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Abstract

The purpose of the current study was to identify potential ligands and develop a novel diagnostic test to highly pathogenic
avian influenza A virus (HPAI), subtype H5N1 viruses using phage display technology. The H5N1 viruses were used as an
immobilized target in a biopanning process using a 12-mer phage display random peptide library. After five rounds of
panning, three phages expressing peptides HAWDPIPARDPF, AAWHLIVALAPN or ATSHLHVRLPSK had a specific binding
activity to H5N1 viruses were isolated. Putative binding motifs to H5N1 viruses were identified by DNA sequencing. In terms
of the minimum quantity of viruses, the phage-based ELISA was better than antiserum-based ELISA and a manual, semi-
quantitative endpoint RT-PCR for detecting H5N1 viruses. More importantly, the selected phages bearing the specific
peptides to H5N1 viruses were capable of differentiating this virus from other avian viruses in enzyme-linked
immunosorbent assays.
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Introduction

Since the first evidence regarding direct transmission of highly

pathogenic avian influenza A virus (HPAI), subtype H5N1 from

poultry to human in 1997 and resulted in the death of 6 of the 18

infected individuals [1–3]. The HPAI H5N1 has become one of

the most important public health concerns worldwide. At present,

the virus has spread to many countries in Europe, Asia and Africa

[4]. In 2009, an identified fatal influenza (H5N1) infection in a

human was reported on January 17, 2009 [5]. Increased

geographical distribution and continued evolution of H5N1

viruses as well as an immunologically naı̈ve human population

has maintained the pandemic potential of these viruses [6–8].

In addition to vaccination and administration of antiviral drugs

against H5N1 viruses, development of effective detection ap-

proaches is required to manage and control the deadly disease.

Phage display is a recently developed technology and phage

random peptide library consists of a pool of billions of

heterologous peptides that can be produced by the fusion of

random nucleic acid sequences to the N terminus of one of the

capsid protein genes of a filamentous bacteriophage [9]. Phage

display peptide library is a powerful tool to identify specific ligands

of a target protein by a biopanning process. This technology has

been applied successfully in numerous aspects, including antibody

engineering [10], peptide and protein drug discovery and

manufacture [11], diagnostic analysis [12] and vaccine develop-

ment [13]. Herein we identified three phage clones that specifically

binding to the HAPI H5N1 viruses using a 12-mer random phage

library. The binding peptides of the phages were sequenced. More

importantly, these identified phages were able to distinguish HAPI

H5N1 from other avian viruses.

Materials and Methods

Cell and virus
Madin-Darby canine kidney (MDCK) cells (ATCC, Manassas,

VA) were grown in Dulbecco’s MEM with 1 mM L-glutamine and

10% fetal bovine serum at 37uC and 5% CO2 in air. HPAI H5N1

strain A/goose/Jilin/hb/2003 were propagated in the MDCK

cells in the absence of serum and purified by differential

centrifugation conventionally. The concentration of the purified

viruses diluted in PBS was measured by Thermo Scientific

NANODROP 2000 Spectrophotometer ((NanoDrop Technolo-

gies, Thermo Fisher Scientific, Wilmington, DE) and calculated by

the molar absorbance coefficient A260/A280 according to the

manufacturer’s instructions.

Biopanning and enrichment analysis
Phage display was done according to the manufacturer’s

instructions (New England Biolabs) with minor modifications.

