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Abstract

Gene tagging facilitates systematic genomic and proteomic analyses but chromosomal tagging typically disrupts gene
regulatory sequences. Here we describe a seamless gene tagging approach that preserves endogenous gene regulation and
is potentially applicable in any species with efficient DNA double-strand break repair by homologous recombination. We
implement seamless tagging in Saccharomyces cerevisiae and demonstrate its application for protein tagging while
preserving simultaneously upstream and downstream gene regulatory elements. Seamless tagging is compatible with high-
throughput strain construction using synthetic genetic arrays (SGA), enables functional analysis of transcription antisense to
open reading frames and should facilitate systematic and minimally-invasive analysis of gene functions.
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Introduction

Functional genomics has benefited greatly from the ability to

introduce tag sequences into desired chromosomal loci by

homologous recombination, thereby labeling gene products

(RNA or protein) and thus facilitating high-throughput analyses

with standardized assays. This strategy is common in yeast and

gradually within reach in other model organisms [1].

In yeast a tag is typically introduced into the genome together

with a marker gene used to select for positive transformants [2–4]

(Figure S1A in Supporting Information S1). Using this approach,

valuable genome-wide resources for systematic protein complex

purification and protein localization have been generated in S.

cerevisiae [5–7]. However, introduction of a selection marker

inevitably disrupts endogenous regulatory sequences and can affect

endogenous gene expression by changing mRNA abundance,

stability or localization [8]. Recombination systems, such as the

Cre-lox system [9], can be used for marker excision after tagging

[10,11] but such strategies do not allow complete excision of all

auxiliary sequences that might affect gene expression (Figure S1B in

Supporting Information S1). Alternatively, seamless tagging can be

achieved with the two-step delitto perfetto approach [12] (Figure S1C

in Supporting Information S1) or using spontaneous marker

excision by homologous recombination [13] (Figure S1D in

Supporting Information S1). However, these methods are incom-

patible with high-throughput genome manipulation required for

systematic studies. As biological research goes quantitative, a simple

and efficient method enabling minimally-invasive gene tagging is

increasingly required.

Here we describe an endonuclease-driven approach for seamless

gene tagging that makes use of efficient endogenous homologous

recombination to completely remove from the genome all

auxiliary sequences necessary for clonal selection during gene

tagging. We demonstrate several applications of seamless tagging,

including high-throughput strain construction and automated

yeast genetics.

Results

Endonuclease-driven approach for seamless gene
tagging

We designed a strategy for chromosomal gene tagging that

allows generating clones in which only the desired tag sequence is

inserted into a specified genomic locus. The strategy is based on a

tagging module in which the selection marker, flanked by specific

endonuclease cleavage sites, is placed between two copies of the

tag sequence (Figure 1A). First, the module is amplified by

polymerase chain reaction (PCR) using primers with short

overhangs homologous to the genomic locus of interest. This

allows integration of the module into the target locus by

homologous recombination (PCR-targeting). Following correct

module integration, the marker can be excised by inducing

expression of the site-specific endonuclease. The resulting double-

strand break (DSB) can then be repaired by homologous

recombination between the two copies of the tag sequence. This

should effectively remove all auxiliary sequences from the

integrated module, leaving a single copy of the tag in the genome

(Figure 1A).

We implemented this strategy in the budding yeast S. cerevisiae using

the I-SceI meganuclease for sequence-specific DNA double-strand

cleavage. I-SceI targets a rare 18-base pair sequence absent from the
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nuclear genome of S. cerevisiae [14] and expression of I-SceI has no

effect on yeast growth (data not shown). We created modules for

seamless protein tagging with the superfolder green fluorescent

protein sfGFP [15] (Figure 1B) and the red fluorescent protein

mCherry [16] (Table S1 in Supporting Information S1). The

modules for C-terminal protein tagging contain a heterologous

terminator, placed together with the selection marker between the I-

SceI target sites, to ensure gene expression prior to marker excision

(Figure 1B-i, ii). Similarly, the modules for N-terminal tagging carry

heterologous promoters to guarantee survival of strains with tagged

essential genes prior to marker excision (Figure 1B-iii). Two

promoters of different strength were used to account for expression

requirements of different essential genes. The URA3 gene was chosen

as a selection marker as it allows both positive selection in medium

lacking uracil and counter selection in medium containing 5-

fluoroorotic acid (5-FOA).

