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Abstract
Subgroup analysis arises in clinical trials research when we wish to estimate a treatment effect on
a specific subgroup of the population distinguished by baseline characteristics. Many trial designs
induce latent subgroups such that subgroup membership is observable in one arm of the trial and
unidentified in the other. This occurs, for example, in oncology trials when a biopsy or dissection
is performed only on subjects randomized to active treatment. We discuss a general framework to
estimate a biological treatment effect on the latent subgroup of interest when the survival outcome
is right-censored and can be appropriately modelled as a parametric function of covariate effects.
Our framework builds on the application of instrumental variables methods to all-or-none
treatment noncompliance. We derive a computational method to estimate model parameters via
the EM algorithm and provide guidance on its implementation in standard software packages. The
research is illustrated through an analysis of a seminal melanoma trial that proposed a new
standard of care for the disease and involved a biopsy that is available only on patients in the
treatment arm.
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1. Introduction
Clinical trials often aim to estimate a treatment effect that pertains to a specific subgroup of
the patient population defined by baseline characteristics. The analysis becomes complicated
when the subgroup of interest is latent and cannot be identified based on observed data. This
occurs in the Multicenter Selective Lymphadenectomy Trial I (MSLT-I), an ongoing trial
comparing two standards of care for primary cutaneous melanoma in which a sentinel-node
biopsy distinguishing two subgroups of patients is available only on patients randomized to
the treatment arm [1, 2]. Treatment patients whose biopsies are positive for nodal metastases
(‘node-positive’) receive an immediate elective lymphadenectomy, a surgical procedure to
remove the lymph node, while those absent metastases (‘node-negative’) are not eligible for
the surgery and receive clinical observation, which is the control regimen and represented
the prevailing course of treatment at the time the trial began in 1994. The primary objective
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of MSLT-I is to evaluate the effectiveness of the new standard of care for melanoma; it is
assessed by the traditional intention-to-treat (ITT) analysis comparing the two
randomization arms. A secondary objective aims to estimate the effect of lymph node
dissection on the node-positive subgroup. We term this estimand biological efficacy to
distinguish it from the ITT estimand, and it is critical to this high-risk cohort whose
mortality is over 30 per cent. Estimation of biological efficacy in MSLT-I involves latent
subgroup analysis because the biopsy constitutes part of the experimental treatment strategy
and hence is not administered to the control patients.

Latent subgroup analysis arises in the application of the instrumental variables (IV)
framework to all-or-none treatment noncompliance [3, 4]. Subgroups in this setting are
defined according to baseline potential compliance behaviors and are partially observed after
randomization. This is analogous to MSLT-I, where nodal status is a pre-randomization
covariate that is subsequently identified in the treatment arm through the sentinel-node
biopsy. Table I illustrates the duality between MSLT-I and a trial with noncompliance when
controls are denied access to treatment. In the presence of noncompliance, the ITT analysis
assesses programmatic effectiveness but is biased for the biological or causal effect of
treatment [5]. Furthermore, analyses based on treatment receipt or adherence to protocol are
confounded by differences between patients across the compliance strata. This framework
posits that the efficacy parameter of interest is defined in the class of compliers—individuals
who accept whichever treatment is assigned to them—because this is the only class whose
treatment receipt is determined by the randomization assignment, thus preserving the use of
randomization as the instrument for causal inference within the compliant class.
Comprehensive summaries of this approach can be found in Palmgren and Goetghebeur [6]
and Dunn et al. [7].

The IV framework for all-or-none noncompliance was extended to censored data by
Frangakis and Rubin [8]; however, the nonparametric estimator of the survival distribution
function that results from this approach neither does not possess desirable statistical
properties such as monotonicity [9, 10], nor does it accommodate covariates. These issues
lead to several semiparametric developments that estimate biological efficacy among the
subgroup of compliers with the aid of proportional hazards assumptions. Loeys and
Goetghebeur [11] use isotonic regression to enforce monotonicity in a causal proportional
hazards model but did not derive the asymptotic properties of their estimator. Cuzick et al.
[12] proposed a Cox-type model that assumes proportionality of both the efficacy effect and
all baseline hazard functions of the various compliance classes; a more complicated
estimation procedure is required to fit covariates and interactions. The only example of a
fully parametric regression model that we are aware of is in Follmann [13], which is a
propensity score method that requires extrapolation of a pseudolikelihood estimate to
unobserved values of the compliance covariate. Many accelerated failure time (AFT) models
for survival analysis in the presence of treatment noncompliance exist in the structural
models literature [14–16], but they do not pertain to subgroup analysis.

