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Abstract

Aquatic birnavirus induces mitochondria-mediated cell death, but whether connects to endoplasmic reticulum (ER) stress is
still unknown. In this present, we characterized that IPNV infection triggers ER stress-mediated cell death via PKR/elF2a
phosphorylation signaling for regulating the Bcl-2 family protein expression in fish cells. The IPNV infection can induce ER
stress as follows: (1) ER stress sensor ATF6 cleavaged; (2) ER stress marker GRP78 upregulation, and (3) PERK/
elF2aphosphorylation. Then, the IPNV-induced ER stress signals can induce the CHOP expression at early (6 h p.i.) and
middle replication (12 h p.i.) stages. Moreover, IPNV-induced CHOP upregulation dramatically correlates to apparently
downregulate the Bcl-2 family proteins, Bcl-2, Mcl-1 and Bcl-xL at middle replication stage (12 h p.i.) and produces
mitochondria membrane potential (MMP) loss and cell death. Furthermore, with GRP78 synthesis inhibitor momitoxin (VT)
and PKR inhibitor 2-aminopurine (2-AP) treatment for blocking GRP78 expression and elF2a phosphorylation, PKR/PERK may
involve in elF2a phosphorylation/CHOP upregulation pathway that enhances the downstream regulators Bcl-2 family
proteins expression and increased cell survival. Taken together, our results suggest that IPNV infection activates PKR/PERK/
elF2a ER stress signals for regulating downstream molecules CHOP upregulation and Bcl-2 family downregulation that led
to induce mitochondria-mediated cell death in fish cells, which may provide new insight into RNA virus pathogenesis and
disease.
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Introduction

The endoplasmic reticulum (ER) is a eukaryotic organelle that
plays a vital role in a variety of cellular functions, including
posttranslational modification, folding and synthesis of newly
membrane and secretary proteins, metabolism, cellular calcium
storage, and apoptosis [1-3]. Several stimuli, such as the
accumulation of unfolded, misfolded, or excessive protein,
oxidative stress, perturbation in calcium homeostasis, and virus
infection can disrupt ER homeostasis and induce ER stress [4-7].
Protein aggregation is toxic to cells and consequently, numerous
pathophysiological conditions are associated with R stress,
including ischaemia, neurodegenerative disecases and diabetes
[2]. In current knowledge, GRP78 is the master regulator of
three UPR pathway via ER transmembrane receptors, including
pancreatic ER kinase (PKR)-like ER kinase (PERK), activating
transcription factor 6 (ATT6), and inositol-reguiring enzyme 1
(IREI1) [8]. However, if protein aggregation is persistent and the
stress cannot be resolved, signaling switches from pro-survival to
pro-apoptotic. The molecular mechanisms that facilitate this
switch are now emerging [8].

Up to now, initiation phase of ER stress-induced apoptosis,
dissociation of GRP78 from PERK initiates the dimerization and
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autophosphorylation of the kinase and generates active PERK.
Once activated, PERK phorphorylates eukaryotic initiation
factors 2o (eIF2), which results in attenuating global translation
initiation and protein synthesis [9]. Then, in commitment phase of
ER stress-induced apoptosis, CHOP, also as growth-arrest- and
DNA-damage-inducible gene (GADD153), was originally identi-
fied in response to DNA damage. However, CHOP induction is
probably most sensitive to ER stress condition [10]. Furthermore,
to upregulate CHOP protein expression the PERK-elF20-ATF4
branch of the UPR is essential that promotes apoptosis and its
suppressing by the activity of antiapoptotic Bcl-2 family proteins
[10]. In the execution phase of ER stress-induced apoptosis, the
cohort of caspases linked to ER stress-induced apoptosis has not
yet been conclusively established, which triggers from death-
receptor and mitochondria apoptotic pathways. Processing
caspases-12, -3, -6, -7, -8 and -9 has been observed in different
studies of ER stress, but caspase-12 has been proposed as a key
mediator of ER stress-induced apoptosis [11].

