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Abstract
BACKGROUND—The most common congenital heart disease in the newborn population, patent
ductus arteriosus, accounts for significant morbidity in preterm newborns. In addition to
prematurity and environmental factors, we hypothesized that genetic factors play a significant role
in this condition.

OBJECTIVE—The objective of this study was to quantify the contribution of genetic factors to
the variance in liability for patent ductus arteriosus in premature newborns.

PATIENTS AND METHODS—A retrospective study (1991–2006) from 2 centers was
performed by using zygosity data from premature twins born at ≤36 weeks’ gestational age and
surviving beyond 36 weeks’ postmenstrual age. Patent ductus arteriosus was diagnosed by
echocardiography at each center. Mixed-effects logistic regression was used to assess the effect of
specific covariates. Latent variable probit modeling was then performed to estimate the heritability
of patent ductus arteriosus, and mixed-effects probit modeling was used to quantify the genetic
component.

RESULTS—We obtained data from 333 dizygotic twin pairs and 99 monozygotic twin pairs
from 2 centers (Yale University and University of Connecticut). Data on chorioamnionitis,
antenatal steroids, gestational age, body weight, gender, respiratory distress syndrome, patent
ductus arteriosus, necrotizing enterocolitis, oxygen supplementation, and bronchopulmonary
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dysplasia were comparable between monozygotic and dizygotic twins. We found that gestational
age, respiratory distress syndrome, and institution were significant covariates for patent ductus
arteriosus. After controlling for specific covariates, genetic factors or the shared environment
accounted for 76.1% of the variance in liability for patent ductus arteriosus.

CONCLUSIONS—Preterm patent ductus arteriosus is highly familial (contributed to by genetic
and environmental factors), with the effect being mainly environmental, after controlling for
known confounders.
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With increasing survival of premature newborns, patent ductus arteriosus (PDA) has become
the most common form of congenital heart disease in the newborn period.1 The incidence of
PDA in very low birth weight (<1500 g) newborns is 37%2 and 42% among those born at
<1000 g.3 The major factors believed to influence patency of the ductus arteriosus include
prematurity and the presence of respiratory distress syndrome (RDS).1 PDA is a significant
independent risk factor for necrotizing enterocolitis (NEC),4 bronchopulmonary dysplasia
(BPD),5,6 and cerebral palsy.7 Although the diagnosis of PDA using echocardiography has
become routine, there is considerable controversy regarding the appropriate management of
this condition.8-14 Despite significant progress in the diagnosis and management options for
PDA, it remains a major contributor to neonatal morbidity and mortality.15,16

A better understanding of the pathogenesis would be useful for devising specific strategies
to treat PDA and to thereby improve newborn morbidity. We hypothesized that, in addition
to prematurity and environmental factors, there is a susceptibility conferred by genetic
factors. The goal of this study was to quantify the contribution of these unknown genetic
factors by analyzing preterm monozygotic twin pairs who share 100% of their chromosome-
encoded genes with dizygotic twin pairs who, on average, share 50%.

PATIENTS AND METHODS
Subjects

Data on premature twins surviving to hospital discharge, born at ≤36 weeks’ gestation from
January 1, 1991, to December 31, 2006, were collected from 2 centers: the University of
Connecticut and Yale University. The institutional review boards of each participating
center approved the contribution of data to this study.

Definitions
The zygosity of each twin pair was determined by histopathologic examination of the
placenta, with additional confirmation using gender concordance or discordance.
Information about histologic chorioamnionitis and the use of antenatal steroids was obtained
from the maternal charts. PDA was diagnosed via echocardiography by pediatric
cardiologists at each site.17 Requests for the diagnosis of PDA were made by the attending
neonatologist based on clinical suspicion of a symptomatic PDA. Data were not available on
the grading/severity of the shunt. RDS was defined as the presence of respiratory distress
with an oxygen requirement in the first 6 hours of life, accompanied by a characteristic chest
radiograph. Duration of oxygen use was defined as the total number of days that the
newborn required the use of supplemental oxygen while hospitalized (>21%). NEC was
defined as stage 2 or more as per modified Bells’ criteria.18 BPD was defined as the need for
supplemental oxygen at 36 weeks’ postmenstrual age in association with characteristic
radiographic changes.18
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Statistical Analyses
Demographic data were analyzed using the Student’s t test or χ2 analysis, where appropriate.
To assess the independence of the twins in a pair, the PDA rate was calculated as the
number of affected twins divided by the total number of twins. The expected concordance
under the assumption that the twins are independent was the probability of both twins in a
pair having a PDA and was calculated as {(rate)2}. The number of expected concordant
twin pairs was calculated as {n(rate)2} where n refers to the total number of twin pairs in the
monozygotic and dizygotic groups. The observed concordance was the actual PDA
concordance between the twins in a pair. Observed to expected concordance was compared
using χ2 analysis.

