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Purpose: This work seeks to develop exact confidence interval estimators for figures of merit that

describe the performance of linear observers, and to demonstrate how these estimators can be used

in the context of x-ray computed tomography (CT). The figures of merit are the receiver operating

characteristic (ROC) curve and associated summary measures, such as the area under the ROC

curve. Linear computerized observers are valuable for optimization of parameters associated with

image reconstruction algorithms and data acquisition geometries. They provide a means to perform

assessment of image quality with metrics that account not only for shift-variant resolution and non-

stationary noise but that are also task-based.

Methods: We suppose that a linear observer with fixed template has been defined and focus on the

problem of assessing the performance of this observer for the task of deciding if an unknown lesion

is present at a specific location. We introduce a point estimator for the observer signal-to-noise ratio

(SNR) and identify its sampling distribution. Then, we show that exact confidence intervals can be

constructed from this distribution. The sampling distribution of our SNR estimator is identified

under the following hypotheses: (i) the observer ratings are normally distributed for each class of

images and (ii) the variance of the observer ratings is the same for each class of images. These

assumptions are, for example, appropriate in CT for ratings produced by linear observers applied to

low-contrast lesion detection tasks.

Results: Unlike existing approaches to the estimation of ROC confidence intervals, the new confi-

dence intervals presented here have exactly known coverage probabilities when our data assump-

tions are satisfied. Furthermore, they are applicable to the most commonly used ROC summary

measures, and they may be easily computed (a computer routine is supplied along with this article

on the Medical Physics Website). The utility of our exact interval estimators is demonstrated

through an image quality evaluation example using real x-ray CT images. Also, strong robustness

is shown to potential deviations from the assumption that the ratings for the two classes of images

have equal variance. Another aspect of our interval estimators is the fact that we can calculate their

mean length exactly for fixed parameter values, which enables precise investigations of sampling

effects. We demonstrate this aspect by exploring the potential reduction in statistical variability that

can be gained by using additional images from one class, if such images are readily available. We

find that when additional images from one class are used for an ROC study, the mean AUC confi-

dence interval length for our estimator can decrease by as much as 35%.

Conclusions: We have shown that exact confidence intervals can be constructed for ROC curves

and for ROC summary measures associated with fixed linear computerized observers applied to bi-

nary discrimination tasks at a known location. Although our intervals only apply under specific con-

ditions, we believe that they form a valuable tool for the important problem of optimizing

parameters associated with image reconstruction algorithms and data acquisition geometries, partic-

ularly in x-ray CT. VC 2011 American Association of Physicists in Medicine.
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I. INTRODUCTION

The development of new reconstruction algorithms and

data acquisition strategies often requires image quality

assessment to optimize system parameters. A rigorous way

to measure image quality is with a task-based approach.1

This approach requires the clear definition of (1) a task, (2)

an observer, and (3) a meaningful figure of merit.1 Unfortu-

nately, image quality assessment with human observers is

not practical for purposes of system optimization. Indeed,

because human observer studies are expensive and time-

consuming, they are cumbersome for system optimization

over a large set of possible system and signal parameters.2

To overcome this problem, the use of computerized observ-

ers has been advocated for image quality assessment for

the purpose of system optimization.1 The results presented

in this work are specifically intended for linear computer-

ized observers; they should not be blindly applied to human

observers (our assumptions are not likely to be met in this

case).
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Task-based assessments of image quality using linear

computerized observers often involve binary classification.

For example, studies of medical image quality frequently

evaluate a task in which an observer attempts to discriminate

between two classes of images: those images that contain a

feature of interest (later called lesion, following customary

usage) and those that do not. Observer performance for a bi-

nary classification task can be expressed using a receiver

operating characteristic (ROC) curve, which plots the true

positive fraction (TPF) as a function of false positive fraction

(FPF).1 For purposes of simplification, the whole ROC curve

is often reduced to a single number, called an ROC summary

measure.1,3 In practice, ROC curves and ROC summary

measures must be estimated from observer rating data

obtained experimentally. Consequently, they suffer from sta-

tistical variability that must be characterized in order to

make inferences about observer performance.

One way that estimator variability may be summarized is

through the use of confidence intervals. As opposed to point

estimates, confidence intervals provide a probabilistic guar-

antee of covering the parameter of interest.4 Moreover, as

observed in Ref. 5 a virtue of confidence intervals is that

they convey more information than hypothesis testing (to-

gether with p-values) in two ways. First, confidence intervals

communicate the amount of statistical precision involved in

an experiment. Second, they communicate the relative size

of an experimental effect, i.e., they show how significant

experimentally observed differences are in terms of their

magnitude. The importance of confidence intervals for ROC

analysis of diagnostic image quality has been previously

emphasized by Metz.6

Previous work that examined confidence intervals with

application to ROC analysis has primarily focused on esti-

mation of the area under the ROC curve (AUC), a widely

used summary measure; see, e.g., Refs. 7 and 9 for over-

views of the literature on this topic. Also, confidence bands

for the entire ROC curve have been investigated by.10,11 The

majority of the previously investigated ROC confidence

intervals are based on either nonparametric or semiparamet-

ric estimation techniques. Such distribution-free methods

have the advantage that they are broadly applicable because

they make very weak assumptions regarding the distributions

of the observer ratings; this makes them suitable for assess-

ment of human observers. However, a drawback of the pre-

viously investigated interval and band estimators is a

reliance on either asymptotic approximations or resampling

techniques. Because these methods are not appropriate for

small samples, they can yield confidence intervals with inac-

curate coverage probabilities.8 By contrast, the coverage

probabilities for the confidence intervals that we propose in

this work are known exactly when our assumptions are

satisfied.

In this work, we present fully parametric estimators that

yield exact confidence intervals for ROC summary measures

and exact confidence bands for ROC curves. Our new esti-

mators are designed for continuous-valued observer ratings

under the dual assumptions that (i) the observer ratings are

normally distributed for each class of images and (ii) the

variance of the observer ratings is the same for each class

of images.

Although the aforementioned assumptions appear to be

restrictive, they are generally satisfied for image evaluation

tasks involving detection of small, low-contrast lesions with

linear computerized observers. The reasons are as follows.

First, most linear computerized observers compute each ob-

server rating as a linear combination of a large number of

image pixel values. Therefore, a general formulation of the

central limit theorem12 implies that the ratings will tend to

be normally distributed for each class of images. For x-ray

computed tomography (CT), the normality of the observer

ratings is further re-enforced by the near-normality of meas-

ured data13 and the linearity of reconstruction algorithms.

Second, the absence or presence of a small, low-contrast

lesion usually has little impact on the image covariance ma-

trix, so that the variance of ratings produced by linear com-

puterized observers is practically the same for each class of

images. This second observation has been made by Barrett

and Myers1(p. 1209) in the context of nuclear medicine. We

carefully analyze its applicability for CT in Sec. IV.

After reviewing relevant background material, we present

our new confidence interval estimators. Subsequently, we

evaluate two aspects of the AUC interval estimator. The first

aspect regards the statistical utility of using more images

from one class than the other. Knowledge of this utility is

important, as it is often possible to get more images from the

class without a lesion; see e.g., Ref. 14. The second aspect

regards the robustness of our estimator for application to rat-

ing data with unequal variances for the two classes. We

examine cases that are likely to be extreme for linear compu-

terized observers performing low-contrast lesion detection

tasks with CT images. Finally, the paper illustrates the use-

fulness of our estimators in the context of image quality

evaluation with real x-ray CT images.