Recently, some reports viruses [12-15] can induce ER stress,
which also regulate viral replication or pathogenesis to decide cell
survival or cell death [15-18]. Some examples of mouse retrovirus
[13], hepatitis C virus [15] and Japanese encephalitis virus (JEV)
[17] also can induce the ER stress response via upregulation of ER
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chaperon GRP78. Few of cases are focused on PERK/PKR
pathway [12,16], CHOP/GADDI153 [14]. Further, a few cases of
respiratory syncytial virus and simian virus 5 can induce apoptotic
cell death through caspase-12 activation [18-20]. However, not
much is known about ER stress responses to aquatic virus
infection. The mechanism by which cells undergo apoptosis or are
rescued from ER stress is also not well understood. Such studies
could be wuseful in elucidating pathways involved in viral
pathogenesis.

The Bcl-2 family of proteins, comprised of both anti- and pro-
apoptotic molecules, constitutes a critical, intracellular decision
point regulating a common death pathway [21]. The ratio of
antagonist (Bcl-2, Bel-xp, Mcl-1, and Al) to agonist (Bax, Bak, Bcl-
x; and Bad) molecules dictates whether a cell responds to a
proximal apoptotic stimulus [21]. These proteins also interact with
mitochondria to control the balance of mitochondrial membrane
potential (MMP) [22,23].

Infectious pancreatic necrosis virus (IPNV) is a fish pathogen
and the prototype of the Binaviridae virus family [24]. Birnaviruses
possess a bi-segmented, double-stranded RNA genome contained
within a medium-sized, unenveloped, icosahedral capsid. Gene
expression involves the production of four unrelated major genes,
which undergo various post-translational cleavage processes to
generate three to five different structural proteins [25]. The largest
of these proteins (VP1; 90-110 kDa) is encoded by the smaller
segment B RNA [26]. The larger genome segment A: A large open
reading frame (ORF) encodes VP3 (submajor capsid protein;
32 kDa) that play a new role as a death factor [27], VP4 (28 kDa),
and VP2 (major capsid protein; 46 kDa) [28]; and small ORF
encodes a small non-structural protein VP5 (17 kDa), which play
an anti-apoptotic function [28,29].

Previously, IPNV infection may induce apoptosis in a fish cell
line [30-33], cell death may be through activation of caspase-8
and -3 [34], and apoptosis requires new protein synthesis [32],
which acts through NF-xB transcription factor activation for trans-
activating the downstream effector genes such as Bad [33].
Recently, IPNV infection can induce mitochondrial membrane
potential (MMP) loss, which block by ANT inhibitor BKA [36]
and IPNV-induced expression gene annexin 1 could play anti-
death function [37]. On the other hand, IPNV can increase elF2a
phosphorylation is via interferon/elF20./PKR response in RTG-2
cells [38], but they are how to trigger ER stress and how to
regulate the mitochondria function is remain unknown.

In this present, we examined that IPNV infection triggers PKR/
PERK/elF200 ER stress response that can involve in CHOP
upregulation and Bcl-2 family members downregulation, which
connect to regulate the mitochondria function. From our finding,
that may provide new insights into RNA virus pathogenesis via ER
stress response regulates host cell death.

Materials and Methods

Cell line and virus

Chinook salmon embryo cells (CHSE-214) were obtained from
the American Type Culture Collection (ATCC, Manassas, VA,
USA). Cells were grown at 18°C in plastic tissue-culture flasks (Nalge
Nunc International, Rochester, NY, USA) containing Eagle’s
minimum essential medium (MEM) supplemented with 10% (v/v)
fetal bovine serum (FBS) and gentamicin (25 ug/ml). An isolate of
the Ab strain of IPNV, designated E1-S, was obtained from Japanese
eels in Taiwan [39]. The virus was propagated in CHSE-214 cell
monolayers at a multiplicity of infection (MOI) of 0.01 per cell.
Infected cultures were monitored as described previously [40] and
TCIDs5 assay was performed on confluent monolayers [41].
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Western-blot analysis