In this paper, we develop the framework for latent subgroup survival analysis when the
survival distributions can be appropriately modelled as parametric functions of covariate
effects. We derive a computational method that relies on the EM algorithm [17] for
parameter estimation in an AFT mixture model. The EM algorithm has been applied to
estimate efficacy in noncompliance problems in non-survival settings [18, 19] and produces
maximum likelihood estimates with the desirable properties of consistency and asymptotic
normality. Our method has the paramount advantage of being easily implemented in
software such as SAS® or R [20] using existing routines. It readily incorporates covariates
and their interactions with treatment and subgroup and allows flexibility in model
specification sufficient to many applications. The framework and computational method are
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described in Sections 2 and 3, respectively, followed by a simulation study to validate the
performance of the method in Section 4. We illustrate the method in Section 5 by estimating
the effect of immediate lymphadenectomy on two disease-free survival (DFS) endpoints in
the subgroup of MSLT-I patients with sentinel-node metastases.

2. The latent subgroup framework
Latent subgroup analysis aims to estimate a biological treatment effect that applies to a
specific group of treatable patients who stand to benefit therapeutically from the treatment,
for example MSLT-I patients with sentinel-node metastases. The remaining set of
untreatable patients often receive the same care under both randomization assignments, as in
MSLT-I, although this is not a requirement of our framework. Subgroup status is revealed
through randomization to active treatment but is unidentified in control based on observed
data, resulting in the statistical problem of inferring the subgroup of treatable controls.

2.1. Notation
The randomly right-censored survival times and censoring indicators are denoted (Xi, δi ), i
= 1, …,n, where Xi is the minimum of an event time Ti and an independent censoring time
Ci: Xi = Ti ∧ Ci, δi = I(Ti ≤Ci ). Patients are randomized to the treatment (Ri = 1) or control
(Ri = 0) arm, and additional data on q covariates may be measured at baseline, Zi = (Zi1, …,
Ziq)′. Let Gi be an indicator of membership to the treatable subgroup (for simplicity, we
consider two subgroups). The observed data consists of (Xi, δi, Ri = 1,Zi, Gi ) for an
individual randomized to treatment and (Xi, δi, Ri = 0,Zi ) for an individual randomized to
control; we will refer to the aggregate set of observed data as Xobs. We denote the marginal
survival function as S(t|Z) = P(T > t|Z), and those conditional on G and R by Sgr(t|Z) = P(T
> t|Z, G = g, R = r) for g = 0,1 and r = 0,1; all are conditional on the fixed covariate vector
Z.

2.2. Model and assumptions
The AFT mixture model for latent subgroup analysis conditions on subgroup status G:

(1)

i = 1, …,n, where p represents the population proportion of treatable subjects, and ψg and βg
the biological efficacy and other covariate effects in the gth subgroup, respectively, g = 0, 1.
The parametric AFT model assumes that the survival time in each subgroup is a log-linear
function of the covariates and a known residual error term, εg, which can differ over
subgroup in both family and scale (σg). We further assume that the censoring mechanism is
noninformative and independent of subgroup status. For simplicity, we have included the
intercepts in βg. Shared covariate effects or residual error distributions across subgroups can
be achieved through parameter constraints.

The notion of treatability translates to the exclusion restriction, an assumption formalized by
Angrist et al. [3] that is fundamental to our framework. The exclusion restriction posits no
direct effect of randomization on the response and hence that the outcome distribution of the
untreatable subgroup is the same in both arms. In our model, it implies that ψ0 = 0 and S01(t|
Z) = S00(t|Z)≡S0(t|Z). This assumption is usually tenable when the untreatable subgroup
receives the same treatment regardless of the randomization assignment; it is discussed
further in the context of MSLT-I in Section 5. In addition to the exclusion restriction, our
scenario satisfies the stable unit treatment value (SUTV), the random assignment, and the
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nonzero effect of randomization on treatment receipt assumptions of Angrist et al. [3].
Monotonicity is induced by design.

