (B) When
the IC50s of CVN2L0 neutralization against a panel of HIV-1 strains were com-
pared to the IC50s of seven broadly neutralizing antibodies (Table S3), we saw
that most strains were as sensitive to CVN2L0 as they were to the broadly
neutralizing antibodies. Because 2-fold differences in potency are generally
not significant, similar potency (≥) is defined as a potency for CVN2L0 that is
within 2-fold of the potency of the antibody or higher.

Fig. 4. Anti-HIV activity of CVN2L0 correlates with number of functional binding sites. (A) Schematic representation of variants to determine whether CVN2L0
is in a linkedmonomer dimeric structure (mm) or domain-swapped dimeric structure. The two CV-N repeats are represented in red and blue, as in Fig. 1 B andD.
Black triangles represent partial carbohydrate binding site knockouts and black squares represent complete binding site knockouts. (B) HIV neutralization
results for mutants in A. Mutants with full binding site deletions in the context of the domain-swapped dimer model have more significant increases in their
HIV neutralization IC50s compared to mutants with full binding site deletions in the context of the monomer model. (C) Schematic representations of multiple
binding site mutants. All variants contain one or more complete binding site knockouts according to the CVN2L0 domain-swapped dimer model. Black squares
represent binding sites that have been knocked out, and squares containing red and blue triangles represent WT (functional) binding sites. (D) HIV neutraliza-
tion results for mutants in C. The number of functional binding sites in CVN2L0 is proportional to its ability to neutralize HIV. Mutants with two functional
binding sites are less active than those with three sites. Additionally, the deletion of a B binding site has a greater effect on activity than the deletion of an A
binding site.
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(Fig. 4B), indicating that the linked dimers are domain-swapped
in solution as well as in crystals.

The Number of Functional Binding Sites in CVN2L0 Is Directly Propor-
tional to Its Anti-HIV Activity. To determine whether CVN2L0
has enhanced neutralization activity relative to WT CV-N due
to its increased number of binding sites, we created a series of
binding site knockout mutants in which 1, 2, or 3 of the sites were
fully knocked out (Fig. 4C). Variants with only a single binding
site knockout showed approximately 20- to 35-fold decreases
in potency relative to CVN2L0, whereas those with two binding
site knockouts exhibited decreases of 80- to almost 2,000-fold
(Fig. 4D). Variants with three binding sites knocked out were
unable to neutralize HIV at the concentrations tested (data not
shown). These data are consistent with previously published
accounts, which showed that at least two functional binding sites
are required for activity (16, 19), and are also consistent with the
hypothesis that avidity is an important factor for viral neutrali-
zation by CV-N. Interestingly, CVN2L0 variants that contain
one functional A and one functional B binding site did not neu-
tralize with the same potency as WT CV-N. CVN2L0ΔA∥B and
CVN2L0ΔA×B in which the active A and B binding sites are
on the same pseudomonomer or opposite pseudomonomer
(Fig. 4C), respectively, were 15- to 75-fold less potent than mono-
meric WT CV-N, which also contains only a single A and single B
binding site. This observation indicates that factors in addition
to avidity, including possible steric occlusion of binding sites
and/or the relative orientation of binding sites, contribute to the
potency of an oligomeric CV-N molecule.

Discussion
By covalently linking two or more copies of CV-N together,
we generated CV-N oligomers with significantly enhanced HIV
neutralization activity compared to WT CV-N. CVN2L0 not only
exhibited broadly neutralizing activity across three clades of
HIV-1, but was also able to neutralize many HIV strains with
potency similar to that of seven well studied broadly neutralizing
antibodies (4E10, 2G12, 2F5, b12, PG9, PG16, and VRC01). In
addition, our crystallographic and mutagenesis studies revealed
that the CVN2s form domain-swapped dimers in solution as
well as in crystal form. By increasing the local concentration of
CV-N through linking two molecules together, we have stabilized
the domain-swapped dimeric form of the protein, allowing it to
be stable under physiological conditions.

Previous studies were divided about whether the domain-
swapped dimer of WT CV-N is more active than the monomeric
form (20, 21). However, because the CV-N domain-swapped
dimer is metastable under physiological temperatures and signif-
icant amounts can revert to monomer over the course of an assay
(14), the domain-swapped form has been difficult to evaluate with
current HIV neutralization assays. In contrast, our variants are
covalently linked at their termini and are thereby effectively
forced into the domain-swapped dimeric form by the effective
increase in local concentration. Because there were no major
structural differences between the linked dimers and WT CV-N,
our results suggest that the dimeric species of WT CV-N would
also be a more potent neutralization agent if it were stable during
the assay. Therefore, other methods in which the dimer is stabi-
lized may also result in increased neutralization activity.