Monolayers of CHSE-214 cells (4.0 ml, 10° cells per ml) on 60-
mm Petri dishes were cultivated for at least 20 h and rinsed twice
with PBS. In viral protein expression assay, cells were infected with
virus (MOI = 1) and incubated for O h, 6 h or 12 h p.i.; In GRP78
inhibitor vomitoxin (VT, 1 ug/ml; Sigma Chemicals, MO, USA)
assay, pretreated two hours then incubated for O h, 6 h, or 12 h
p-i. that vomitoxin have some side effects on causing a ribotoxic
stress response, inhibiting protein synthesis and in some systems
activating PKR; In PKR inhibitor 2-aminopurine (2-AP; 20 mM;
Sigma Chemicals, MO, USA) assay, pretreated two hours then
incubated for 12 h p.. that 2-aminopurine may function in
general as an ATP analogue and has effects art multiple levels and
on may kinases. At the end of each incubation period, the culture
medium was aspirated, and the cells were washed with PBS and
then lysed in 0.3 ml of lysis buffer (10 mM Tris base, 20%
glycerol, 10 mM sodium dodecyl sulfate, and 2% B-mercaptoeth-
anol; pH =6.8).

Proteins were separated by SDS-polyacrylamide gel electro-
phoresis [42], electroblotted, and subjected to immunodetection as
described elsewhere [43]. Blots were incubated with a 1:3000
dilution of anti-IPNV EI-S particle polyclonal antibodies (provid-
ed by Dr. Wu), and a 1:10000 dilution of a peroxidase-labelled
goat anti-rabbit conjugate (Amersham, Piscataway, NJ, USA); or
with a 1:2000 dilution of anti-mouse GRP78 (BD Biosciences, Palo
Alto, CA 94303-4230, USA), PERK (ROCKLAND), PERK
phosphorylation (BioLegend, San Diego, California, USA),
elF2a(Cell Signaling Technology, Danvers, MA 01923, USA),
ell2o0 phosphorylation (Cell Signaling Technology), CHOP
(BioLegend), Bcl-2 (BD Biosciences), Mcl-1 (CHEMICO), Bel-xL
(BD Biosciences) and actin monoclonal antibodies (BD Bioscienc-
es), and a 1:8000 dilution of a peroxidase-labelled rabbit anti-
mouse conjugate.

Chemiluminescence detection was performed according to the
instructions provided with the Western Exposure Chemilumines-
cence Kit (Amersham). The chemiluminescence was visualized by
exposure to Kodak XAR-5 film (Eastman Kodak, Rochester, NY,
USA).

PS exposure assay

Monolayers of CHSE-214 cells (4.0 ml, 10> cells per ml) on 60-
mm Petri dishes were cultivated for at least 20 h and rinsed twice
with PBS. Cells were infected with virus (MOI = 1) and incubated
for 0 and 12 h p.i. On the other hand, the cells pretreated GRP78
inhibitor vomitoxin (VY, 1 pg/ml) for 2 h, then cells were infected
with virus (MOI=1) and incubated for 0, 6 h and 12 h p.i. In
early apoptotic cell assay (Annexin V-FLUOS staining or Annexin
V-Red; 29): Exposure of PS on the outer leaflet of early apoptotic
cell membranes was analyzed using annexin V-fluorescein to
differentiate apoptotic from non-apoptotic cells. At 0, 8 and 12 h
post-infection time (h p.i.), cells were removed from the medium,
washed with PBS, and then incubated with 100 ul of a
commercially available staining solution (annexin V-fluorescein
in a HEPES buffer; Boehringer-Mannheim, Mannheim, Ger-
many) for 10-15 min. Evaluation was by fluorescence microscopy
(Olympus IX 70; Halagaya Shibuta-ku, Tokyo, Japan) using a
488-nm excitation wavelength and 515-nm long-pass filter for
detection [30]. Each group sample (two dishes) was counted three
times, and each time, 200 or more cells were counted. The
characteristics of cells were recorded according to the colour and
structure of the cell. The mean of the three counts of each different
cell characteristic was used to calculate the apoptotic and necrotic
cell indices and their respective bars.
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Evaluation of mitochondrial membrane potential with a
lipophilic cationic dye