Demonstration of seamless tagging
DSB repair can proceed through different mechanisms.

However, seamless tagging is only possible if the DSB generated

by I-SceI is repaired by homologous recombination within the

module. We used a module for C-terminal protein tagging with

sfGFP to determine the efficiency of seamless tagging (Figure 1B-i).

In this module the marker is placed between two overlapping parts

of the sfGFP sequence, each producing non-fluorescent sfGFP

fragments. A fluorescent protein fusion is only expressed when

homologous recombination between the two partial sequences

restores the full sfGFP sequence (Figure 1B-i). This should allow

monitoring the frequency of DSB repair specifically by homolo-

gous recombination within the module.

Using PCR-targeting for genomic integration, three genes (PDC1,

NPL3 and PIL1) encoding abundant proteins [6,7] were tagged with

this module in a strain expressing I-SceI from the inducible GAL1

promoter and in the corresponding wild type strain. Upon module

integration, all strains expressed the respective proteins fused to

truncated sfGFP and showed only background fluorescence, as

determined from whole colony measurements with a fluorescence

plate reader (Figure 2A-i) or from single-cell analysis with fluorescence

microscopy (Figure 2B, data not shown). Efficient repression of the

GAL1 promoter by glucose in the medium ensured that spontaneous

marker excision rarely occurred, as indicated by poor colony growth on

plates containing 5-FOA (Figure 2A-ii), which selects for cells that have

lost the URA3 marker. I-SceI expression was induced for 24 h by

growing the strains on galactose plates (Figure 2A-iii). Subsequent poor

colony growth on plates lacking uracil (SC-Ura) indicated that most

cells had lost the URA3 marker (Figure 2A-iv). Formation of sfGFP-

fluorescent colonies on galactose plates (Figure 2A-iii) indicated the

occurrence of seamless marker excision events. Single-cell analysis with

fluorescence microscopy revealed fluorescent protein fusions with

expected localizations in . 96% of the cells for all three tagged genes

(Figure 2B, C). Thus, DSBs generated by marker excision in the

tagging module are repaired virtually exclusively via homologous

recombination in S. cerevisiae. Subsequent growth on 5-FOA plates

(Figure 2A-v) completely purged sfGFP-negative cells from the

fluorescent colonies for the three tested genes, PDC1, NPL3 and

PIL1, thereby generating homogenous strains seamlessly tagged with

sfGFP (Figure 2B, C). Thus, sfGFP-negative cells did not carry out

DSB repair by alternative mechanisms but failed to undergo marker

excision. Together, these experiments demonstrate our approach and

establish a robust workflow that should enable seamless tagging of most

genes in S. cerevisiae.

Influence of the genomic context on the efficiency of
seamless tagging

Identical sequences surrounding the marker in the tagging

module allow for seamless marker excision. However, DSBs

Figure 1. Endonuclease-driven approach for seamless gene tagging by homologous recombination. (A)Schematic representation of
seamless tagging. Module integration in S. cerevisiae is achieved by PCR-targeting: the module is amplified by PCR using primers with overhangs of
55 bases that target the module to the desired locus by homologous recombination. Endonuclease target sites are represented by black squares. (B)
Modules for seamless protein tagging with sfGFP at the C-terminus (i, ii) or at the N-terminus (iii) (Table S1 in Supporting Information S1). The
promoter and terminator sequences of the selection marker are not depicted for simplicity. Module i allows monitoring the frequency of seamless
marker excision events (see text for details). Modules i and ii begin with the S3 primer annealing site (59-CGTACGCTGCAGGTCGAC-39) and end with
the S2 primer annealing site (59-CGAGCTCGAATTCATCGAT-39), whereas module iii begins and ends with the S1 (59-CGTACGCTGCAGGTCGAC-39) and
S4 (59-CGACAGAGAATTCATCGATG-39) sequences respectively. These sequences allow module amplification for PCR-targeting with standard S1-S4
primers (see reference [28] for details on primer design), for which an extensive list of modules with various tags is available[11,28-30], and remain in
the genome after seamless marker excision. However, the S1-S4 primer annealing sites are not obligatory for seamless tagging. Thus, module i can be
used for seamless tagging with a pair of primers that anneal to the start and to the end of the sfGFP sequence.
doi:10.1371/journal.pone.0023794.g001
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induced by I-SceI could be potentially repaired by ectopic

homologous recombination between similar sequences outside of

the tagging module (Figure 3A). We examined this possibility by

tagging HXT6, which shares 99.8% of sequence identity over 1713

base pairs (bp) of coding sequence with the contiguous HXT7 open

reading frame (ORF) (Figure S2 in Supporting Information S1).