For the first round of panning, 96-well plates were coated with the

H5N1 viruses at a concentration of 14 mg/well in 0.1 M NaHCO3

(pH 8.6) buffer overnight at 4uC. The next day, the plates were

blocked for 1 h at 4uC with 5% skimmed milk diluted in 0.05%
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(vol/vol) Tween 20 in phosphate-buffered saline (PBST). Follow-

ing six washes with TBST (50 mM Tris-HCl, pH 7.5, 150 mM

NaCl, 0.1%[vol/vol] Tween 20), the viruses were incubated with

the phage library at a final concentration of 261011 (100 ml/well)

at room temperature for 30 min with gently rocking. Subsequent-

ly, unbound phages were removed by 10 times wash with TBST

and the bound phages were eluted by adding 100 mL elution

buffer (0.2 M glycine-HCl [pH 2.2]) at room temperature for

30 min. The eluate neutralized with 15 mL 1 M Tris-HCl (pH 9.1)

was collected and tittered. The phages were amplified in Escherichia

coli ER2738 and purified by polyethylene glycol precipitation.

The second and third rounds of panning were repeated under

similar panning conditions in addition to the increased concen-

tration of Tween 20 (0.5% [vol/vol]) in TBST. In the fourth round

of panning, the coated viruses were replaced by the supernatant

form MDCK culture. After incubation of the phages to the

supernatant at room temperature for 30 min, the resulting phages

were subjected to the fifth round of panning. The titer of the

phages in input, elute buffer (output) and that after amplification in

E.coli were determined to evaluate the enrichment efficiency.

Analysis of binding of individual phage to H5N1 viruses
Positive phage clones were identified by indirect ELISA. Briefly,

ELISA plates were coated with H5N1 viruses diluted in 0.1 M

NaHCO3 (pH8.6) at a concentration of 10 mg/well. Seven

controls were set: phage library coating group; phage-free group;

secondary antibody-free group; porcine transmissible gastroenter-

itis virus coating group; avian infectious bronchitis virus coating

group; blocking buffer group and virus dilution solution coating

group. The coating process was done overnight at 4uC. The next

day, the plates were blocked with 1% bovine serum albumin (BSA)

in TBS buffer (TBSB) for 2 h at room temperature. The plates

were washed six times with TBST and then incubated with

individual phage from the last round of biopanning at a

concentration of 261011 in 0.1 M NaHCO3 (pH 8.6) for 1 h at

37uC. After six washes with TBST, the M13 polyclonal antibody

(dilution 1:1,000 in TBSB; Abcam) was added to these wells for

1 h at 37uC. After six washes with TBST, the wells were incubated

with the horseradish peroxidase (HRP)-conjugated anti-rabbit IgG

antibody (dilution 1:5,000 in TBSB, Sigma). The color was

developed using o-phenylenediamine (OPD), and the optical

density (OD) value was read using an ELISA plate reader at a

wavelength of 405 nm. The experiments were performed in

triplicate.

PCR amplifying genes encoding the exogenous peptides
of phages

Ten positive phage clones were amplified and precipitated with

polyethylene glycol-NaCl. Each phage clone DNA was purified using a

plasmid extraction kit (Qiagen, Germany). The purified DNA

template, sense primers: 59-TCACCTCGAAAGCAAGCTGA and

antisense primer: 59-CCCTCATAGTTAGCGTAACG were used to

PCR amplify the gene encoding the exogenous peptides of M13. The

PCR profile included 95uC for 5 min, 30 cycles of 95uC for 30 s, 57uC
for 30 s, 72uC for 30 s. There was a final extension of 72uC for 7 min.

The corresponding amino acid sequences were deduced, based on

subsequent DNA sequencing.

Sensitivity comparison among antibody-mediated ELISA,
phage-mediated ELISA and RT-PCR