To calculate the heritability of susceptibility to PDA, we used the formula 2(CMZ – CDZ),
where CMZ is the concordance rate for monozygotic twins and CDZ is the concordance rate
for dizygotic twins, as reported previously.18 To test whether there is an excess of
concordance in monozygotic twins, we calculated the average rate of concordance in both
monozygotic and dizygotic twins. Then, the observed concordance was compared with the
expected concordance in a χ2 test.

Mixed-effects logistic regression (MELR) analysis was performed to identify the impact of
putative risk factors on PDA. The covariates used in the model included male gender,
gestational age (GA), birth weight (BW), RDS, duration of supplemental oxygen use, and
treating institution (INST). The parameter estimates were based on the observations without
missing data. The status of the outcomes from twin pairs was treated as a correlated event.
INST was evaluated as an overall variable, as well as one institution compared with the
other, a reference institution, chosen at random. An MELR model was fitted to assess the
relationship between the covariates listed and the outcome of interest (PDA) and to
incorporate the correlation between twin pairs.

Latent variable probit modeling for twin data was then used to estimate the variance in
liability for PDA. A mixed-effects probit model was fitted to estimate the genetic
contribution to PDA by adjusting for all of the significant covariates used in the MELR
analysis. A liability variable was estimated underlying the respective outcome. This variable
was assumed to follow a normal distribution with the mean dependent on the MELR
covariates. The variance was partitioned into a genetic component, a shared nongenetic
component, and a random component. The sum of the first 2 components constituted the
overall sharing between twins and was determined from the correlation between
monozygotic twins and dizygotic twins. We estimated the heritability (ie, the ratio of the
genetic variance to the total variance in liability) based on a model that assumed that the
correlation among twins resulted from both a genetic and nongenetic component.

Anonymous clinical data, formatted in Excel spread-sheets (Microsoft, Redmond, WA),
were forwarded from each institution to the statistical core at Yale University. Statistical
analyses were performed by using SAS 9.1 (PROC GLIMMIX and PROC NLMIXED [SAS
Institute, Inc, Cary, NC) and Mx.19 A P value of <.05 was considered statistically
significant.

RESULTS
PDA was diagnosed in 134 (15.5%) of 864 newborns from our cohort. The incidence of
PDA was inversely proportional to BW, with the majority of disease occurring in the
population <1000 g. In these newborns, 67 (49%) of 136 were diagnosed with PDA as
compared with 40 (20%) of 197 in those with BW 1000 to 1500 g and 17 (6.5%) of 310

Bhandari et al. Page 3

Pediatrics. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



newborns with BW 1501 to 2000 g. We also noted that only 10 (4.5%) of 221 newborns
were diagnosed in the subpopulation with BW >2000 g (Table 1).

Zygosity data composed of 99 monozygotic and 333 dizygotic twin pairs from the 2
institutions were used for analysis. The 432 twin pairs had a mean GA and BW of 31.1
weeks and 1637.7 g, respectively. Despite a discrepancy in the overall number of twin pairs
in each group, no statistically significant differences were observed between monozygotic
and dizygotic twins with respect to maternal chorioamnionitis; exposure to antenatal
steroids; GA; BW; gender; 5-minute Apgar score; the incidences of RDS, BPD, and NEC;
and duration of supplemental oxygen use (Table 2).

We initially performed an unadjusted concordance analysis to identify whether a genetic
effect exists for PDA in our premature newborn population. Tables 3 and 4 shows that the
concordance rate of twins was significantly higher, if the twins are assumed independent (P
< .0001). The concordance rate of monozygotic twins was higher than that in dizygotic
twins, but the difference was not statistically significant (P = .34).

Next, MELR analysis was performed using PDA as the dependent variable in an attempt to
identify significant covariates in our cohort that may have contributed to the outcome of
interest. The analysis determined RDS (odds ratio [OR]: 4.753 [95% confidence interval
(CI): 2.303–9.811]; P < .001), lower GA (OR: 0.805 [95% CI: 0.666 – 0.973]; P = .025),
and INST (OR: 9.905 [95% CI: 4.470–21.947]; P < .001) to be significant predictors for
PDA (Table 5).

Although BW seems only marginally significant from this analysis, we found that a model
that includes BW, RDS, and INST fit significantly better than a model that did not include
BW. Once significant nongenetic cofactors for PDA were identified by the MELR analysis,
a latent variable probit model was used to estimate the genetic susceptibility to PDA. Our
model assumed that genetic and shared and unshared nongenetic factors contributed to the
correlation among twins. Using this model, we determined that 76.1% (95% CI: 62.5%–
89.8%; P < .001) of the variance in liability to PDA was the result of genetic factors or the
shared environment. There is some evidence for the contribution of genetic factors alone of
12.3% (95% CI: 0%–98%, P = .779), but the estimate is not statistically significant. This is
consistent with the results in Tables 3 and 4.