CHSE-214 cells (4.0 ml, 10°/ml in a 60-mm Petri dish) were
cultured as monolayers for 20 h and then rinsed twice with
phosphate-buffered saline (PBS). To evaluate IPNV induces
mitochondria-mediated cell death. CHSE-214 cells were infected
with E1-S strain and then incubated for 0, 6 h, and 12 h p.i. By
contrast, to evaluate V'T treatment, cells were pretreated GRP78
inhibitor vomitoxin (VY, 1 pg/ml) for 2 h and then incubated for
0,8 h, 12 hand 24 h p.i.; and in Bcl-xLh overexpression stably cells
and EGFP cells were infected with virus (MOI = 1) and incubated
for 0, 12h and 24 h p.i. For assessment of mitochondrial
membrane potential (AWm), CHSE-214, EGFP-BclxL-2,
EGFP-3, VT plus CHSE-214 cells were stained using MitoCap-
ture reagent (500 pl per dish incubated at 37°C for 15—20 min;
BioVision, Mountain View, CA, USA). This lipophilic cationic dye
accumulates and aggregates in mitochondria when AWm is
normal and remains in the cytoplasm when it is not. Loss of
fluorescence intensity observed under fluorescence microscopy was
taken as a marker of mitochondrial membrane disruption and
reduced potential [44]. Evaluation was by fluorescence microscopy
using a 488-nm excitation wavelength and 515-nm long-pass filter
for detection of fluorescein, and using a 510-nm excitation
wavelength and 590-nm long-pass filter for detection of rhoda-
mine.

Caspases activity assay (caspase-3)

Intact cell assay. About 10° CHSE-214 cells/ml were
seeded in a 60-mm Petri dish from Nunc (Nalge Nunc
International, Rochester, NY, USA) and cultured for 20 h at
18°C. The cells pre-treated VT for 2 h, then infected with IPNV
and in cells for caspase-3 (PhiphiLux-GsDs red; Oncolmmunin,
TM, USA) assays, then further incubation for 0, and 12 h p.i. At
the end of each time point, substrate was present at 10 pM for one
hour at 18°C, then evaluation was by fluorescence microscopy
using a 488-nm excitation wavelength and 515-nm long-pass filter
for detection of fluorescein, and using a 510-nm excitation
wavelength and 590-nm long-pass filter for detection of
rhodamine. Each group sample (two wells) was counted three
times, and each time, 200 or more cells were counted. The
characteristics of cells were recorded according to the colour and
structure of the cells. The mean of the three counts of each
different cell characteristic was used to calculate the caspase-3
activation cell indices and their respective bars.

Preparation of mitochondria from CHSE-214 cells
CHSE-214 cells (10 ml, 10°/ml in a 100-mm Petri dish) were
cultured as monolayers for 20 h and then rinsed twice with
phosphate-buffered saline (PBS). To evaluate IPNV induces
mitochondria-mediated cell death. CHSE-214 cells were infected
with E1-S strain and then incubated for 12 h p.i. By contrast, to
evaluate VT treatment, cells were pretreated GRP78 inhibitor
vomitoxin (VT, 1 pg/ml) for 2 h and then were infected with virus
(MOI=1) and incubated for 0, 12 h p.i. At each time point
subsequent to a change of the culture medium, 1 ml was removed.
Mitochondria were isolated by a modification of a previously
described protocol [44]. Briefly, CHSE-214 cells (2x10°% were
washed with PBS and homogenized in 0.3-ml of mitochondria
isolation buffer (0.35 M mannitol, 10 mM HEPES, 0.1% bovine
serum albumin, pH 7.2) using a glass homogenizer. Unbroken
cells and nuclei were pelleted by centrifugation (600X g for 5 min
at 4°C). The mitochondria pellet was isolated from centrifuged
supernatant (10,000 g for 10 min at 4°C) and supernatant was
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collected and mixed with 25 pl of 10x sodium dodecyl sulfate
sample buffer. Samples (50 ul) were boiled and subjected to
Western blot analysis [42-43].