The sensitivity of phage–based detection was compared with

antibody-based ELISA and reverse transcription (RT)-PCR to

determine the minimum quantity of the virus detected. For

phage-based ELISA, the H5N1 viruses serially diluted in

DMEM were coated into ELISA plates overnight at 4uC. The

next day, the wells were blocked with 5% skimmed milk for 3 h

at room temperature. Then the selected phages and phage

complex from the phage display library (control phage) diluted in

PBS at a final concentration of 1.561012 was used as primary

antibody. After triple washes with TBST, the wells were

incubated with anti-M13 antibody (1:1600 dilution in PBS) for

1 h followed by another incubation with HRP-conjugated goat

anti-rabbit antibody (1:5000 dilution in PBS) for 1 h. The OD405

value of detected phage wells (P)/negative control (N).2 was

judged as positive results. For conventional ELISA, the H5N1

viruses were serially diluted in DMEM medium and coated into

ELISA plates as above. Rabbit antiserum against H5N1 viruses

was serially diluted in PBS buffer and incubated with the coated

H5N1 viruses for 1 h. After triple washes with TBST, the wells

were incubated with HRP-conjugated secondary antibody

(1:5000 dilution in PBS) for another 1 h. The normal rabbit

serum was used as negative control for ELISA and the OD450 of

Figure 1. Analysis of binding of selected phages to H5N1 virues by ELISA. Ten selected phages named phages 1 to 10 were incubated with
the H5N1 viruses in ELISA plates to test their binding activities to the viruses as described in Materials and methods. The experiment was performed
in triplicate. The individual phage and controls are indicated in the x axis. The controls 1–6 are phage library coating group, phage-free group,
secondary antibody-free group, porcine transmissible gastroenteritis virus coating group, avian infectious bronchitis virus coating group, blocking
buffer group and virus dilution solution coating group, respectively. The OD405 values of tested individual phage and the OD value of the control is
shown on the y axis.
doi:10.1371/journal.pone.0023058.g001
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detection well (P)/that of control well (N).2 was judged as

positive results.

A conventional RT-PCR amplifying partial hemagglutinin (HA)

gene (561 bp in length) of H5N1 virus was performed. The H5N1

viruses were diluted in PBS buffer and the final concentration of

the viruses was adjusted to 0.647 mg/ml. Firstly, 3 ml of the

viruses were subjected to viral RNA extraction using a RNA

extraction kit (Fastgene, China) according to the manufacturer’s

instructions. The extracted viral RNA was dissolved in diethyl

procarbonate treated sterile water in a volume of 40 ml. The

reverse transcription system included 5 ml of viral RNA (1 mg),

7.5 ml of sterile water, 1 ml of M-MLV reverse transcriptase

(TaKaRa, China), 0.5 ml of RNase Inhibitor (40 U/ml), 1 ml of

Oligo dT, 1 ml of dNTP Mixture (10 mM) and 56MLV Buffer

(4 ml). The reaction was performed at 42uC for 30 min, 99uC for

5 min and 5uC for 5 min. The resulting cDNA was serially diluted

and subjected to PCR. The PCR mixture included cDNA (2.5 ml),

106Easy Taq polymerase (0.3 ml. KeyGen, China), 2 ml of dNTP

Mixture (2.5 mM), 106PCR Buffer (2.5 ml), 0.5 ml of sense primer

(P1: 59-GATACGCTGCAGACAAAGAA) and antisense primer

(P2: 59-TTCTGCATTGTAACGATCCA), and sterile water

(16.7 ml). PCR parameters were composed of 94uC for 5 min,

30 cycles of 94uC for 30 s, 52.3uC for 30 s and 72uC for 40 s

followed by 72uC for 10 min. The authenticity of the PCR

product was confirmed by sequencing.

Utility of the phages bearing specific peptides for viral
diagnosis

The specificities of the selected phages were evaluated by using

them as diagnostic reagents to detect a panel of avian viruses.

These viruses included duck plague virus (DPV) a vaccine strain,

avian bronchitis virus (IBV) strain Beaudette, fowlpox virus (FPV)