DISCUSSION
In normal fetal life, ductus arteriosus patency is maintained by low fetal systemic arterial
oxygen tension and prostaglandins.20 In term newborns, the ductus usually closes within 48
hours after birth concurrent with a rise in systemic vascular resistance and oxygen tension, a
drop in pulmonary vascular resistance, and decreased circulating prostaglandins that
characterize the physiologic shifts from fetal circulation. Until recently, PDA, which
accounts for 2% to 7% of congenital heart disease in term newborns, was not considered a
genetic disease. 21 Recent studies, however, implicate specific genes that contribute to
congenital heart defects,22 including PDA. For example, mutations in the transcription factor
TFAP2B are responsible for Char syndrome, a rare autosomal dominant syndromic form of
PDA.23 Although a candidate gene has not yet been proposed for a nonsyndromic form of
PDA, a genome-wide linkage analysis of 21 unrelated consanguineous PDA case subjects
from Iran identified a single locus, PDA1, on 12q24.21

PDA is more common in preterm newborns. A multitude of factors, such as excess
sensitivity to prostaglandins and nitric oxide, response to inflammatory mediators, and
relative resistance to local hypoxia-ischemia, are implicated in patency of the ductus
arteriosus in the preterm newborn.20 Cyclooxygenases, a class of enzymes that regulate the
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production of prostaglandins, affect patency in animal studies.24,25 Other studies revealed
the role of oxygen-sensitive potassium channels and ρ-kinase activation in functional
closure.26,27

In a candidate gene study of 141 low BW newborns, Derzbach et al28 reported that boys
with the “p” allele of the estrogen receptor-α gene PvuII pP polymorphism were at lower
risk for PDA but with a wide CI (OR: 0.24 [95% CI: 0.05–0.97]). In another candidate gene
study of 153 low BW newborns, Bokodi et al29 showed by stepwise logistic regression
analysis that carriers of the interferon γ (+874) T allele were protected against PDA (OR:
0.43 [95% CI: 0.19–0.97]) with a similarly wide CI. Although these small studies offer
tantalizing clues to a genetic predisposition toward PDA, ours is the first study that formally
isolated and quantified the overall heritability.

The statistical model took into consideration known and unknown nongenetic factors.
Unknown factors included the potential influences of race and neonatal sepsis, in addition to
other, unidentified factors. We calculated the rate of PDA and the expected concordance
rates (Tables 3 and 4) under different assumptions (1 and 2) to test the null hypothesis that
concordances between monozygotic and dizygotic twins are the same. In assumption 1, the
contribution to PDA from nongenetic factors is independent for each infant, regardless of
shared (within a twin pair) or nonshared (between twin pairs) environment. In assumption 2,
the contribution to PDA from nongenetic factors is the same for each twin pair. The
hypothesis with assumption 1 was rejected (P < .0001), whereas the hypothesis with
assumption 2 was not rejected (P = .34). By modeling the effects of these nongenetic
components, we estimated that 12.3% of the variance in liability to PDA was attributable to
genetic factors alone.

We used similar models to quantify the genetic heritability to BPD (53%)18 and retinopathy
of prematurity (70%)30 in preterm newborns. Other investigators used similar twin models
to estimate the heritability of several cardiovascular disorders, including exercise behavior
and respiratory sinus arrhythmia (84%–88%),31 hypertension (44%–66%),32,33 coronary
artery disease (34%),33 and death from coronary artery disease (38%–57%).34

Although prophylactic indomethacin for intraventricular hemorrhage prophylaxis was used
only at Yale University for infants with BWs of <1250 g, there were no institutional policy
differences in the use of antenatal steroids. The use of antenatal steroids in our cohort
reflects the customarily low use in the early 1990s, and the formal American College of
Obstetrics and Gynecology recommendations that it not be used in infants at ≥34 weeks
(>32 weeks, if membranes were ruptured) of gestation.35,36 The use of antenatal steroids in
our cohort did not affect the results, because, as shown in Table 2, there was no statistically
significant difference in exposure between monozygotic and dizygotic twins. It is, however,
important to note that institutional differences were identified in the multiple-effects
regression analysis (as shown in Table 5) and controlled for in our subsequent analyses.