Strains with HXT6 tagged with sfGFP using the module for C-

terminal protein tagging (Figure 1B-i) reproducibly contained

,15% of non-fluorescent cells after seamless marker excision

(Figure 2C). This fraction did not change even after strain growth

on 5-FOA medium (Figure 2A-v, C), indicating that the non-

fluorescent cells had also lost the URA3 marker. PCR analysis

revealed that the population of sfGFP-negative cells resulted from

DSB repair by homologous recombination between the HXT6 and

HXT7 sequences. As a consequence, the entire tagging module

and one of the HXT genes were lost in these cells (Figure S2 in

Supporting Information S1). We conclude that seamless tagging

can be used in the context of repeated genomic sequences.

However, ectopic homologous recombination between endoge-

nous repetitive sequences competes with seamless marker excision

events. In such cases, an additional purification step is sufficient to

separate cells with seamlessly tagged loci from cells with alternative

products of homologous recombination.

We systematically assessed the potential impact of ectopic

homologous recombination on seamless tagging in S. cerevisiae. The

genomic context of each ORF was examined for the presence of

identical or highly similar stretches longer than 28 bp, which can

undergo homologous recombination [17,18]. Pairs of sequences

flanking each tagging site were selected, confined by the nearest

essential genetic elements, such that homologous recombination

between the two sequences would not result in cell death

(Figure 3B). Analysis of sequence similarity within each pair

revealed that ectopic recombination events could potentially

interfere with seamless marker excision for only 1–4% of all

ORFs (Figure 3C, Tables S4 and S5 in Supporting Information

S1). Therefore, our approach can be efficiently used for seamless

tagging of the vast majority of yeast genes.

High-throughput strain construction with seamless
tagging

Automation of yeast genetics with synthetic genetic array (SGA)

technology [19] brought high throughput to yeast studies, from

forward to reverse genetics to cell biological and biochemical

analyses [20]. Importantly, seamless tagging is entirely compatible

with SGA. Prior to marker excision, chromosomal gene fusions

generated using the modules here described can be crossed into

desired genetic backgrounds in high throughput with standard

SGA methodology (Figure S3 in Supporting Information S1).

Seamless marker excision in the generated strain arrays can then

be carried out in batch with simple colony pinning on different

growth media (Figure 2A). The final strains with seamlessly tagged

loci can then be analyzed without further validation (Figure S3 in

Supporting Information S1). Therefore, high-throughput func-

tional studies of gene fusions in the fully endogenous genomic

context should be possible with seamless tagging.

Preservation of endogenous transcriptional regulation
with seamless N-terminal tagging

C-terminal tagging without marker excision was previously used

for systematic analysis of protein localization and abundance in S.

cerevisiae [6,7]. However, proteins with critical signals at the C-

terminus could not be analyzed in these studies. Seamless N-

terminal tagging should allow to preserve endogenous promoters

and to facilitate systematic analysis of proteins rendered non-

Figure 2. Demonstration of seamless tagging. (A) Demonstration of the workflow (plates i, iii, v) and control (plates ii, iv) of seamless tagging.
The indicated genes were tagged with module i (Figure 1B). Four colonies of each strain were grown for 24 h at 30uC before imaging and pinning
onto the next plate, as indicated by the arrows. Fluorescence images were normalized to the global maximum intensity and false-colored as
indicated. Three control strains were included on the plates: c1 – wild type, c2 – GAL1-I-SCEI, c3 – a strain carrying GAL1-I-SCEI and the URA3 marker
that can be seamlessly excised upon expression of I-SceI. (B)Representative fluorescence microscopy images of the GAL1-I-SCEI PDC1-sfGFP strain
after growth on plates i, iii, v in (A). Arrowheads indicate a cell that failed to undergo seamless marker excision. Scale bar is 5 mm. (C) Efficiency of
seamless marker excision. The percentage of sfGFP-positive cells was counted for each strain in GAL1-I-SCEI background after 24 h of growth on
plates i, iii, v in (A). *The efficiency of seamless marker excision in the HXT6-sfGFP strains is reduced due to homologous recombination between HXT6
and the adjacent HXT7 open reading frame (see text for details).
doi:10.1371/journal.pone.0023794.g002
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functional with C-terminal tagging. We established N-terminal