isolate HH2008, avian infectious bursal disease virus (IBDV) strain

UK661, avian infectious laryngotracheitis virus (AILV) strain

K317 and newcastle disease virus (NDV) strain La Sota. The

viruses were diluted in 0.1 M NaHCO3 (pH8.6) to a final

concentration of 15 mg/well and coated onto ELISA plates

overnight at 4uC. Subsequent ELISA steps were performed as

above-mentioned protocols. The OD405 values were recorded. At

least three independent experiments were carried out. Each data

point was presented as mean 6 SD. Statistical significance was

evaluated using the t-test. ‘‘*’’ means a value of P,0.01 was

considered statistically highly significant. Furthermore, the iden-

Figure 2. PCR amplifying genes encoding heterologous
peptides in the recombinant phages. Using specific M13 phage
primers, the genes encoding the heterologous peptides in the ten
recombinant phages were amplified by PCR. The gel agarose
electrophoresis of PCR product is provided. The PCR product from
each phage clone is numbered 1 to 10 and lane M is DNA marker.
doi:10.1371/journal.pone.0023058.g002

Table 1. Deduced amino acid sequences of phage clonesa.

Phage clones (number) Phage displayed peptide sequence

Phage 1 HAWDPIPARDPF

Phage 2 AAWHLIVALAPN

Phage 3 ATSHLHVRLPSK

Phage 4 HAWDPIPARDPF

Phage 5 HAWDPIPARDPF

Phage 6 ATSHLHVRLPSK

Phage 7 HAWDPIPARDPF

Phage 8 ATSHLHVRLPSK

Phage 9 ATSHLHVRLPSK

Phage 10 ATSHLHVRLPSK

aTen selected phages (phages 1 to 10) were subjected to phage DNA extraction
and PCR. The deduced amino acid sequences are shown. Boldface indicates
putative motifs that bind the H5N1 viruses.

doi:10.1371/journal.pone.0023058.t001

Figure 3. Detection limit of H5N1 viruses by phage-mediated ELISA. Serially diluted H5N1 viruses were used as coating antigens followed by
successive incubation with identified phages 1 to 3, anti-M13 antibody and HRP-conjugated goat anti-rabbit antibody. The P (OD405 value of detected
phage wells)/N (that of negative control, phage library) .2 is judged as positive results and is shown in the y axis. The experiment was performed in
triplicate and the P/N value was from three independent assays. The concentration of the viruses is indicated in the x axis.
doi:10.1371/journal.pone.0023058.g003
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tified phages were used to detect an H9N2 avian influenza virus

coated in ELISA plates to further analyze the specificity of the

phage-based ELISA using the above-mentioned procedure.

Results and Discussion

Requirement of development of diagnostic agents to
influenza viruses

At present, antiviral drugs are available in fighting influenza,

such as the M2 inhibitors and the neuraminidase inhibitors.

Nonetheless, the emergence of drug resistant influenza strains

raises concern over their effectiveness. It has been reported that

M2 inhibitors resistant H5N1 viruses are widespread [14]. The

efficacy of the neuraminidase inhibitor, oseltamivir, appears to be

very time dependant, where treatment started later than 24 hours

post infection is much less effective [15]. Therefore other

alternative antiviral drugs are required to fight H5N1 influenza.

In vaccination, it is well known that influenza viruses are dynamic

and are continuously evolving. Influenza type A viruses undergo

antigenic drift and antigenic shift, resulting in new virus strains

that may not be recognized by antibodies to earlier influenza

strains. Therefore, rational design of vaccines against influenza

vaccines still has a long way to go. Although there are difficulties of

tackling influenza virus with drugs or vaccines, they are very useful

in the prevention and therapy of influenza. At the same time,

effective diagnostic tests for viruses screening prior to application

of drugs and vaccines are widely accepted, due to their simplicity,

rapidity and applicability.

Identification of phages bearing specific peptides to
H5N1 viruses

One purpose of the current study was to use phage display to

identify specific ligands of H5N1 viruses. There are reports

regarding the phage-displayed peptides selected from combinato-

rial libraries that interacting with hepatitis B virus, adenovirus type

2, Andes virus, Sin Nombre virus and Hantaan virus and

coronavirus [16]. At present, the phage display technology has

become an increasingly attractive molecular tool to researchers in

biotechnology related fields [17–19]. In our study, we used the

H5N1 virion as an immobilized target and performed a

biopanning using a 12-mer phage display peptide library. Since

the viruses were harvested from the cells, therefore, we made a

subtract panning by including the cell supernatant as a target to

incubate with the selected phage to decrease the reaction

background; in addition, we decrease the concentration of the

viruses gradually to improve the specificity of the identified phages.