Some limitations exist with our data set. As mentioned in the Methods section, at both
institutions, requests for the diagnosis of PDA were made by the attending neonatologist
based on clinical suspicion of a symptomatic PDA. We only used echocardiographic
evidence of PDA, done by pediatric cardiologists, to be included in the study. We did not
have information on the time of diagnosis of the PDA in our database. The inclusion of PDA
was not based on the need for treatment. Because the request for an echocardiogram was
made by the attending neonatologist based on his/her clinical suspicion, there was a
potential for selection bias. By design, our cohort was restricted to twin pairs with available
zygosity information and was, therefore, limited in numbers. We included most of the
known potential contributing factors to PDA, but not all. We did, however, attempt to
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control for these unknown variables in our statistical model. Furthermore, the retrospective
nature precluded DNA confirmation of zygosity. Placental histopathology and gender were
instead used to determine zygosity status. A monochorionic placenta was regarded as
representing monozygotic twins.37 Approximately 9% of similar gender dichorionic
placentas are monozygotic.38 On the other hand, in rare instances, dizygotic twins may have
a monochorionic placenta.37 The validity of our results was not affected when adjustments
were made for these potential misclassifications using worst-case scenarios.

CONCLUSIONS
As with the term PDA, which traditionally was considered a sporadic disease,21 these data
show that preterm PDA is highly familial (genetic plus environmental factors). Although the
effect was mainly environmental, the magnitude of genetic contribution warrants additional
investigation. We hope that these novel findings will serve as an impetus to the
identification of specific candidate genes for this condition. Because preterm PDA and the
treatment protocols used to close it lead to significant morbidity and mortality, knowledge of
the genes responsible for maintaining the balance between patency and closure is an
important step toward developing pharmacogenetic strategies tailored to individual
genomes.
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What’s Known on This Subject
PDA in preterm neonates is a common cause of morbidity, but the quantification of
genetic and environmental factors contributing to it is not known.

Bhandari et al. Page 9

Pediatrics. Author manuscript; available in PMC 2011 August 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



What This Study Adds
Preterm PDA is contributed to by genetic and environmental factors, with the effect
being mainly environmental.
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TABLE 1

Incidence of PDA According to BW

BW, g Incidence of PDA, n/N (%)

<1000 67/136 (49.0)

1000–1500 40/197 (20.0)

1501–2000 17/310 (6.5)

>2000 10/221 (4.5)
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TABLE 2

Comparison of Demographic Data for Monozygotic and Dizygotic Twin Pairs

Variable Monozygotic (n = 198) Dizygotic (n = 666) P

Histologic chorioamnionitis, n (%) 7/178 (4) 33/566 (6) .328

Antenatal steroids, n (%) 68/184 (37) 104/608 (17) .467

GA, mean ± SD, wk 30.3 ± 2.78 30.1 ± 3.01 .350

BW, mean ± SD, g 1622 ± 551 1642 ± 553 .646

Male gender, n (%) 97 (49) 351 (53) .359

Apgar score at 5 min, median ± SD 8.15 ± 1.23 8.18 ± 1.29 .718

RDS, n (%) 101 (51) 312 (47) .303

BPD, n (%) 38 (19) 112 (17) .439

NEC, n (%) 6 (3) 41 (6) .089

PDA, n (%) 36 (18) 98 (15) .237

Supplemental oxygen, mean ± SD, d 17.9 ± 26.9 16.2 ± 30.0 .473
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TABLE 3

PDA According to Zygosity

Variable Twin Pairs, n One With PDA, n Both With PDA, n

Monozygotic 99 10 13

Dizygotic 333 34 32
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TABLE 4

Testing Independence and Concordance of the Twins

Variable Expected Concordance Observed Concordance P

Independence <.001

 Monozygotic 2.378a 13

 Dizygotic 8.000a 32

Excess of concordance of the monozygotic twins .34

 Monozygotic 10.3b 13

 Dizygotic 34.6b 32

a
The expected concordance was calculated under the assumption that twins are independent, the rate of PDA is [10 + (2 × 13) + 34 + (2 × 32)]/864

= 0.155, and the expected concordance for PDA is 99(0.155)2 for monozygotic twins and 333(0.155)2 for dizygotic twins.

b
The expected concordance was calculated under the assumption that the monozygotic and dizygotic twins have the same level of concordance that

is estimated by (13 + 32)/432 = 0.104, and the expected concordance for PDA is 99 × 0.104 for monozygotic twins and 333 × 0.104 for dizygotic
twins.
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TABLE 5

MELR Analysis for PDA

Variable OR 95% CI P

Male gender 0.802 0.475–1.356 .407

GA 0.805 0.666–0.973 .025

BW 0.999 0.998–1.000 .099

RDS 4.753 2.303–9.811 <.001

INST (University of Connecticut) 9.905 4.470–21.947 <.001
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