tagging using four genes encoding tail-anchored proteins, which

contain a C-terminal membrane insertion sequence. Each gene

was tagged with two modules for seamless N-terminal protein

tagging with sfGFP carrying different heterologous promoters

(Figure 1B-iii). Prior to marker excision, the corresponding protein

fusions were expressed either under the control of the stronger

TEF1 promoter or the weaker NOP1 promoter and localized

correctly to the endoplasmic reticulum (Cyb5 and Hlj1) or the

mitochondria (Fis1) [21] (Figure 4A, B). Seamless marker excision

led to expression of each protein from the respective endogenous

promoter, as indicated by altered expression levels (Figure 4A, B).

Moreover, marker excision followed by recover of the endogenous

promoter also restored pheromone-inducible expression sfGFP-

Prm3, which localized correctly to the nuclear envelope [22]

(Figure 4A, B). Therefore, seamless tagging enables expression of

N-terminal protein fusion from their endogenous promoters.

Preservation of endogenous downstream regulatory
sequences with seamless C-terminal tagging

Maximal preservation of the genomic context of seamlessly

tagged loci opens new avenues for functional analysis of non-coding

genetic elements in transcriptional or translational control.

Regulation of the meiosis-specific IME4 transcript by an antisense

RNA, initiated downstream of the ORF, provides a paradigmatic

example for demonstration of functional analysis of non-coding

sequences with seamless tagging. In haploid yeast cells, the antisense

IME4 transcript silences sense IME4 transcription via transcrip-

tional interference. This precludes expression of the Ime4 protein,

thus preventing haploids from entering the meiotic program [23].

Figure 4. Preservation of endogenous gene regulation with seamless tagging. (A) Preservation of endogenous promoters with seamless N-
terminal protein tagging. Representative images of strains expressing the indicated proteins fused at the N-terminus to sfGFP before and after
seamless marker excision. Before marker excision each fusion was expressed from the TEF1 or the NOP1 promoter in the corresponding tagging
modules (Figure 1B-iii, Table S1 in Supporting Information S1). For each fusion, the four strains were imaged using identical settings, the images
normalized to the maximum fluorescence intensity of the set and false-colored as indicated. Cell outlines were overlaid onto the images of sfGFP-
PRM3 strains after marker excision in the absence of a-factor pheromone. Scale bar is 5 mm. (B) Expression levels of N-terminal protein fusions before
and after seamless marker excision. Whole cell extracts of strains in (A) expressing the indicated fusions were separated by SDS-PAGE and probed
with antibodies against GFP and, as a loading control, against actin. (C) Preservation of antisense transcription with seamless C-terminal protein
tagging. The IME4 locus and the expected effect of IME4 tagging with module ii (Figure 1B-ii) on sense and antisense transcription in haploid cells are
depicted in the top panel. Expression levels of Ime4-sfGFP before and after seamless marker excision are shown in the bottom panel. Whole cell
extracts of four independent IME4-sfGFP clones before and after seamless marker excision were separated by SDS-PAGE and probed with antibodies
against GFP and actin.
doi:10.1371/journal.pone.0023794.g004

Figure 3. Influence of the genomic context on seamless marker excision. (A) Alternative routes of DSB repair upon marker excision. The two
copies of the tag sequence (indicated in green) surrounding the marker in the tagging module allow for seamless marker excision. However, DSBs
induced by I-SceI can be repaired by homologous recombination between identical genomic sequences present on both sides of the integration site
(indicated in purple). (B, C) Genome-wide analysis of local sequence similarities with potential for ectopic module excision during seamless tagging.
(B) Schematic representation of pairs of sequences examined for sequence similarity for each ORF. Each pair was defined flanking the insertion site of
the tagging module such that homologous recombination between the two sequences cannot result in excision of any essential genetic elements.
Excision of an essential element would lead to its loss from the genome and cell death, thereby preventing the persistence of such alternative
products of DSB repair in a population undergoing seamless marker excision. (C) Distribution of S. cerevisiae ORFs according to the length of identical
(black dots) or highly similar (grey dots) sequences flanking the tagging site for each ORF, within the boundaries defined in (B). ORFs within the
orange area of the plots are flanked by identical or highly similar stretches longer than 28 bases. These stretches are expected to undergo
homologous recombination upon production of a DSB within the seamless tagging module[17,18], leading to undesired excision of the entire
module. Potentially, reduced efficiency of seamless marker excision might be observed for as many as 250 ORFs (Tables S4 and S5 in Supporting
Information S1). The frequency of undesired DSB repair events will depend on the context of each genomic locus, the length of identical or similar
stretches flanking the tagging site[17,18] and the used seamless tagging module.
doi:10.1371/journal.pone.0023794.g003
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We tagged IME4 with sfGFP using a module for seamless C-