Our results showed that the titer of the eluted phages was

increased at the last round of panning (data not shown). Using

ELISA, ten phage clones that specific binding to H5N1 viruses

were identified. No positive results were found in the control,

confirming the binding specificity of the phages to the H5N1

viruses (Figure 1).

Deduced amino acids that were responsible for binding
activity

Following extraction of DNA of the selected phages, the genes

encoding the peptides expressed on the surfaces of the

Figure 4. Detection limit of H5N1 viruses by antibody-based ELISA. The H5N1 viruses serially diluted in PBS was coated into ELISA plates
followed by incubation of serially diluted rabbit against H5N1 serum and HRP-conjugated secondary antibody. The normal rabbit serum was used as
negative control for ELISA. The P (OD405 value of detection wells)/N (that of negative control) .2 is judged as positive results and is shown in the y
axis. The experiment was performed in triplicate and the P/N value was from three independent assays. The dilution of antibody is indicated in the x
axis. The concentration of viruses is indicated.
doi:10.1371/journal.pone.0023058.g004

Figure 5. Detection limit of H5N1 viruses by RT-PCR. Viral RNA at
a volume of 40 ml was extracted from 3 ml of the H5N1 viruses at a
concentration of 0.647 mg/ml. Subsequently, cDNA was achieved using
5 ul extracted RNA and the resulting cDNA was ten-fold serially diluted
and subjected to PCR. Lane 1: DNA marker; Lane 1, PCR product from
undiluted cDNA; Lanes 2–4 were PCR products of 10-fold serially diluted
cDNA. The size of amplified partial HA gene is indicated.
doi:10.1371/journal.pone.0023058.g005

Phage Displayed Peptides to H5N1 Viruses
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recombinant phages were amplified by PCR. The PCR products

were approx. 250 bp in size as expected (Figure 2). DNA

sequencing indicated that among the 10 selected phages, three

deduced peptide sequences (12 amino acids in length) were

identified (Table 1). Phages bearing peptide HAWDPIPARDPF,

AAWHLIVALAPN or ATSHLHVRLPSK were named phages

1, 2 and 3, respectively. The sequence data has been deposited in

GenBank database and the accession numbers for phages 1–3 are

JN170122, JN170123 and JN170124, respectively. Several

putative motifs, such as AWxxI, RxPx or ATSHL, in the

peptides were determined. The role of the identified peptides/

motifs in H5N1 virus infection needs to be investigated in the

future. Recently sialylgalactose-binding peptides have been

selected from a phage library to develop novel drugs that

interfere with the interaction between hemagglutinin (HA) of

influenza virus and glycoconjugate receptors on cells [20]; Using

viral hemagglutinin protein as a target and phage display

technology, recombinant Fab monoclonal antibodies specific to

the HA of H5N1 virus have also been characterized [8].

Nonetheless, to our knowledge, this is the first time to report

the peptide sequences that can bind to the HPAI H5N1 viruses.

Further experiments are needed to analyze the function of the

peptides/motifs in the context of H5N1 infection.