II. PRELIMINARIES

This section introduces our notation and reviews important

background material. First, we remind the reader of the defi-

nition of the noncentral t distribution. The remainder of the

section reviews summary measures of observer performance.

Throughout the text, the probability density function

(pdf) of a continuous random variable X, will be written as fX
(x), and its cumulative distribution function (cdf) will be

denoted as FX (x). If fX (x) and FX (x) depend on a parameter

h, then they will be written as fXðx ; hÞ and FXðx; hÞ, respec-

tively. Similarly, if fX (x) and FX (x) depend on several pa-

rameters h1; h2;…; hm, then they will be written as

fXðx ; h1; h2;…; hmÞ and FXðx; h1; h2;…; hmÞ, respectively.

We assume that the reader is familiar with the normal and

v2 probability distributions.4 If a random variable X is nor-

mally distributed with mean l and variance r2, this fact will

be written as X � Nðl; r2Þ. Similarly, a v2 distributed ran-

dom variable Y with � degrees of freedom is denoted by

Y � v2
� . For only the particular case of the standard normal

distribution, Nð0; 1Þ, we depart from the notation introduced

above for the cdf and employ the usual notations UðxÞ and

U�1ðpÞ for the cdf and inverse cdf, respectively.
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II.A. The noncentral t distribution

If X � Nð0; 1Þ and Y � v2
� are independent random vari-

ables, then for any d 2 ð�1;1Þ, the ratio

T ¼ X þ dffiffiffiffiffiffiffiffi
Y=�

p (1)

has a noncentral t distribution with � degrees of freedom and

noncentrality parameter d.15 In this case, we write T � t0�ðdÞ.
The mean of a noncentral t random variable is15(p. 513)

E½T� ¼ d Bðð� � 1Þ=2; 1=2Þ
ffiffiffiffiffiffiffiffiffiffi
�=2p

p
for � > 1; (2)

where B(x,y) is the Euler beta function. Expressions for the

pdf, cdf, and higher moments of the noncentral t distribution

may be found in Ref. 15.

II.B. ROC figures of merit

We consider assessment of linear computerized observer

performance for a binary classification task in which the ob-

server must discriminate between two classes of images,

denoted as class 1 and class 2. For a detection task, these

classes could correspond to normal and diseased conditions,

respectively. Given an image, a linear computerized (model)

observer1 computes a scalar, continuous-valued rating statis-

tic y, as the inner product of a fixed (nonrandom) q� 1 tem-

plate, w, with the image, p, represented as a q� 1 column

vector, i.e., y¼w
T
p. The observer then compares y to a

threshold, c, to classify the image. If y > c, the observer

decides the image is from class 2. Otherwise, the image is

classified as belonging to class 1.

For each threshold, c, the observer’s performance is fully

characterized by two quantities, called the true positive frac-

tion (TPF) and the false positive fraction (FPF).1,3 The TPF

is the probability that the observer correctly classifies a

class-2 image as belonging to class 2, whereas the FPF is the

probability that the observer incorrectly classifies a class-1

image as belonging to class 2. Since each value of c results

in a different TPF and FPF, observer performance over all

thresholds is completely described by the curve of (FPF,

TPF) values parameterized by c. This curve is called the re-

ceiver operating characteristic (ROC) curve.1,3 To denote the

TPF as a function of the FPF, we will write TPF(FPF).

Throughout this paper, we assume that y is normally dis-

tributed with equal variances for each class, i.e,

y � Nðl1; r
2Þ and y � Nðl2; r

2Þ for images from classes 1

and 2, respectively. In this case, the ROC curve takes the

form [Ref. 3 (p. 82), Result 4.7]

TPFðFPFÞ ¼ UðSNRþ U�1ðFPFÞÞ; (3)

where

SNR ¼ l2 � l1

r
(4)

is the observer signal-to-noise ratio. The SNR is sometimes

used as figure of merit, since it may be interpreted as a mea-

sure of the distance between the distributions of classes 1

and 2. It must be remembered, however, that the SNR is use-

ful only when the variance is a good measure of the spread

of the distribution for y (Ref. 1, p. 819); this is the case when

y is normal under each class.

Another useful figure of merit for observer performance

is the area under the ROC curve, denoted as AUC. The AUC

generally falls in the range [0, 1], with larger values signify-

ing greater discrimination ability, and values less than 0.5

indicating that, on average, the observer performs worse

than guessing. The AUC may be interpreted as the average

TPF, averaged over the entire range of FPF values.3 Under

our distributional assumptions, the AUC may be calculated

as1(p. 819),3(p. 84)

AUC ¼ UðSNR=
ffiffiffi
2
p
Þ: (5)

If only a restricted range of FPF values is considered rele-

vant for observer performance, then the partial area under

the ROC curve, defined as

pAUCðFPF0; FPF1Þ ¼
ðFPF1

FPF0

TPFðFPFÞ dðFPFÞ (6)

may be used as a summary measure. Observe that under our

assumptions for y, TPF at fixed FPF, AUC, and pAUC are

strictly increasing functions of SNR only. We use this prop-

erty in the next section to construct our confidence interval

estimators.

It is well-known that the ROC curve is invariant under

any strictly increasing transformation of y [Ref. 3 (p. 69),

Result 4.1]. Therefore, AUC and pAUC are also invariant

under any such transformation. Likewise, if SNR is defined

from AUC via Eq. (5), then it too is invariant under any

strictly increasing transformation of y. However, it is im-

portant to recognize that if SNR is computed using Eq. (4),

then the resulting value is not invariant under any such

transformation, since this relation depends on the first and

second moments of y in each class. The confidence interval

estimators that we propose in the next section each rely on

a point estimate of SNR, motivated by Eq. (4). Therefore,

our interval estimators are not invariant under arbitrary

strictly increasing transformations of y. Nonetheless, they

are invariant under any strictly increasing affine transfor-

mation of y, and we will see that they possess attractive

properties.

The figures of merit discussed above are widely used and

accepted summary measures for observer performance.1,3

For additional examples of summary measures, see (Ref. 3,

Sec. 4.3.3) and (Ref. 16).

III. CONSTRUCTION OF INTERVAL ESTIMATORS

Suppose that an observer rates n1 images from class 1 and

n2 images from class 2. Denote these ratings for classes 1 and

2 as y
ð1Þ
1 ; y

ð1Þ
2 ;…; yð1Þn1

and y
ð2Þ
1 ; y

ð2Þ
2 ;…; yð2Þn2

, respectively. We

wish to estimate confidence intervals for summary measures

of observer performance from this finite sample of rating data.

In this section, we introduce our estimators assuming that

y � Nðl1; r
2Þ and y � Nðl2; r

2Þ for images from classes 1

and 2, respectively, where l1, l2, and r2 are unknown. Each

of our interval estimators is based on a point estimator for
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SNR, which is introduced first. For a clear presentation, all

mathematical proofs are deferred to the appendices.