terminal protein tagging (Figure 1B-ii) and analyzed Ime4-sfGFP

protein levels before and after marker excision. The bidirectional

CYC1 terminator, placed together with the marker between the

endonuclease target sites in the tagging module, is expected to

block antisense transcription (Figure 4C). Accordingly, Ime4-

sfGFP fusion could be detected in haploid cells prior to but not

after marker (and CYC1 terminator) excision (Figure 4C). This

demonstrates that seamless tagging allows preserving the regula-

tory function of sequences downstream of an ORF and suggests an

application of seamless tagging in functional analysis of antisense

transcription.

Discussion

Quantitative understanding of biological systems requires

measurements of the dynamics of the underlying processes with

subcellular resolution. Gene tagging facilitates local measurements

of protein or RNA abundance and behavior in living cells.

Importantly, a tag should not compromise the native function of

labeled molecules, nor should it interfere with their regulation.

However, existing methods for gene tagging either disrupt

endogenous gene regulatory sequences [2,11] or are incompatible

with high-throughput genome manipulation [12,13] (Figure S1 in

Supporting Information S1). Here we describe an approach that

addresses these problems and enables seamless gene tagging for

high-throughput functional studies.

Our approach allows seamless insertion of a tag sequence into

the genome (Figure 1), thus preserving endogenous gene

regulation (Figures 4). On account of highly efficient DSB repair

by homologous recombination, seamless tagging in S. cerevisiae

requires that only the initial integration of the tagging module is

validated for the vast majority of genes (Figure 3). Strains with

validated integrations can be repeatedly used for genetic crossing

to systematically introduce additional genome alterations such as

gene deletions or other tagged genes (Figure S3 in Supporting

Information S1). Prior to functional analysis, endogenous

expression of tagged genes can be efficiently reconstituted with

seamless marker excision using simple replica plating (Figure 2).

The combination of seamless tagging with SGA technology

[19,24] for high-throughput strain construction should facilitate

systematic functional analysis of gene products in a minimally-

perturbed context.

Signal sequences within three prime untranslated regions

influence mRNA localization, turnover or translational control

[25,26]. Moreover, antisense transcription of ORFs is proposed to

regulate expression of a significant fraction of the genome [27].

Seamless tagging should allow not only to preserve endogenous

regulation, but also to analyze such gene regulatory signals

through selective disruption of regulatory motifs without further

alterations of the genomic context (Figure 4C).

We demonstrate seamless protein tagging with sfGFP in S.

cerevisiae and supply similar modules for seamless N-terminal and

C-terminal protein tagging with the red fluorescent protein

mCherry (Table S1 in Supporting Information S1). Additional

modules can be easily constructed, provided that the tag

sequence is sufficiently long to support efficient DSB repair by

homologous recombination after marker excision [18]. Seamless

tagging could thus be extended for internal protein tagging or

RNA labeling, among other applications. Given the ease of

implementation and clear advantages, we expect seamless

tagging to be widely used in yeast and potentially in other

model systems.

Materials and Methods

Plasmid construction
All plasmids used in this study are listed in Table S1 in

Supporting Information S1. Details of plasmid construction and

plasmid sequences are available upon request.

Briefly, the plasmids encoding the tagging modules (Figure 1B,

Table S1 in Supporting Information S1) were designed to contain

the S1/S4 (for N-terminal tagging) or S2/S3 (for C-terminal

tagging) primer annealing sites for PCR-targeting [28], for which

an extensive list of modules with various tags is available [11,28–

30]. Thus, primers used for gene tagging with previously published

modules can be used for seamless tagging with the modules

described in this manuscript.