2.3. Model specification
Specification of the residual error distribution in an AFT model is traditionally performed
through graphical analysis of transformations of the observed survival times and model
residuals and through likelihood-ratio tests of nested models. Since the survival distributions
in the two subgroups do not depend on the randomization assignment, these methods extend
directly to our model when performed on the complete subgroup data from the treatment
arm alone. Comparison of model-based survival distributions to Kaplan–Meier estimates
yields post-hoc assessments of goodness-of-fit. Our model supports covariate by subgroup
interactions by allowing separate model specifications in each subgroup, and maximum
likelihood inference about individual and interaction effects is straightforward. Inclusion of
covariates that are predictive of baseline response can increase precision for estimating
efficacy, and covariate by subgroup interactions can be explored in the treatment arm.

3. Computational method
The likelihood corresponding to our model in (1) contains an observed mixture in the
treatment arm, where subgroup status is known, and a latent mixture in the control arm over
the treatable and untreatable subgroups: S0(t|Z)=pS10(t|Z)+(1− p)S0(t|Z). Thus the observed
data likelihood for the parameter vector Θ = (p, ψ1, β1, σ1, β0, σ0) is

(2)

where fgr(t) = −dSgr(t). It is not readily solved by traditional maximum likelihood routines
that fit AFT models because of the mixture parameter embedded in the likelihood. The EM
algorithm is a natural choice for parameter estimation when complete information on
subgroup membership would allow factorization of the likelihood into separate components
that are easy to maximize [4]. The complete data consists of the hypothetical data set in
which subgroup status were known on all individuals: Xcom = (Xobs, gi; i: Ri = 0). The
corresponding likelihood is

(3)

The log of this likelihood is linear in the unknown subgroup indicators in control, (gi; i: Ri =
0), and hence the E-step to compute its expectation conditional on the observed data and a
current value of the parameter vector, Θ(m), amounts to the imputation of the unknown gi in
control:

Under the assumptions that C ⊥ T and C ⊥ G, we apply the Bayes Theorem to compute the
expectation in censored and uncensored cases as follows. For δi = 1,
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Similarly, for δi = 0,

The result of the mth E-step is the imputed variable:

In the subsequent M-step, we compute

which yields  for the proportion of treatable subjects. If two separate AFT
models are specified for the subgroups such that L(ψ1, β1, σ1, β0, σ0|Xcom) = L(ψ1, β1, σ1|
Xcom)L(β0, σ0|Xcom), the M-step for the remaining parameters can be performed by a
weighted survival routine, available in most software packages, where the weights are given

by  and  for the treatable and untreatable subgroups, respectively. The E and M
steps are iterated until a suitable convergence criterion is met, and the maximum likelihood
estimate Θ̂ of Θ is the output of the last M-step.

In cases where we wish to constrain some of the parameters in order to reduce
dimensionality, the M-step can be carried out through the PARAMEST macro [21] available
in the SAS® software, which computes maximum likelihood estimates in arbitrary
parametric AFT models. For example, to fit Weibull models to both subgroups with a
common shape parameter (λ = σ−1) we would specify the following hazard and survival
functions as inputs to the macro at the mth step:

This model represents a special case of proportionality of hazards across subgroup.
Alternatively, shared parameter models can be fit in any software that performs weighted
AFT regression using a data augmentation trick. A sample SAS® program illustrating the
implementation of the model, including the shared parameter case, is available on the
author’s website at http://www.biostat.ucla.edu/Directory/Gli/personal/software.html.
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The EM algorithm does not immediately provide the variance matrix of Θ̂. We have
estimated this quantity in our simulations and the analysis of MSLT-I as the inverse of the
observed Fisher Information:

where the l(·) denotes a log-likelihood. One of the advantages of our method is that it
provides maximum likelihood estimates whose asymptotic normality and consistency lead to
a straightforward framework for inference about biological efficacy and other parameters.

4. Simulation study
We assessed the performance of the computational algorithm in two simulation studies. The
first is designed to evaluate the general performance of the method under a variety of
censoring rates and treatable subgroup proportions in both large (N = 1000) and small (N =
400) samples. Subjects were randomly assigned to treatment or control in a 50:50 ratio, and
subgroup status was determined independently through Bernoulli samples. The survival
times are Weibull-distributed conditional on the randomization assignment and subgroup
membership with independent censoring times. The second simulation study was designed
to emulate the rather extreme characteristics of MSLT-I—the censoring rate is greater than
70 per cent, and the observed proportion of node-positive patients is 15 per cent—under
three putative efficacies: (ψ1 = 0, 0.5, 1). The sample size is 1300, with 60 per cent allocated
to the treatment arm, and the independent survival and censoring times are Weibull-
distributed.