III.A. Point estimation of SNR

Let the sample mean and the sample variance for class

k be �yk ¼ ð1=nkÞ
Pnk

i¼1 y
ðkÞ
i and s2

k ¼ ½1=ðnk � 1Þ�
Pnk

i¼1

ðyðkÞi � �ykÞ
2
, respectively. Also, define a pooled estimator for

r2 as s2 ¼ ½1=ðn1 þ n2 � 2Þ� ðn1 � 1Þs2
1 þ ðn2 � 1Þs2

2

� �
. With

these definitions in place, we define an estimator of SNR as

dSNR ¼ c ð�y2 � �y1Þ=s; (7)

with

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=ðn1 þ n2 � 2Þ

p
Bððn1 þ n2 � 3Þ=2; 1=2Þ ; (8)

where B(x,y) is the Euler beta function. The multiplicative

factor c is chosen to make the estimator unbiased. We have

the following characterization of dSNR, which is proved in

Appendix A.

Theorem 1. Suppose that y � Nðl1; r
2Þ for images from

class 1 and that y � Nðl2; r
2Þ for images from class 2.

Also, suppose that dSNR is computed from independent

samples of y, denoted as y
ð1Þ
1 ; y

ð1Þ
2 ;…; yð1Þn1

and y
ð2Þ
1 ; y

ð2Þ
2 ;…;

yð2Þn2
, corresponding to classes 1 and 2, respectively. Then

(i) dgSNR� t0vðdÞ with g ¼ 1
c

ffiffiffiffiffiffiffiffiffi
n1n2

n1þn2

q
; v ¼ n1 þ n2 � 2; and

d ¼ SNR
ffiffiffiffiffiffiffiffiffi
n1n2

n1þn2

q
(ii) dSNR is the unique uniformly minimum variance

unbiased (UMVU) estimator of SNR.

III.B. Confidence interval estimation

Given a random variable, X, with a distribution depending

on a parameter h, one may define a random interval estimate

½hLðXÞ; hUðXÞ� for h. This interval is said to be a 1� a confi-

dence interval for h if Pðh 2 ½hLðXÞ; hUðXÞ�Þ ¼ 1� a for

any value of h.17

Our knowledge of the sampling distribution for dSNR

implies the next theorem, which is proved in Appendix B. It

allows us to compute confidence intervals for SNR with

exact coverage probabilities.

Theorem 2. Suppose that the hypotheses of Theorem 1 are

satisfied. Let a1; a2 2 ð0; 1Þ be such that a1 þ a2 ¼ a for

some a 2 ð0; 1Þ, and let T ¼ gdSNR with g ¼ 1
c

ffiffiffiffiffiffiffiffiffi
n1n2

n1þn2

q
. Then

(i) For each observation t of T, there exist unique

values dLðtÞ and dUðtÞ in ð�1;1Þ satisfying

FTðt ; �; dLðtÞÞ ¼ 1� a1 and FTðt ; �; dUðtÞÞ ¼ a2, where

FTðt ; �; dÞ is the cdf of the noncentral t distribution with

� ¼ n1 þ n2 � 2.

(i) The random interval ½dLðTÞ=ðcgÞ; dUðTÞ=ðcgÞ � is an

exact 1� a confidence interval for SNR.

Hence, we can calculate a 1� a confidence interval for

SNR from a realization of dSNR by numerically solving the

relations in Theorem 2(i) for dL and dU and then substituting

these values into the expression of Theorem 2(ii). Above, if

a1 ¼ 0, then dLðtÞ ¼ �1 and if a2 ¼ 0, then dUðtÞ ¼ 1. In

either of these cases, the confidence interval is said to be one-

sided. Otherwise, the interval is said to be two-sided.17

The following corollary shows that we can also calculate

exact confidence intervals for TPF(FPF), AUC, and pAUC

(FPF0, FPF1). It follows from Theorem 2 and the strictly

increasing transformation property of confidence intervals,

which is stated and proved in Appendix B as Lemma 3.

Corollary 1. Suppose that the hypotheses of Theorem 2

are satisfied. Let SNRLðTÞ¼dLðTÞ=ðcgÞ and SNRUðTÞ¼
dUðTÞ=ðcgÞ. Then the random intervals

½TPFðFPF ; SNRLðTÞÞ; TPFðFPF ; SNRUðTÞÞ�;

½AUCðSNRLðTÞÞ; AUCðSNRUðTÞÞ�;
and

½pAUCðFPF0; FPF1 ; SNRLðTÞÞ; pAUCðFPF0; FPF1 ;

SNRUðTÞÞ�;

defined by substituting SNRL(T) and SNRU(T) for SNR in

Eqs. (3), (5), and (6) are exact 1� a confidence intervals for

TPF(FPF), AUC, and pAUC(FPF0, FPF1), respectively.

A MATLAB
VR

routine that calculates the confidence intervals

for SNR, TPF, AUC, and pAUC is provided in along with the

article on the Medical Physics Website. Note that becausedSNR is invariant under strictly increasing affine transforma-

tions of y, it follows that our confidence intervals also share

this invariance.

A confidence band for the entire ROC curve may be

found from a confidence interval for SNR in the sense of the

next theorem, which is proved in Appendix C. We denote

the collection of points on the ROC curve as XROC

¼ fðFPF;TPFÞ : FPF 2 ½0; 1�g.
Theorem 3. Suppose that y � Nðl1; r

2Þ for images from

class 1 and y � Nðl2; r
2Þ for images from class 2. Let

[SNRL, SNRU] be a 1� a confidence interval for SNR, and

define the setbXROC ¼ fðFPF;TÞ : FPF 2 ½0; 1� and T 2 Ig;
where

I ¼ ½TPFðFPF ; SNRLÞ; TPFðFPF ; SNRUÞ�:
Then bXROC is a 1� a confidence band for the ROC curve in

the sense that, for any value of SNR, XROC is contained inbXROC with probability 1� a, i.e., PðXROC � bXROCÞ ¼ 1� a.

Observe that the 1� a confidence band defined in the

above theorem is equivalent to the union over all FPF values

of 1� a confidence intervals for TPF. This construction of a

simultaneous 1� a confidence band for the ROC curve is pos-

sible because our assumptions imply that the ROC curve is

parameterized by only SNR. More generally, when the ROC

curve is parameterized by more than one parameter (as in the

binormal model3), the confidence band formed from the union

of 1� a TPF intervals will have a coverage probability

smaller than 1� a for the whole ROC curve simultaneously.10

S60 A. Wunderlich and F. Noo: Confidence intervals for performance assessment of linear observers S60

Medical Physics, Vol. 38, No. 7, July 2011



IV. PROPERTIES OF THE AUC CONFIDENCE
INTERVALS

In this section, we examine two aspects of the previously

introduced AUC confidence intervals. First, we explore the

potential advantage offered by using additional images from

class 1 if such images are readily available. Second, for sit-

uations relevant to CT image quality assessment, we evalu-

ate the robustness of the proposed intervals to violation of

the equal-variance assumption on the rating data.

IV.A. Advantage gained by using additional images
from one class

In some circumstances, it may be possible to obtain addi-

tional images from one class of images at low cost; see, e.g.,

Ref. 14. Therefore, it is desirable to examine the potential

decrease in statistical variability that may be gained by using

such extra images. Below, we consider the case when more

images are available for class 1. However, due to the symmetric

role of n1 and n2 in our confidence interval estimators, the same

conclusions also hold when there are more images for class 2.