Yeast codon-optimized sequences coding for the superfolder

green fluorescent protein sfGFP [15] and the red fluorescent

protein mCherry [16] were obtained by full gene synthesis.

sfGFPDC in the N-terminal tagging modules (plasmids pMaM173

and pMaM189) (Table S1 in Supporting Information S1) is

180 bp long and encodes the first 60 amino acids of sfGFP.

sfGFPDC in the C-terminal tagging module (plasmid pMaM177)

(Table S1 in Supporting Information S1) is 614 bp long and

encodes the first 204 amino acids of sfGFP. sfGFPDN is 291 bp

long and encodes the last 97 amino acids of sfGFP, overlapping in

191 bp with sfGFPDC (plasmid pMaM177) (Table S1 in

Supporting Information S1). mCherryDC is 439 bp long and

encodes the first 146 amino acids of mCherry (plasmids pMaM172

and pMaM188), whereas mCherryDN is 275 bp long and encodes

the last 91 amino acids of mCherry (plasmid pMaM174) (Table S1

in Supporting Information S1).

The GAL1-I-SCEI sequence was amplified from pGSHU [12]

and cloned into pRS305N [31] to generate the plasmid pND32

(Table S1 in Supporting Information S1). The NOP1 promoter,

the TEF1 promoter (also known as EF-1 alpha promoter) and

the CYC1 terminator used in the tagging modules were amplified

from genomic DNA of Saccharomyces paradoxus, a yeast species

closely related to Saccharomyces cerevisiae. These genetic elements

retain their function in S. cerevisiae but differ in sequence from

those present in the S. cerevisiae genome. This allows minimizing

erroneous recombination between the tagging modules and the

host genome in the first step of tagging by PCR-targeting.

Instead of the commonly used klURA3 gene from the yeast

Kluyveromyces lactis, we used the ScURA3 gene of S. cerevisiae,

amplified from pRS416 [32], as a selection marker. Use of

klURA3 in the tagging modules did not support normal growth

of transformed cells on selective medium without uracil, thereby

decreasing the overall transformation efficiency (data not

shown). Importantly, use of ScURA3 had no effect on the

efficiency of PCR-targeting of the modules in the strains used in

this study, in which the chromosomal URA3 locus is fully deleted

(Table S2 in Supporting Information S1). Moreover, seamless

tagging was still efficient in S288c background containing the

ura3-52 allele (data not shown), indicating low frequency of

module mistargeting due to undesirable recombination between

ura3-52 and the tagging modules.

Yeast strain construction
All yeast strains used in this study are listed in Table S2 in

Supporting Information S1. All strain manipulations – gene

tagging and gene deletion – were performed using standard

procedures based on PCR-targeting, as previously described [28].

The natNT2-GAL1-I-SCEI construct, which allows conditional

expression of the I-SceI endonuclease and carries the nat marker

for nourseothricin resistance, was amplified from pND32 (Table

Seamless Gene Tagging
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S1 in Supporting Information S1) using primers listed in Table

S3 in Supporting Information S1. The obtained PCR product

was integrated into the leu2D0 locus in two SGA entry strains of

opposite mating types (Y8205 and YST288, Table S2 in

Supporting Information S1). For strains in which the LEU2

locus is not fully deleted, transformation with pND32 linearized

with BspHI or SspI allows integration of the natNT2-GAL1-I-

SCEI construct into a mutated leu2 locus or the wild type LEU2

locus.

PCR-targeting requires module amplification by PCR using

primers with overhangs of 45-55 bases homologous to the target

genomic locus. PCR amplification of the modules for seamless

tagging is challenging due to the presence of the tandem repeat

of the tag sequence. We routinely used the Herculase II Fusion

DNA polymerase (Stratagene) with optimized amplification

conditions (Protocol S1 in Supporting Information S1). Direct

transformation of 5 ml of PCR reaction product typically yielded

10–100 transformants. Occasionally, a background of transiently

transformed cells obscured the correct colonies, as observed with

other PCR-targeting modules [11]. Replica-plating followed by

one day of growth removed the background, thus simplifying

picking of single colonies. Correct integration of all modules was

validated prior to seamless marker excision by PCR and by

fluorescence microscopy, when appropriate (Figure 4A).