Table II(a)–(c) summarizes the results on the efficacy parameter ψ1 from 1500 data sets
simulated under each set of conditions. The coverage represents the proportion of time a 95
per cent normal confidence interval for ψ1 contained the true value of the parameter, ψ ̂1 is
the average of efficacy estimates, the simulation variance is the empirical variance of the
estimates ψ ̂1, and the estimated variance is the average of the estimated variances .
The results are consistent with our expectation for maximum likelihood estimation. In large
samples (Table II(a)), the algorithm overestimates the variance of ψ1 when the censoring
rate is high, but the loss in power is negligible. The coverage on all other model parameters
(β0, β1, σ0, σ1) ranged from 94 to 96 per cent. Unsurprisingly, the algorithm tends to perform
better with respect to bias and coverage on the parameters corresponding to the majority
population when the true proportion of treatable subjects approaches 0 or 1. The estimation
procedure performs well in small sample sizes (Table II(b)), especially when the treatable
proportion is high, as is typically the case in a noncompliance setting.

5. Analysis of MSLT-I
Beginning in 1994, MSLT-I randomized patients with invasive primary cutaneous
melanoma to receive an experimental course of treatment or control in a 60:40 ratio. A wide
excision of the primary melanoma was performed on all patients, after which the control
patients received postoperative observation of regional lymph nodes and treatment patients
received a sentinel-node biopsy with immediate lymphadenectomy if the biopsy was
positive for nodal micrometastases. Control patients and node-negative treatment patients
could elect to receive a lymphadenectomy if the cancer recurred. The third interim analysis
represents the most current findings from the trial, and it focused on the ITT test of
effectiveness of the new standard of care on all patients [22]. The results were negative in
part, which is unsurprising because the majority (80 per cent) of patients are absent
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metastases and receive the same course of treatment (postoperative observation) regardless
of the randomization assignment. Subgroup analysis of the effect of lymphadenectomy on
node-positive patients is a secondary aim of the trial, to which end the investigators
compared node-positive patients in treatment to control patients who later developed
recurrence. This strategy produces a biased estimate of biological efficacy because there is
not a one-to-one correspondence between positive biopsy at randomization and eventual
development of a clinically evident recurrence.

We apply the method to reanalyze two endpoints from the 2006 interim analysis: disease-
free survival (DFS), defined as time until a clinically detectable recurrence, and distant-
disease-free survival (DDFS), defined as time until recurrence at a distant site or melanoma
death without distant recurrence. No melanoma deaths occurred without some form of
recurrence: nodal, local or distant. The latter are the most baneful; hence, DDFS is
considered more relevant than overall DFS. Diagnostic plots of data from the treatment arm
supported the fit of the log-linear Weibull model with a common scale parameter across
subgroup for both DFS and DDFS. We note further that in the context of MSLT-I, the
exclusion restriction amounts to the assumption that sentinel-node biopsy does not alter the
prognosis of node-negative patients. This is widely believed to be true among clinicians
owing to the minimal invasiveness of the biopsy [2, 22].

The primary model to estimate the efficacy of lymphadenectomy on each endpoint is log(Ti |
Gi = g)= βg + ψg Ri + σε, g = 0,1, where ψ0 = 0 and Ri = 1 if the patient was randomized to
the treatment arm and zero otherwise. The treatment significantly prolongs both DFS and
DDFS in node-positive patients (Table III(c): ψ ̂1 = 1.593, p-value=2.4E–13 and ψ ̂1 = 0.937,
p-value = 0.0247, respectively). Node-negative patients have the highest rates of DFS and
DDFS (p-values all < 0.0001 when compared to the node-positive subgroup assigned
biopsy). The estimate of p, the population proportion of node-positive subjects, is similar in
both regressions: approximately 0.16 with a 95 per cent confidence interval of (0.14, 0.18).
For comparison, we also fit standard Weibull AFT models to estimate the ITT estimand of
effectiveness on each endpoint (Table III(b)); the test is significant for DFS but not for
DDFS.