For our evaluations, we assessed the mean 95% AUC confi-

dence interval length, defined as MCIL.95¼E[AUCU�AUCL]

for fixed values of n1, n2, and AUC, where AUCU and AUCL

are the upper and lower endpoints, respectively, of the 95%

(a1 ¼ a2 ¼ 0:025) confidence interval estimator for AUC. To

compute this expected value, we numerically evaluated the

integral

MCIL:95ðn1; n2;AUCÞ

¼
ð1
�1
½AUCUðxÞ � AUCLðxÞ�fcSNR

ðx ; n1; n2;AUCÞ dx

(9)

¼
ð1
�1
½AUCUðxÞ � AUCLðxÞ�gfTðgx ; �; dÞ dx; (10)

where g, �, and d are as given in Theorem 1(i). In Eq. (10),

the pdf of dSNR, fcSNR
, was rewritten in terms of the noncen-

tral t pdf, fT, using Theorem 1(i) and a standard result for the

pdf of a monotonic transformation of a random variable

[Ref. 4 (p. 51), Theorem 2.1.5].

Figure 1 contains plots of the relative decrease in mean

95% AUC confidence interval length that is obtained by

increasing n1 relative to n2. In these plots, the relative per-

centage decrease (RPD) in MCIL.95, relative to the n1¼ n2

case, was calculated as

RPDðn1; n2;AUCÞ ¼ MCIL:95ðn2; n2;AUCÞ �MCIL:95ðn1; n2;AUCÞ
MCIL:95ðn2; n2;AUCÞ � 100: (11)

The plots in Fig. 1 indicate that the mean AUC confidence

interval length can shrink by as much as 35% when n1 is

increased relative to n2. In particular, the relative decrease is

greatest for small values of n2 and for large values of AUC.

Moreover, the plots illustrate that the advantage gained by

increasing n1 relative to n2 flattens out for large values of n1.

IV.B. Applicability for CT image quality evaluation:
Robustness to violation of the equal-variance
assumption

The ROC confidence intervals introduced in Sec. III

assume that the variance of the ratings is the same for each

class of images, i.e., r2
1 ¼ r2

2, where r2
1 and r2

2 are the rating

variances for classes 1 and 2, respectively. As discussed in

the introduction, this assumption should be a good approxi-

mation for linear computerized observers applied to tasks

involving the detection of small, low-contrast lesions in CT

images. We now take a closer look at the quality of the

r2
1 ¼ r2

2 approximation in the context of CT image quality

evaluation, and then we examine the coverage probability of

the AUC interval estimator in extreme cases.

Consider a uniform circular cylinder B of diameter D,

which may, or may not, contain a small spherical lesion L of

diameter d at its center; see Fig. 2. Denote the linear x-ray

FIG. 1. Percentage decrease of mean (95%) AUC confidence interval length, relative to the n1¼ n2 case, plotted as a function of n1, with n2 and AUC held

fixed. From top to bottom, the curves correspond to n2 values of 25, 50, 75, 100, 125, 150, 175, and 200, respectively. The plots are for AUC values of 0.6

(left), 0.75 (center), and 0.9 (right).
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attenuation coefficients for the cylinder and for the lesion as

lB and lL, respectively. Assuming a conventional Poisson

noise model and a monochromatic beam,18,19 the variance of

the measured CT data for a ray passing through the center of

B when the lesion is not present is

g2
1 ¼ 1=½Ni expð�DlBÞ�; (12)

where Ni is the number of photons entering the cylinder.

When the lesion L is present, the variance of the measured

CT data for a ray passing through the center of B becomes

g2
2 ¼ 1=½Ni expð�DlBÞ expð�dClW=1000Þ�; (13)

where lW is the linear x-ray attenuation coefficient for water,

and the lesion contrast C is defined in Hounsfield units as

C ¼ ðlL � lBÞ1000=lW . Forming the ratio of the above var-

iances, we have

g2
1=g

2
2 ¼ expð�dClW=1000Þ (14)

Hence, the ratio of the variances for rays passing through the

lesion always falls between expð�dClW=1000Þ and one. It

is straightforward to see that this result is very general and

is, for example, applicable to noncircularly symmetric back-

ground objects and arbitrarily located lesions. Now, suppose

that image reconstruction is performed using the classical 2-

D filtered backprojection (FBP) algorithm. Then, expres-

sions given for the image variance and covariance in18,19

show that the entry-wise ratio of the image covariance matri-

ces for each class is, to a good approximation, bounded

between expð�dClW=1000Þ and one. Consequently, it fol-

lows that for linear computerized observers, the ratio of the

rating variances, r2
1=r

2
2, is approximately bounded between

expð�dClW=1000Þ and one. The bound expð�dClW=1000Þ
is tabulated in Table I for various lesion diameters, d, and

contrasts, C, assuming a linear x-ray attenuation coefficient

of lW ¼ 0:183 cm�1 for water.

Examining Table I, we see that for a large variety

of lesion detection tasks, it is safe to assume that

0:95 � r2
1=r

2
2 � 1:05. Moreover, the values r2

1=r
2
2 ¼ 0:95

and r2
1=r

2
2 ¼ 1:05 correspond to extreme cases in which the

lesion must either be very large or have a high contrast. In

light of these results, we next examine the coverage proba-

bility of the AUC interval estimator when the equal-variance

assumption is violated with either r2
1=r

2
2 ¼ 0:95 or

r2
1=r

2
2 ¼ 1:05. We consider two scenarios: (i) n1¼ n2 and

(ii) n1¼ 2 n2.

For each choice of the parameters n1, n2, AUC, and

j ¼ r2
1=r

2
2, we performed 107 Monte Carlo trials to estimate

the coverage probability of the 95% (a1 ¼ a2 ¼ :025) AUC

confidence intervals. Without loss of generality, we assumed

that the ratings for class 1 came from a standard normal dis-

tribution since our confidence interval estimators are invari-

ant under strictly increasing affine transformations of the

ratings. An individual trial was carried out by first randomly

generating n1 values of y � Nð0; 1Þ and n2 values of

y � Nðl; r2Þ, with l ¼ U�1 ðAUCÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1Þ=j

p
and

r2 ¼ 1=j. [The formula for l was found using the AUC

expression given in Ref. 1 (p. 819) for the general case when

r2
1 may not equal r2

2.] Then, a single interval estimate for

AUC was calculated from the ratings using the steps

described in Sec. III. After running the trials, the coverage

probability was estimated as the proportion of the 107 trials

for which the estimated interval covered the true AUC value.

In addition, 95% confidence intervals for the coverage prob-

ability were estimated using the Wilson score method advo-

cated in (Ref. 20) for binomial proportions. In all cases, the

Wilson score intervals indicated that the upper (respectively

lower) bound of a conservative 95% confidence interval for

the coverage probability may be obtained by adding 0.014%

to (respectively subtracting 0.014% from) each point esti-

mate expressed in percent.

Table II contains the estimated coverage probabilities for

the r2
1=r

2
2 ¼ 0:95 and r2

1=r
2
2 ¼ 1:05 cases in the n1¼ n2 sce-

nario. From this table, we see that for all AUC values and

choices of n1¼ n2, the coverage probabilities are very close

to 95%. The estimated coverage probabilities in the unbal-

anced n1¼ 2n2 scenario are shown in Table III for the

r2
1=r

2
2 ¼ 0:95 and r2

1=r
2
2 ¼ 1:05 cases. For all of the tested

AUC values and choices of n1¼ 2n2, the coverage probabil-

ities for the r2
1=r

2
2 ¼ 1:05 case are conservative. On the other

hand, the coverage probabilities for the r2
1=r

2
2 ¼ 0:95 case

are all slightly less than 95% in the n1¼ 2n2 scenario.