In addition to the potential benefit of domain swapping, the
simple increase in avidity in the CVN2s significantly improves the
neutralization activity. WT CV-N itself has a high affinity for
gp120 (1, 23), but by doubling the number of carbohydrate bind-
ing sites in the CVN2 variants, the increase in avidity may prevent
possible dissociation and escape of the virus. As shown by our
knockout studies, CVN2L0 variants with more functional binding
sites were significantly more potent at neutralizing HIV, indicat-
ing that higher avidity translates to greater potency. Interestingly,

we also found that deletion of a binding site in the B domain had
a greater effect on the ability to neutralize HIV than deletion of a
binding site in the A domain. CVN2L0ΔBB, which contains only
two functional A sites, is approximately 15-fold worse at neutra-
lizing HIV than CVN2L0ΔAA, which contains only two functional
B sites. This finding is consistent with earlier studies that showed
that binding site B has an approximately 10-fold lower KD for
Manα1-2Man than binding site A (9) and may indicate that the
overall activity of CV-N could be improved by improving the
affinity of site A.

An alternate mechanism for increased neutralization could
result from the fact that the binding sites in CVN2s can poten-
tially sample distances farther apart than the binding sites in
monomeric WT CV-N. The wider spacing could allow CVN2s to
crosslink glycosylation sites within a single gp120, across multiple
gp120 subunits on an envelope spike or, less likely, across multi-
ple spikes. This crosslinking would prevent a larger number of
gp120 subunits from binding to CD4, the primary receptor for
HIV, than would be blocked by WT CV-N, thus decreasing the
IC50. An interesting note is that in one conformation of the
domain-swapped structure of WT CV-N (Fig. S1B), every pair
of carbohydrate binding sites is approximately 30 to 35 Å apart
(Fig. 5A). The neutralizing antibody 2G12, which is also domain-
swapped and binds carbohydrates on gp120, has carbohydrate
binding sites that are also approximately 30 to 35 Å apart (35)
(Fig. 5B). Perhaps by stabilizing the domain-swapped structure
of CV-N, the carbohydrate binding sites of the CVN2 variants
are optimally positioned to interact with gp120.

Fig. 5. Similarity in carbohydrate binding site spacing in CV-N and the
2G12 anti-HIV ðFabÞ2. (A) Each of the four carbohydrate binding sites in
one WT CV-N crystal structure (15) (P41212 space group) is approximately
30 to 35 Å from the other sites (structure is viewed from the bottom with
respect to Fig. 1). Carbohydrates (shown as sticks with black carbons and
red oxygens) were only resolved in the A binding sites in the crystal structure.
(B) Ribbon diagram of the domain-swapped ðFabÞ2 from IgG 2G12, a broadly
neutralizing antibody specific for carbohydrates on gp120 (35). The domain
swapping creates a rigid ðFabÞ2 dimer in which the carbohydrate binding
sites at the antigen combining sites are spaced approximately 30 to 35 Å
apart. Carbohydrates are shown as sticks with black carbons and red oxygens
and antibody domains are labeled.
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While addition of a second CV-N molecule increases the
potency of HIV neutralization significantly, the addition of a
third or fourth CV-N repeat (CVN3, CVN4) does not increase it
further. Although the mechanism for enhanced activity is not
fully understood, perhaps nondomain-swapped CV-N repeats do
not have a significant impact on the activity; for example, one of
the three repeats in trimeric CVN3 molecules may have little
effect on activity. Alternatively, due to the close proximity of the
N and C termini in the WT structure and their proximity to the
lower affinity carbohydrate binding site (site A), the additional
CV-N molecule(s) may sterically occlude access to some of the
carbohydrate binding sites in the molecule, rendering those sites
nonfunctional and therefore inhibiting any additional effect.
Longer linkers, including structured linkers, may be necessary
to prevent steric occlusion of the binding sites.

WT CV-N and the CVN2 molecules show excellent cross-clade
and cross-strain reactivity. This property is promising for the
development of these or other variants for therapeutic use, as
they can potentially be used throughout the world. Because of
the increase in potency relative to WT CV-N, CVN2L0 could be
more effective in any prophylactic treatment protocol that WT
CV-N is currently being investigated for, including gels, supposi-
tories, and in vivo Lactobacillus delivery (36, 37). In addition to
the increase in potency of CVN2L0, the lack of a proteolytically
sensitive linker between the CV-N repeats suggests that this var-
iant will probably have similar stability in vivo as WT CV-N.
CVN2L0 shows similar potency to many of the broadly neutraliz-
ing antibodies that have recently been reported but is easier to
express than intact antibodies and therefore could be used for a
range of therapeutics that are intractable for antibodies. CV-N
variants could also theoretically be used in combination therapy
with anti-gp120 antibodies to direct gp120 evolution toward de-
creased glycosylation. Glycosylation itself has been shown to be
important in the folding and function of viral glycoproteins (38),
and in the case of HIV, deglycosylation of gp120 diminishes its
binding to CD4, making the virus less infective (39, 40). Alterna-
tively, deglycosylation of gp120 could reveal protein epitopes that
can be recognized by the adaptive immune system, allowing the
immune system to fight off infection more effectively.