We fit a follow-up regression to investigate the effects of Breslow thickness, which
measures the thickness of the melanoma, presence of ulceration, and location of the
melanoma on the trunk as opposed to the head, neck or extremities on DDFS. These
covariates were selected on the basis of prior research showing their significance to disease
progression. Investigation of the observed subgroups in the treatment arm and observed data
likelihood-ratio tests on nested subgroup models provided evidence of an interaction
between node-status and presence of ulceration. The model is log(Ti |Gi = g) = β0g + ψg Ri +
β1Breslowi + β2g I [Ulceration]i + β3 I [Trunk]i + σε, g = 0,1, where ψ0 = 0. The covariates
have improved precision for the test of the null hypothesis H0: ψ1 = 0 (Table III(d): ψ ̂1 =
1.135, p-value = 0.0024). Increased Breslow thickness and location of the melanoma on the
trunk negatively impact DDFS in patients with and without nodal metastases. Interestingly,
presence of ulceration portends poor DDFS in node-negative patients but not in node-
positive ones, and this phenomenon is significant (p-value for test of β20 = β21 is 0.024). To
our knowledge, this interaction has not been previously reported. When covariates are added
to the corresponding ITT analysis of effectiveness (which cannot accommodate subgroup by
covariate interactions), there is no significant benefit of the new standard of care to either
DFS or DDFS likely because of the small proportion of node-positive patients.
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6. Discussion
We have developed methodology for latent subgroup analysis of a right-censored survival
endpoint via a parametric AFT model that builds on prior work in all-or-none treatment
noncompliance. An advantage of our approach is that the computational procedure is
transparent and readily implemented in most statistical softwares without additional
programming steps. It incorporates various levels of covariate effects and leads to maximum
likelihood estimates, qualities that are desirable in most clinical applications. We have
framed the method in the context of a two-subgroup scenario where a biological treatment
effect is not defined in one group whose care is the same under both randomization
assignments. Extensions to multiple untreatable subgroups are straightforward, and
relaxations of the exclusion restriction can be explored, for example, through sensitivity
analysis [23].

Latent subgroup analysis is relevant to a wide array of clinical trials, particularly in
oncology and biomarker research, where a pathology report or diagnostic test that
distinguishes subgroups of patients is available only in one arm of the study. Aspects of our
framework also pertain to current research in principal stratification and auxiliary variables
methods for causal inference [24, 25] in which estimation of causal treatment effects
requires adjustment for information obtained post-randomization.

Our research direction was influenced in part by prior analysis of MSLT-I that supported the
use of a parametric model, but many applications will fail to satisfy this assumption. We
envision a semiparametric extension that would allow arbitrary residual error distributions in
each subgroup. A second area of future research emanates from the fact that a large
proportion of deaths (25 per cent) in MSLT-I is attributable to causes outside melanoma.
The presence of competing risks may violate our assumption of noninformative censoring,
and the current model could be extended to accommodate this scenario.
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Table I

Duality between the latent subgroup framework of MSLT-I and the all-or-none treatment noncompliance
framework when controls have no access to active treatment.

Randomization

MSLT-I Noncompliance

Subgroup Treatment receipt Subgroup Treatment receipt

Treatment Node-positive Active treatment Complier Active treatment

Treatment Node-negative Control treatment Noncomplier Control treatment

Control ? Control treatment ? Control treatment

In MSLT-I, active treatment represents immediate lymphadenectomy, and the control treatment represents observational follow-up.

Stat Med. Author manuscript; available in PMC 2011 August 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Altstein et al. Page 11

Ta
bl

e 
II

La
rg

e 
sa

m
pl

e 
(a

) a
nd

 sm
al

l s
am

pl
e 

(b
) p

er
fo

rm
an

ce
 o

f t
he

 m
et

ho
d 

in
 e

st
im

at
in

g 
th

e 
bi

ol
og

ic
al

 e
ff

ic
ac

y 
(ψ

1)
 in

 a
 W

ei
bu

ll 
m

od
el

 u
nd

er
 v

ar
io

us
 c

en
so

rin
g

ra
te

s (
C

R
) a

nd
 tr

ea
ta

bl
e 

su
bg

ro
up

 p
ro

po
rti

on
s (

p)
, (

c)
 si

m
ul

at
io

n 
of

 M
SL

T-
I c

on
di

tio
ns

 (C
R

>7
5 

pe
r c

en
t, 

p 
= 

0.
2)

 u
nd

er
 th

re
e 

di
ff

er
en

t e
ff

ic
ac

y 
sc

en
ar

io
s.