Analysis on sensitivity of phage-based ELISA
The sensitivity of phage-based detection was firstly analyzed by

ELISA. As shown in Figure 3, the minimum quantity of the H5N1

viruses for phages 1 to 3 was 0.1 mg, 0.5 mg and 0.8 mg,

respectively. The phage 1 was the most sensitive reagent used in

the phage-based ELISA. Then we used the anti-H5N1 virus serum

as primary antibody to analyze the sensitivity of antibody-

mediated ELISA and the minimum quantity of H5N1 viruses

required for the ELISA was determined as 0.3 mg (the P/N

value.2) (Figure 4). Additionally, we used RT-PCR to amplify

partial HA gene of the viruses. We used 1.941 mg of H5N1 viruses

to extract 40 ml of RNA. Then 5 ml of the RNA was subjected to

reverse transcription. The resulting cDNA was 10-fold serially

diluted and used as template for PCR. As shown in Figure 5,

under 1000-fold dilution, the PCR amplification of partial HA

gene was positive and the minimum quantity of viruses for RT-

PCR was calculated according to the equation: 1941 mg61/

861023 = 0.243 mg. These results indicate that the phage-based

ELISA is as good as if not better than antiserum-based ELISA and

RT-PCR for detecting H5N1 viruses.

Figure 6. Phage-mediated ELISA for differentiating H5N1 viruses from other avian viruses. Phages (1–3) harboring specific peptides
recognizing the H5N1 viruses were incubated with the duck plague virus (DPV), avian bronchitis virus (IBV), fowlpox virus (FPV), avian infectious
bursal disease virus (IBDV), H5N1 virus, avian infectious laryngotracheitis virus (AILV) and newcastle disease virus (NDV). The viruses were diluted in
0.1 M NaHCO3 (pH8.6) to a final concentration of 15 mg/well in ELISA plates and conventional ELISA was performed as described in Materials and
methods The phage complex from the phage library (Phage L) was used as control. The experiment was performed in triplicate. The name of the
viruses and the OD405 value of individual phage are indicated in x and y axis, respectively. ‘‘*’’ means p,0.01 (compared with other groups).
doi:10.1371/journal.pone.0023058.g006

Figure 7. Differentiation between AIV H5N1 and H9N2 viruses
by phage-mediated ELISA. The H5N1 viruses or H9N2 viruses were
diluted in 0.1 M NaHCO3 (pH8.6) to a final concentration of 15 mg/well
in ELISA plates followed by incubation with phages 1–3, anti-M13
antibody and HRP-conjugated secondary antibody. The name and
OD405 value of individual phage are indicated in x and y axis,
respectively. ‘‘*’’ means p,0.01 (compared with control). The experi-
ment was performed in triplicate.
doi:10.1371/journal.pone.0023058.g007
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Phages harboring specific peptides differentiated H5N1
viruses from other viruses

Since another purpose of this study was to develop a novel

diagnostic assay to H5N1 viruses, it is clearly important to be able

to distinguish influenza A virus from other viruses that might cause

mixed infections. Therefore, the selected phages were analyzed for

their specificities in recognizing H5N1 viruses and other avian

viruses. The avian viruses selected in this study are very common

in China and some of which may cause co-infection with H5N1

viruses [21–26]. As shown in Figure 6, the three identified phages

were capable of recognizing H5N1 viruses specifically rather than

other control viruses (p,0.01). At the same time, the low reactivity

of the control, the phage complex from the phage library, to the

targets in the ELISA excluded any artifact clearly. To further

analyze the specificity of the phage-based ELISA, we included

avian H9N2 influenza viruses as coating antigen and the phage-

based ELISA indicated that all the three phages recognizing

H5N1 viruses had lower reaction with H9N2 viruses, compared

with H5N1 (Figure 7) (p,0.01). Testing against other strains of

influenza A virus, or even of other influenza species such as B or C

may be helpful for full evaluation of the diagnostic applications of

the specific assay. Propagation of phage is relatively cheap and can

be done on a large scale. Therefore, the specific phages identified

in this study should be used as specific and inexpensive diagnostic

reagents for detection of H5N1 viruses. Other diagnostic tests to

H5N1 viruses such as real-time RT-PCR and genomic microarray

assay have been reported recently [27,28]. In the future, it would

be interesting to use the phages to detect other H5N1 strains or

other influenza A viruses to perform actual detection of virus from

infected samples.
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