FIG. 2. Depiction of a small lesion embedded in a larger, uniform cylinder.

TABLE I. Bounds on the variance ratio of the rating data, r2
1=r

2
2, for a lesion

of diameter d mm with contrast C HU. (The other bound on r2
1=r

2
2 is

always 1).

d(mm) C(HU) expð�dClW=1000Þ

1 100 0.9982

1 –100 1.0018

5 500 0.9553

5 10 0.9991

5 –10 1.0009

5 –500 1.0468

10 50 0.9909

10 –50 1.0092

15 50 0.9864

15 –50 1.0138

20 100 0.9641

20 75 0.9729

20 –75 1.0278

20 –100 1.0373
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Overall, these results indicate that our AUC interval esti-

mators maintain accurate coverage probabilities even in the

extreme cases r2
1=r

2
2 ¼ 0:95 and r2

1=r
2
2 ¼ 1:05. They also

exhibit a difference in behavior between having n1¼ n2 or

not—the error in coverage probability is smaller when

n1¼ n2. Also, when n1 is different from n2, the coverage

probability may be conservative or not depending on the

value of the variance ratio.

Last, note that although the evaluations in this section

were performed only for AUC confidence intervals, the same

conclusions hold for the SNR interval estimator discussed in

(Sec. III B), since SNR and AUC are related through a con-

tinuous, strictly increasing transformation that does not

depend on r2
1=r

2
2.

V. APPLICATION TO TASK-BASED IMAGE QUALITY
EVALUATION

We present here an example of how our estimators can be

used in the context of task-based image quality evaluation.

This example involves real x-ray computed tomography

(CT) images but is not meant to recommend a specific meth-

odology for assessment of image quality in CT. Specifically,

our choices for the task and for the observer are not optimal

for CT images. Furthermore, the example should not be

taken as evidence in favor of one reconstruction strategy

over another. Our purpose is simply to demonstrate the use-

fulness of the tools that we have developed in this paper for

interval estimation of ROC summary measures and of ROC

curves.

A Siemens SOMATOM
VR

SensationTM 64 CT scanner

was employed to repeatedly scan a thorax phantom 186

times over a circular source trajectory. The phantom con-

sisted of a torso constructed by QRM (Möhrendorf, Ger-

many)21 together with two different water bottles attached to

the sides to simulate arms. A mean image of the whole phan-

tom estimated from 186 reconstructions is shown in Fig.

3(left). The scans were executed in a thorax scan mode using

a two-slice acquisition with a slice thickness of 1 mm and a

rotation speed of 3 revolutions per second. The x-ray tube

settings were 25 mAs and 120 kVp, and the data acquisition

was performed with no tube current modulation to accentu-

ate noise correlation in the image. The measurements for the

first of the two slices over the 186 repeated scans constituted

186 fan-beam data sets that were used for the image quality

evaluation.

The CT data was read using software supplied by Sie-

mens and fed directly into our implementation of the

TABLE III. Estimated coverage probabilities (in percent) for two-sided 95%

AUC confidence intervals generated from normally distributed rating data

with n1¼ 2n and n2¼ n. The tables correspond to variance ratios of

r2
1=r

2
2 ¼ 0:95 and r2

1=r
2
2 ¼ 1:05). In all cases, the upper and lower bounds

of a conservative 95% confidence interval for the coverage probability may

be obtained by adding and subtracting 0.014% to=from each point estimate,

respectively.

AUC \ n 25 50 75 100

r2
1=r

2
2 ¼ 0:95

0.52 94.81 94.80 94.81 94.81

0.55 94.80 94.80 94.80 94.81

0.60 94.81 94.81 94.81 94.81

0.70 94.81 94.81 94.82 94.80

0.80 94.83 94.84 94.83 94.82

0.90 94.87 94.85 94.86 94.85

0.95 94.90 94.88 94.86 94.86

0.98 94.90 94.92 94.90 94.88

r2
1=r

2
2 ¼ 1:05

0.52 95.19 95.18 95.19 95.19

0.55 95.18 95.18 95.18 95.19

0.60 95.18 95.18 95.18 95.19

0.70 95.17 95.16 95.17 95.15

0.80 95.14 95.14 95.14 95.12

0.90 95.10 95.09 95.10 95.08

0.95 95.08 95.05 95.04 95.04

0.98 95.02 95.04 95.02 95.01

TABLE II. Estimated coverage probabilities (in percent) for two-sided 95%

AUC confidence intervals generated from normally distributed rating data

with n1¼ n2¼ n. The tables correspond to variance ratios of r2
1=r

2
2 ¼ 0:95

and r2
1=r

2
2 ¼ 1:05. In all cases, the upper and lower bounds of a conserva-

tive 95% confidence interval for the coverage probability may be obtained

by adding and subtracting 0.014% to=from each point estimate,

respectively.

AUC \ n 25 50 75 100

r2
1=r

2
2 ¼ 0:95

0.52 95.00 95.00 95.00 94.99

0.55 95.00 95.01 95.00 94.99

0.60 94.99 95.00 94.99 95.00

0.70 94.99 95.00 95.00 95.01

0.80 95.00 95.00 95.00 95.01

0.90 94.99 94.99 95.00 95.01

0.95 94.99 94.99 94.99 94.99

0.98 95.00 95.00 95.01 95.00

r2
1=r

2
2 ¼ 1:05

0.52 95.01 95.00 95.00 95.01

0.55 95.00 95.01 95.00 95.00

0.60 94.99 95.01 94.99 95.00

0.70 94.99 95.00 95.01 95.00

0.80 95.00 95.00 95.00 95.00

0.90 94.99 95.01 95.00 95.00

0.95 94.99 95.00 94.99 95.00

0.98 95.00 95.01 95.01 94.99

FIG. 3. Mean images of the QRM phantom displayed with a grayscale win-

dow of [–200, 600] HU. Whole phantom (left) and reconstruction focused

on the heart insert (right) with regions of interest marked with white boxes.

ROI-1a, ROI-1b, and ROI-1c contain no lesion. ROI-2a, ROI-2b, and ROI-

2c contain a low-contrast, and a medium-contrast, and high-contrast lesion,

respectively.
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classical filtered backprojection (FBP) algorithm for direct

reconstruction from either short-scan or full-scan fan-beam

data; see Ref. 19 for a description of the algorithm as we

used it. The short-scan reconstructions were performed using

only 230� of the source trajectory. The reconstructions were

consistently performed on a grid of 550� 550 square pixels,

each of size 0:02 � 0:02 cm, that was centered on the heart

insert, as shown in Fig. 3 (right).

For both short-scan and full-scan reconstructions, we con-

sidered a lesion detection task that amounts to determining

whether or not a lesion is present at the center of a region-of-

interest (ROI). To train and test an observer for this task, we

identified six regions of interest (ROI) in the heart insert:

three regions without lesions, labeled as ROI-1a, ROI-1b,

and ROI-1c, and three regions with a lesion at their center,

labeled as ROI-2a, ROI-2b, and ROI-2c; see Fig. 3(right).