C
R

T
ru

e 
p

ψ̂ 1
C

ov
er

ag
e

Si
m

ul
at

io
n 

va
ri

an
ce

E
st

im
at

ed
 v

ar
ia

nc
e

(a
) L

ar
ge

 sa
m

pl
e 

si
m

ul
at

io
n 

(N
 =

 1
00

0,
 tr

ue
 ψ

1 =
 0

.8
5)

40
 p

er
 c

en
t

0.
3

0.
84

32
94

.7
0.

04
20

0.
04

21

0.
5

0.
85

51
95

.1
0.

01
97

0.
01

99

0.
8

0.
85

02
94

.7
0.

01
06

0.
01

06

60
 p

er
 c

en
t

0.
3

0.
85

39
95

.3
0.

04
77

0.
04

87

0.
5

0.
85

21
95

.3
0.

02
43

0.
02

47

0.
8

0.
84

92
95

.5
0.

01
41

0.
01

44

(b
) S

m
al

l s
am

pl
e 

si
m

ul
at

io
n 

(N
 =

 4
00

, t
ru

e 
ψ 1

 =
 0

.8
5)

40
 p

er
 c

en
t

0.
3

0.
83

79
93

.9
0.

11
76

0.
11

08

0.
5

0.
85

04
93

.8
0.

05
52

0.
05

00

0.
8

0.
85

23
95

.9
0.

02
57

0.
02

66

60
 p

er
 c

en
t

0.
3

0.
84

14
93

.5
0.

13
25

0.
12

55

0.
5

0.
85

65
93

.8
0.

06
32

0.
06

45

0.
8

0.
85

44
94

.6
0.

03
64

0.
03

62

(c
) S

im
ul

at
io

n 
of

 M
SL

T-
I (

N
 =

 1
30

0)

Tr
ue

 ψ
1

1.
00

0.
98

42
94

.7
0.

10
23

0.
10

12

0.
50

0.
50

12
95

.6
0.

09
50

0.
09

57

0.
00

0.
00

71
95

.7
0.

09
23

0.
09

66

Stat Med. Author manuscript; available in PMC 2011 August 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Altstein et al. Page 12

Table III

(a) Pertinent summary statistics on the survival endpoints of interest. Disease-free survival (DFS) is defined as
time until a clinically detectable recurrence at any site (no melanoma deaths occurred without recurrence).
Distant-disease-free survival (DDFS) is specific to recurrence at a distant site and includes death from
melanoma without a distant recurrence. The two subgroups are patients with sentinel-node metastases (node
+) and those absent metastases (node −). (b) Results from the two-sample ITT analysis estimating the
effectiveness of the new standard of care; the parameter estimates are from Weibull accelerated failure time
models. (c) Results from a model to estimate efficacy of lymphadenectomy on node-positive patients without
covariates. (d) Follow-up analysis of DDFS to investigate covariate effects.

Treatment, node + (N = 122) Treatment, node − (N = 642) Control (N = 500)

(a) Summary statistics on survival endpoints (N = 1264)

Recurrence at any site—per cent 44.3 16.0 26.8

Distant recurrence—per cent 36.9 12.3 17.8

DFS (months)—median 37.9 59.1 54.5

DDFS (months)—median 43.8 59.8 59.9

(b) Two-sample intention-to-treat test of effectiveness (N = 1264)

Effectiveness 95 per cent interval p-Value

DFS 0.344 (0.0782, 0.609) 0.0112

DDFS 0.0708 (−0.201, 0.343) 0.610

(c) Two-sample test of efficacy in node-positive subgroup (N = 1264)

Efficacy (ψ ̂1) 95 per cent interval p-Value

DFS 1.593 (1.167, 2.019) 2.4E–13

DDFS 0.937 (0.119, 1.755) 0.0247

(d) Regression analysis of DDFS with covariates (N = 1147)

Shared parameters Estimate 95 per cent interval p-Value

 Breslow thickness −0.528 (−0.739, −0.318) 8.6E–7

 Trunk (site) −0.486 (−0.766, −0.205) 6.8E–4

Node +

 Treatment efficacy 1.135 (0.402, 1.869) 0.0024

 Ulceration 0.179 (−0.377, 0.735) 0.527

Node −

 Ulceration −0.639 (−1.007, −0.270) 6.8E–4
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