Materials and Methods
Construct Generation. The gene for WT CV-N was constructed using a recur-
sive PCRmethod with 40-mer synthesized oligos (41), then subcloned into the
NdeI and BamHI sites of pET11a. The protein contained an N-terminal 6-his-
tidine purification tag followed by a Factor Xa protease cleavage site. CVN2L5
and CVN2L10 were constructed using PCR-based cloning to insert a tandem
repeat of the WT CV-N gene and sequence encoding the flexible polypeptide
linker into the WT plasmid. The CVN3L5 gene was created by inserting an
Escherichia coli-optimized WT CV-N DNA sequence between the two existing
copies of theWT gene in CVN2L5. Other dimeric and trimeric genes of varying
linker lengths were constructed using the QuikChange Site-Directed Muta-
genesis Kit (Stratagene) to insert or delete codons corresponding to linker
amino acids. All constructs were verified through DNA sequencing and re-
striction analysis to ensure the correct sequence and number of CV-N repeats.

Binding site knockout mutant constructs were generated in the back-
ground of a CVN2L0 template gene containing two distinct DNA sequences
for each CV-N repeat. Mutations were made using the QuikChange Multi
Site-Directed Mutagenesis Kit (Stratagene).

Protein Expression and Purification. The expression of WT CV-N and all oligo-
meric variants was induced with IPTG in BL21(DE3) E. coli cells in LB including
ampicillin. The harvested cells were lysed using an EmulsiFlex-C5 (Avestin,

Inc.), and the insoluble fraction was resuspended in buffer containing 6 M
GnHCl and 10 mM imidazole and centrifuged to remove debris. The solubi-
lized CV-N was then purified under denaturing conditions using a Ni-NTA
gravity column (Qiagen) and refolded by dialyzing the Ni-NTA eluate against
native buffer overnight at room temperature (42). Following refolding, pro-
teins were additionally purified on a Superdex-75 column and eluted in
25 mM sodium phosphate pH 7.4, 150 mM NaCl. The N-terminal 6-histidine
purification tag was not removed prior to functional or structural assays. Pure
protein was concentrated or stored as eluted at 4 °C.

Amino acid analysis was performed on WT CV-N, CVN2L5, CVN2L10,
CVN3L5, and CVN3L10 to determine extinction coefficients at 280 nm (Texas
A&M University). These experimentally determined extinction coefficients
(WT: 10;471 M−1 cm−1; CVN2s: 20;800 M−1 cm−1; CVN3s: 32;000 M−1 cm−1)
were used to calculate the protein concentration.

HIV Neutralization Assays. HIV-1 pseuodovirus particles from pseudotyped
primary virus strains were prepared as described (22, 43). The SC422661.8
strain (clade B) was used for all assays unless otherwise noted. HIV neutrali-
zation assays were performed either in-house (Fig. 2, Table S2) or by the
Collaboration for AIDS Vaccine Discovery (CAVD) core neutralization facility
(Fig. 3, Table S3) as previously described (22). Briefly, 250 infectious viral units
of virus per well were incubated with threefold dilutions of CV-N or a CV-N
variant in triplicate (our assays) or duplicate (CAVD assays) for 1 h at 37 °C
after which approximately 10,000 Tzm-Bl cells were added to each well and
incubated for 48 h. The cells were then lysed using Bright Glo Luciferase Assay
Buffer (Promega), and luciferase expression was assayed using a Victor3

Multilabel Counter (PerkinElmer).
To determine the IC50 of neutralization, the luminescence was first aver-

aged across the replicates, then the percent neutralization (%Neutralization)
was calculated using Eq 1, where RLU is the average relative luminescence
for a given concentration, CC is the average luminescence from the cell con-
trol wells, and VC is the average luminescence from the viral control wells.
The percent of virus neutralized was then plotted as a function of neutraliz-
ing protein concentration in Kaleidagraph (Synergy Software) and fitted to
Eq. 2, where IC50 is the concentration of CV-N at which half of the virus is
neutralized, C is the concentration of CV-N, and m is a Hill coefficient. IC50s
are reported as the average of a minimum of four independent trials and
the error reported is the standard deviation of the IC50s from those trials.
CVN2L20, CVN3L5, CVN3L10, and the binding site mutants were tested on
only one occasion and therefore a standard deviation is not reported.

%Neutralization ¼
�
1 −

RLU − CC
VC − CC

�
� 100 [1]

%Neutralization ¼ 100

1þ ðIC50

C Þm [2]

Crystallization, Crystallographic Data Collection, and Refinement. See SI Text.
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