Each ROI when viewed as an image consists of 50� 50 pix-

els. The lesion diameter in each of the lesion-present images

is 1 mm, but the contrast varies. Specifically, the lesion con-

trast is 210 HU for ROI-2a, 452 HU for ROI-2b, and 997

HU for ROI-2c. In each case, the background value is 40

HU. We assumed that the images of the six ROIs obtained

from one given CT data set are independent. This is justified

by a previous study of direct fan-beam FBP reconstruction

from simulated CT data, which indicated that correlations

between image pixels are negligible over the distance (1–2

cm) that separates the ROIs.19 For examples of practical

image quality studies that employ multiple ROIs in a similar

fashion, see Refs. 2 and 14.

For our observer, we used a trained channelized Hotelling

observer (CHO), which is a popular type of linear computer-

ized observer; for details, see Ref. 1. The CHO was imple-

mented with 40 Gabor channels using the parameters given

in Ref. 19. A specific template was built for each type of

reconstruction (full-scan and short-scan). These two tem-

plates were each estimated (trained) using the first 50 CT

data sets. The class-1 images used for the training were the

images defined by ROI-1a, ROI-1b, and ROI-1c, pooled to-

gether, and the class-2 images used for the training were the

images for ROI-2a, ROI-2b, and ROI-2c, pooled together. In

total, 150 class-1 and 150 class-2 images were thus used to

train the observer for each reconstruction type.

Once the observer was trained, we tested its performance

on a lesion detection task. The class-1 images for this task

were defined using only ROI-1a, and the class-2 images

were defined using only ROI-2a. The observer performance

for the detection task was estimated (tested) using the

remaining 136 CT data sets in a fully paired design, i.e., the

same CT data sets were used for the short-scan and full-scan

testing. Hence, for each type of scan, n1¼ 136 class-1

images and n2¼ 136 class-2 images were used for testing the

observer.

For both the short-scan and full-scan reconstructions, our

two assumptions that (i) the observer ratings are normally

distributed for each class of images, and (ii) the variance of

the observer ratings is the same for each class of images,

were further verified with hypothesis tests. The first assump-

tion was checked by performing the Lilliefors normality

test22 at the a ¼ 0:10 significance level, using the built-in

MATLAB
VR

function lillietest. In all cases, there was not enough

evidence at the 0.10 significance level to reject the null hy-

pothesis that the ratings for each class came from a normal

distribution. The second assumption was checked by per-

forming the two-sample F-test for equal variances at the

a ¼ 0:10 significance level using the built-in MATLAB
VR

func-

tion vartest2. For both types of reconstruction, there was not

enough evidence at the 0.10 significance level to reject the

null hypothesis that the ratings were normally distributed in

each class with equal variances. The p-values for these tests

are reported in Table IV. Note that because all of the p-val-

ues are very large, they cast little doubt on the validity of the

null hypothesis for each test.

We estimated the observer performance by first applying

Eq. (7) with n1¼ 136 and n2¼ 136 to obtain the value ofdSNR. Then, we applied the MATLAB
VR

routine supplied along

with the article on the Medical Physics Website with the fol-

lowing parameters: a1 ¼ a2 ¼ 0:025, FPF0¼ 0, FPF1¼ 0.2

and a fine sampling of FPF values over the range [0,1].

Table V gives the estimated 95% confidence intervals for

SNR, AUC, and pAUC corresponding to the short-scan and

full-scan reconstructions, respectively. In addition, the esti-

mated 95% confidence bands for the entire ROC curve are

displayed in Fig. 4.

Table V indicates that the 95% confidence intervals for

observer performance overlap for the short-scan and full-scan

reconstructions, with the lower (respectively upper) interval

bound for full-scan reconstruction being above that for short-

scan reconstruction. Care has to be taken with the statistical

interpretation of the results. To compare the results for the

two reconstruction strategies against each other, recall that

the testing used a fully paired design so that the 95% confi-

dence interval (band) estimates obtained for each task are de-

pendent. In this case, we can use the Bonferroni inequality to

determine a lower bound on the joint coverage probability of

the intervals for observer performance.23(p. 232) For arbitrary

TABLE IV. Estimated p-values for the example. The p-values for the Lillie-

fors normality test and for the two-sample F-test of equal variances.

Short-scan Full-scan

The p-values for the

Lilliefors normality test

class 1 0.744 0.370

class 2 0.905 0.544

The p-values for the two-sample

F-test of equal variances

0.279 0.710

TABLE V. Comparison of 95% confidence intervals estimated for observer

performance on short-scan and full-scan reconstructions. The intervals were

estimated from n1¼ 136 class-1 ratings and n2¼ 136 class-2 ratings.

Short-scan Full-scan

SNR [1.2939 1.8377] [1.7982 2.3905]

AUC [0.8199 0.9031] [0.8982 0.9545]

pAUC(0, 0.2) [0.0935 0.1320] [0.1294 0.1634]
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events A1, A2, …, An, the Bonferroni inequality takes the

form [Ref. 4 (p. 13) Eq. (1.2.10), and Ref. 23]

P
\n
i¼1

Ai

 !
	
Xn

i¼1

PðAiÞ � ðn� 1Þ: (15)

Suppose, for example, that we wish to compare the SNR val-

ues obtained for the short-scan and full-scan reconstruction

strategies. Let SNRss and SNRfs be these two values, and let

[Lss,Uss] and [Lfs,Ufs] be their 95% confidence intervals,

respectively. Then by the Bonferroni inequality, the region

½Lss;Uss� � ½Lfs;Ufs� covers the pair (SNRss, SNRfs) with a

probability of at least 0.95þ 0.95 – 1¼ 0.90, i.e., with 90%

confidence; see Fig. 6. Both the size and the position of the

confidence region determine how the results should be inter-

preted. First, a smaller region covering a given pair of SNR

values indicates a higher statistical precision. Second, if the

confidence region does not intersect the line at 45� in the

plane of possible values for (SNRss, SNRfs), then there is evi-

dence that the two tasks correspond to dissimilar detection

performance. Going back to the example, because the SNR

confidence intervals overlap, the SNR confidence region

intersects the 45� line, as shown in Fig. 5, and there is not

enough evidence at the 90% confidence level to reject the

hypothesis that SNRss¼ SNRfs. Likewise, the same conclu-

sion can be made for the other figures of merit. Conversely,

if the confidence region had instead not intersected the 45�

line, there would have been evidence at the 90% confidence

level to reject the hypothesis that SNRss¼SNRfs. Moreover,

note, from the large size of the confidence region, that our

conclusion is drawn with a fairly poor statistical precision.