Seamless marker excision and SGA crossing
Strains with validated integration of seamless tagging modules

were grown to saturation (24 h at 30uC) in liquid synthetic

complete medium containing 2% glucose (‘‘glucose’’) in 96-well

format. Using a RoToR pinning robot (Singer Instruments), the

cells were spotted on ‘‘glucose’’ plates (Figure 2A) and incubated

for 24 h at 30uC. For SGA crossing, the strains were then mated

for 24 h on ‘‘glucose’’ plates with partner strains of the opposite

mating type containing the desired genomic manipulations (e.g.

gene deletions). Subsequent selection of diploids, sporulation of

diploids and selection of haploids containing simultaneously the

seamless tagging module, the natNT2-GAL1-I-SCEI construct and

the desired genomic manipulation were performed as previously

described [24]. For seamless marker excision, the colonies were

pinned onto ‘‘galactose’’ plates (synthetic complete medium

containing 2% galactose and 2% raffinose) to induce expression

of I-SceI and grown for 24 h at 30uC. Subsequent pinning onto

synthetic glucose medium lacking uracil (SC-Ura) was used to

assess the efficiency of marker excision. Pinning from ‘‘galac-

tose’’ medium onto synthetic medium containing 5-fluoroorotic

acid (5-FOA) was used to remove cells that had not lost the

ScURA3 marker (Figure 2A–C). The frequency of seamless

marker excision events and the efficiency of the 5-FOA counter

selection steps were assessed by fluorescence microscopy

(Figure 2B) and seamless marker excision was ultimately

validated by PCR.

Whole colony imaging and fluorescence microscopy
Whole colony fluorescence imaging (Figure 2A) was performed

on an IS4000MM-Pro imager (Kodak) equipped with an

integrated 4-megapixel CCD camera and filters for GFP

fluorescence imaging (excitation: 470, emission: 535). In addition,

the plates were imaged with a Perfection 3200 Photo scanner

(Epson) to evaluate colony growth (Figure 2A).

Fluorescence microscopy was performed at room temperature

on a DM RXA upright microscope (Leica) equipped with a

CoolSNAP cf camera (Photometrics), a 63x 1.4NA objective and

an L5 filter cube (excitation: BP480/40, dichroic: 505, suppres-

sion: BP527/30) (Figure 2B) or at 30uC on a DeltaVision RT

system (Applied Precision) as described [33] (Figure 4A, Figure S3

in Supporting Information S1). All strains were grown and imaged

in synthetic complete glucose medium. sfGFP-PRM3 cells (after

seamless marker excision) were incubated with a-factor phero-

mone (10 mg/ml final concentration) for 2.5 h before imaging

(Figure 4A).

Sequence homology analysis
The reference genome sequence of S. cerevisiae and its

annotation were retrieved from the Saccharomyces genome

database (SGD, www.yeastgenome.org), with the timestamp

2011-02-15. Additionally, the growth phenotype (viable or

inviable) of strains with single gene deletions was retrieved from

SGD. The centromeres and the telomeres were considered

essential genetic elements (inviable phenotype upon deletion).

The sequence homology search was performed in R/Bioconduc-

tor [34] using the Biostrings package. Shortly, for each verified or

uncharacterized ORF two sequences flanking the desired tagging

site (immediately after the start codon for N-terminal tagging and

immediately before the stop codon for C-terminal tagging) were

extracted from the chromosomal sequences. Each pair of

sequences was defined with the nearest essential genetic elements

as boundaries (Figure 3B) and compared using a pair wise

alignment method based on the Smith-Waterman algorithm

(pairwiseAlignment in the Biostrings package). Only the best

alignment was reported and the longest uninterrupted stretch of

sequence identity in the alignment was subsequently determined.

ORFs with start or stop codons flanked by similar or identical

sequences longer than 28 bp are listed in Tables S4 and S5 in

Supporting Information S1.

Supporting Information

Supporting Information S1 Supporting Information S1 con-

tains one supplementary protocol (Protocol S1), three supplemen-

tary figures (Figures S1–S3) and five supplementary tables (Tables

S1–S5). Protocol S1: High fidelity PCR amplification of tagging

modules. Figure S1: Methods for chromosomal gene tagging in S.

cerevisiae. Figure S2: Alternative routes of DSB repair upon

marker excision in the HXT6 locus. Figure S3: High-throughput

strain construction by seamless tagging in combination with SGA

technology. Table S1: Plasmids. Table S2: Yeast strains. Table
S3. Oligonucleotides. Table S4: ORFs with potential for ectopic

module excision during seamless N-terminal tagging. Table S5:

ORFs with potential for ectopic module excision during seamless

C-terminal tagging.

(PDF)
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