VI. DISCUSSION AND CONCLUSIONS

In this work, we proposed confidence interval estimators

that may be used in ROC evaluations of task-based image

quality studies employ in linear computerized observers

defined with a fixed (nonrandom) template. All ratings pro-

vided by such an observer are linear combinations of image

pixel values. A strength of the new interval estimators is that

they have exactly known coverage probabilities. This prop-

erty is particularly relevant for small sample sizes, since ap-

proximate confidence intervals have been found to be

problematic in this case.8 The price of our approach is a reli-

ance on two assumptions, which are usually satisfied by rat-

ings produced by linear computerized observers performing

lesion detection tasks involving small, low-contrast lesions

at a known location: (i) the observer ratings are normally dis-

tributed for each class of images, and (ii) the variance of the

observer ratings is the same for each class of images. For

x-ray CT, the normality assumption on the ratings is com-

monly accepted, and we used Monte Carlo simulations to

investigate the reliability of the proposed AUC confidence

intervals when the equal-variance assumption is violated for

the rating data. In cases that are extreme for CT, we

observed that the AUC interval estimators maintain highly

accurate coverage probabilities. In addition, we discovered

that the error in coverage probability was very small

(� 0:01%) when n1¼ n2. When n1 6¼ n2, we found that the

error in coverage probability was about 0.2% in extreme

cases, and that the confidence intervals may or may not be

conservative, depending on the variance ratio of the ratings.

These results demonstrate the practicality of our ROC confi-

dence intervals for CT image quality evaluation.

When our assumptions for the observer ratings are

strongly violated (which would be the case for human ob-

server studies), the interval estimators introduced here are no

longer appropriate. In this situation, it is preferable to use

confidence intervals based on either nonparametric or semi-

parametric estimators, Ref. 3 (Chap. 5) which often rely on

resampling techniques. Such approaches have the advantage

that they do not require distributional assumptions on the ob-

server ratings. However, construction of confidence intervals

based on these estimators requires asymptotic assumptions

that are violated for small samples.8

Note that our approach is equivalent to explicit utilization

of a binormal model with a priori knowledge that the second

binormal parameter (usually denoted as b) is equal to one.

This knowledge was a critical component in our construction

of confidence bands for the ROC curve with exactly known

coverage probabilities. The ability to build such confidence

bands is an attractive feature of our parametric approach.

Another attractive feature is the ability to evaluate sample

size effects without expensive Monte Carlo trials. As an

example, we explored the potential decrease in statistical

variability that can be gained by increasing the number ofFIG. 5. Ninety percent confidence region for (SNRss, SNRfs).

FIG. 4. Ninety-five percent confidence bands for the ROC curves corre-

sponding to observer performance on short-scan and full-scan reconstruc-

tions. The band for short-scan reconstruction is shown in dark gray,

delimited by dashed lines and the band for full-scan reconstruction is shown

in light gray, delimited by solid lines. Note that the bands slightly overlap.
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images from one class, which is an important issue, since it

is often possible to get many additional class-1 images at

low cost, as previously discussed in Ref. 14. Our results indi-

cated that the mean AUC confidence interval length can

shrink by as much as 35% when using this strategy.

Last, we illustrated the use of the new confidence interval

estimators with an example involving a trained CHO applied

to a lesion detection task with real x-ray CT images. This

example demonstrated how different reconstruction methods

can be compared with two-sided confidence intervals.

Although it was not discussed in the example, our interval

estimators can also be used to calculate one-sided confidence

intervals, which occur when either a1 or a2 is zero.17 One-

sided intervals are useful for inferences involving statements

such as “The AUC for method 1 is higher than the AUC for

method 2.” The MATLAB
VR

routine supplied along with this ar-

ticle on the Medical Physics Website works for both two-

sided and one-sided confidence intervals.

When designing an image evaluation study, it is some-

times possible to use the same data set for each scenario of

interest. The design of the study is then called paired (as

opposed to unpaired). The example we considered is com-

patible with pairing, and so we used a fully paired study

design. Other comparisons, such as a study of the effect of

different bowtie filters or dose-modulation strategies, would

not allow pairing. In a paired situation, it is important to real-

ize that the SNR estimates obtained for each reconstruction

scenario are correlated and this must be taken into account

when generating a joint confidence region for these esti-

mates. We used the Bonferroni inequality to obtain a con-

servative rectangular confidence region. Another approach

would have been to look for a nonrectangular confidence

region. It is not clear that such a region can be found without

assuming that the SNR estimates follow a joint multivariate

normal distribution, which is only true for large sample

sizes. In any case, such nonrectangular regions are difficult

to visualize when more than two reconstruction scenarios

have to be compared, unlike the rectangular Bonferroni-

based regions. The interested reader will find a discussion on

Bonferroni-based joint confidence regions and their attrac-

tive properties in Johnson and Wichern (Ref. 23, Sec. 5.4).

Because paired studies offer higher statistical power than

unpaired studies, they should be considered whenever possi-

ble. The gain in statistical power results from two effects due

to the pairing. First, more images are available to assess each

scenario. Second, the pairing is likely to induce a positive cor-

relation between the ratings associated to the scenarios under

comparison. The Bonferroni-based confidence region

approach makes full use of the first effect, but does not take

advantage of large positive correlations in the ratings. One

way to take advantage of large positive correlations between

scenarios is to construct a nonrectangular confidence region,

with the associated drawbacks discussed in the last paragraph.

Another approach is to instead form a confidence interval for

the difference of summary measures; see, e.g., Ref. 3 (Chap.

5). However, this approach typically requires an asymptotic

normality assumption (which is not satisfied for small sam-

ples) to construct the confidence interval. In addition, the rela-

tive importance of an observed difference can be meaningfully

interpreted only if the baseline is known, i.e, if the nominal

value of one of the summary measures is known. As a con-

crete example, an observed gain in AUC value of 0.05 carries

different meanings when the AUC value of the reference

approach is 0.55 as opposed to 0.95; in the first case, the gain

may seem marginal, whereas in the second case, it is as large

as it could possibly be. For the example we used, the correla-

tions between ratings can be shown to offer little benefit.

Finally, it should be emphasized that our choices for the

task and for the observer in our image quality evaluation

example were not optimal for image quality assessment in

CT. There is large flexibility in the way that the task and the

observer template may be defined. Investigation of more so-

phisticated tasks and observers suitable for CT images is an

important topic for future research.
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APPENDIX A: PROOF OF THEOREM 1

Here, we prove Theorem 1, which characterizes dSNR

when the rating data are normally distributed with equal

variances for each class, i.e., y
ð1Þ
i � Nðl1; r

2Þ and

y
ð2Þ
j � Nðl2; r

2Þ, for i¼ 1, 2,..., n1 and j¼ 1, 2,..., n2.

Part 1. Since �y1 � Nðl1; r
2=n1Þ and �y2 � Nðl2; r

2=n2Þ
are independent, it follows thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2

n1 þ n2

r ð�y2 � �y1Þ
r

� N SNR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

r
; 1

� �
: (A1)

Also, since

ðn1 � 1Þ
r2

s2
1 � v2

n1�1 and
ðn2 � 1Þ

r2
s2

2 � v2
n2�1 (A2)

are independent, we have

ðn1 þ n2 � 2Þ
r2

s2 � v2
n1þn2�2: (A3)

Thus, Eqs. (A1) and (A3) imply thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

r ð�y2 � �y1Þ
s

� t0�ðdÞ; (A4)

where � ¼ n1 þ n2 � 2 and d ¼ SNR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2=ðn1 þ n2Þ

p
. The

desired relation then follows from the definitions of g anddSNR.

Part 2. From Part 1 and the expression for the mean of a

noncentral t random variable given in Eq. (2), it is easy to

see that dSNR is an unbiased estimator of SNR. The joint pdf

of the rating data is

f ðyð1Þ1 ;y
ð1Þ
2 ;…;yð1Þn1

;y
ð2Þ
1 ;y

ð2Þ
2 ;…;yð2Þn2

Þ ¼ ð2pÞ�ðn1þn2Þ=2r�ðn1þn2Þ

� exp½�1=ð2r2Þð
Xn1

i¼1

ðyð1Þi �l1Þ
2
þ
Xn2

j¼1

ðyð2Þj �l2Þ
2
Þ�: (A5)
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After some algebra, one may show thatXnr

i¼1

ðyðrÞi �lrÞ
2
¼ðnr�1Þs2

r þnr�y
2
r �2nr�yrlrþnrl

2
r ; (A6)

for r¼ 1, 2. Using Eq. (A6) and the definition of s2, we may

rewrite Eq. (A5) in the form

f ðyð1Þ1 ;y
ð1Þ
2 ;…;yð1Þn1

;y
ð2Þ
1 ;y

ð2Þ
2 ;…;yð2Þn2

Þ
¼ ð2pÞ�ðn1þn2Þ=2r�ðn1þn2Þ

� expf�1=ð2r2Þ½n1l
2
1þn2l

2
2�g

� expf�1=ð2r2Þ½ðn1þn2�2Þs2þn1�y2
1þn2�y2

2�g
� expfð1=r2Þ½n1l1�y1þn2l2�y2�g: (A7)

By the Fisher–Neyman factorization theorem [Ref. 24, Theo-

rem 6.5 (p. 35)] the statistic

W ¼ ½ðn1 þ n2 � 2Þs2 þ n1�y2
1 þ n2�y2

2; �y1; �y2� (A8)

is sufficient. Moreover, because the expression in Eq. (A7)

has the form of a full rank exponential family,24(p. 23,24) W is

a complete statistic [Ref. 24, Theorem 6.22 (p. 42)]. Since

(i) W is a complete sufficient statistic, (ii) dSNR is an

unbiased estimator of SNR, and (iii) dSNR ¼ E½dSNRjW�, i.e.,dSNR is a function of W only, the Lehmann–Scheffé theorem

[Ref. 24, Theorem 1.11 (p. 88) and Ref. 25 (p. 164)] implies

that dSNR is the unique UMVU estimator of SNR.

APPENDIX B: PROOF OF THEOREM 2

Next, we prove Theorem 2 and Corollary 1, which enable

us to calculate our ROC confidence intervals. For this task,

we need the following lemmas.

Lemma 1. Suppose that T � t0�ðdÞ. Then at arbitrary fixed

values of t and �, the cdf of T, FTðt ; �; dÞ, is a continuous,

strictly decreasing function of d.

Proof. Although this lemma seems like a property that

should be well-known, we could not find any proof of it in

the literature. One way to prove it is as follows.

From Ref. 15 (p. 514), the cdf for the noncentral t distri-

bution may be written in the form

FTðt ; �; dÞ ¼ 1

2ð�=2Þ�1Cð�=2Þ

�
ð1

0

x��1e�x2=2 1ffiffiffiffiffiffi
2p
p

ððtx= ffiffi�p Þ�d

�1
e�u2=2du dx:

(B1)

Suppose that t and � are fixed quantities and define

hðdÞ ¼ FTðt ; �; dÞ. Making the change of variables

y ¼ u� tx=
ffiffiffi
�
p

in the inner integral of Eq. (B1) yields

hðdÞ ¼ 1ffiffiffi
p
p

2ð��1Þ=2Cð�=2Þ

�
ð1

0

ð�d

�1
x��1e�x2=2e�

1
2
ðyþtx=

ffiffi
�
p
Þ2 dy dx: (B2)

By the combination of Tonelli’s theorem and Fubini’s theo-

rem,26(Chap. 8) an interchange in the order of integration is

justified, and the previous equation may be rewritten as

hðdÞ ¼ 1ffiffiffi
p
p

2ð��1Þ=2Cð�=2Þ

ð�d

�1
gðyÞ dy; (B3)

where

gðyÞ ¼
ð1

0

x��1e�x2=2e�
1
2
ðyþtx=

ffiffi
�
p
Þ2 dx (B4)

is an integrable function of y. The theorem on absolute conti-

nuity for the Lebesgue integral26(p. 141) applied to Eq. (B3)

implies that hðdÞ is continuous. In addition, since g(y) is

strictly positive, Eq. (B3) indicates that hðdÞ is a strictly

decreasing function of d.

Lemma 2. Let X be a continuous random variable with

cdf, FXðx ; hÞ, that is a strictly decreasing function of the pa-

rameter h for each x. Also, let a1; a2 2 ð0; 1Þ be such that

a1 þ a2 ¼ a for some a 2 ð0; 1Þ. Suppose that, for each x in

the sample space of X, the relations

FXðx ; hLðxÞÞ ¼ 1� a1 and FXðx ; hUðxÞÞ ¼ a2

may be solved for hLðxÞ and hUðxÞ. Then the functions hLðxÞ
and hUðxÞ are uniquely defined and the random interval

½hLðXÞ; hUðXÞ� is an exact 1� a confidence interval for h.

Proof. See Ref. 4 [Theorem 9.2.12(p. 432)] for a proof

and Ref. 17 (Sec. 11.4) for a complementary discussion.

Finally, we state a lemma that facilitates construction of a

confidence interval for any parameter that is related to

another through a strictly increasing transformation. It is a

well-known property of confidence intervals that, as

observed in Ref. 5, is rarely formalized.

Lemma 3. Let gðhÞ be a continuous, strictly increasing

function of h. If ½hL; hU� is a 1� a confidence interval for h,

then ½gðhLÞ; gðhUÞ� is a 1� a confidence interval for gðhÞ.
Proof. The assumptions on g imply that g�1 exists and is

strictly increasing. Because both g and g�1 are strictly

increasing functions, it follows that h 2 ½hL; hU� if and only

if gðhÞ 2 ½gðhLÞ; gðhUÞ�, i.e., the two events are equivalent.

Hence, PðgðhÞ 2 ½gðhLÞ; gðhUÞ�Þ¼Pðh2 ½hL; hU�Þ ¼ 1�a.

Combining the above results, it is straightforward to see

that Theorem 2 follows from Theorem 1 and Lemmas 1, 2,

and 3. Furthermore, it follows from our distributional

assumptions that TPF, AUC, and pAUC are strictly increas-

ing functions of SNR, and therefore, Theorem 2(ii) and

Lemma 3 imply Corollary 1.

APPENDIX C: PROOF OF THEOREM 3

Here, we prove Theorem 3, which enables estimation of a

confidence band for the entire ROC curve from a confidence

interval for SNR.

For any fixed value of FPF 2 ½0; 1�, define the function

g(SNR)¼TPF(FPF; SNR), where TPF is given by Eq. (3).

Since g(SNR) is a continuous, strictly increasing function of

SNR, its inverse, g�1(TPF), exists and is a strictly increasing

function of TPF. Therefore, SNR 2 ½SNRL; SNRU� if and

only if gðSNRÞ 2 ½gðSNRLÞ; gðSNRUÞ�. Because this is true

for any FPF 2 ½0; 1�, it follows that SNR 2 ½SNRL; SNRU� if
and only if XROC � bXROC. Hence, PðXROC � bXROCÞ
¼ PðSNR 2 ½SNRL; SNRU�Þ ¼ 1� a for any value of SNR.
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