Nuclear protein extraction from CHSE-214 cells

CHSE-214 cells (4.0 ml, 10°/ml in a 60-mm Petri dish) were
cultured as monolayers for 20 h and then rinsed twice with
phosphate-buffered saline (PBS). To evaluate IPNV induces
CHOP expression in CHSE-214 cells. CHSE-214 cells were
infected with E1-S strain and then incubated for 12 h p.i. By
contrast, to evaluate VT treatment, cells were pretreated GRP78
inhibitor vomitoxin (VY, 1 ug/ml) for 2 h and then were infected
with virus (MOI = 1) and incubated for 0, 12 h p.i. At each time
point subsequent to a change of the culture medium, 1 ml was
removed. Mitochondria were isolated by a modification of a
previously described protocol [44].

Cell counts

Loss of MMP and percentage of annexin V-fluorescein positive
cells were determined in each sample by counting 200 cells. Each
result was expressed as mean * SEM. Data were analyzed using
either paired or unpaired Students ¢ tests, as appropriate. A value
of p<<0.05 was taken to represent a statistically significant
difference between group mean values.

Results

IPNV infection can activate ER stress sensor ATF-6 and
up-regulation of chaperone GRP78 at early replication
(6 h p.i.) stage in CHSE-214 cells

Recently, some reports viruses [12-15] can induce ER stress,
which also regulate viral replication or pathogenesis to decide cell
survival or cell death [15-18], but RNA virus induced-ER stress
signaling directly effect mitochondria function is remain uncover.
We try to ask IPNV infection whether can induce ER stress. In
figure 1 shows the expression profile of the major capsid protein
VP2, which was gradually processed from its precursor form
pVP2-1 (52 kDa) and intermediate form pVP2-2 (50 kDa) to
mature VP2 (46 kDa) at 6 h to 12 h p.i. (Fig. 1A, lanes 2-3) in
infected CHSE-214 cells as compare with uninfected cells; Fig. 1A,
lane 1 at 0 h as a negative control. Furthermore, at 6 h and 12 h
p-1, IPNV infection can either gradually induce ER stress sensor
ATF-6 cleavage (Fig. 1A, lanes 2-3) or can upregulate GRP78
(Fig. 1A, lanes 2-3) as compared with 0 h (Fig. 1A, lane 1) as a
control group (Fig. 1A, lane 1). The positive control MCF-7 cell
lysate is shown in Fig. 1, lane 4. The internal control B-actin is
shown in Fig. 1A, lanes 1-4. The upregulation ratio of GRP78 are
8 folds (6 h p.i.) and 8.5 folds (12 h p.i.) as shown in Fig. 1B as
compared with 0 h that based level is as a one-fold. These results
suggest that IPNV infection can trigger UPR at 6 h p.i. (early
replication stage) in this fish system.

IPNV infection can activate PERK/elF2 o phosphorylation
ER signal and upregulation of CHOP

Furthermore, IPNV triggered ER stress whether can activate
PERK is still unknown.

In our system, we found that IPNV infection just can mild
activate the PERK at 6 h (Fig. 2A:a, lane 2; 2A:b) and apparently
activated at 12 h (Fig. 2A:a, lane 3) p.1., as compared with mock
control (Fig. 2A, lane 1, at 0 h) and positive control (Fig. 2A:a, lane
4). The activation of PERK further apparently phosphorylate its
substrate elF2at at 6 h (Fig. 2A:a, lane 2) and 12 h (Fig. 2A:a, lane 3)
p.i. as compared with mock control (Fig. 2A:a, lane 1, at 0 h) and
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Figure 1. Identification of IPNV infection induces ER stress
sensor ATF6 cleavage and up-regulate marker GRP78 in CHSE-
214 cells. Infection of IPNV E1S (MOI=1) in CHSE-214 cells following
incubation for 0 h, 6 h, and 12 h p.i. (A) VP2, ATF6 and GRP78 proteins
were detected by Western blots, and the gels were immunoblotted
with a polyclonal antibody to whole particle IPNV E1-S whole particle,
with a monoclonal antibody to anti-mouse ATF6 and GRP78. Lanes 1-3:
Cells infected with IPNV were incubated for 0 h (lane 1), 6 h (lane 2),
and 12 h (lane 3). The MCF-7 cell lysate is a positive control as shown in
lane 4. Internal control Actin for experiments whose results are depicted
in panel A. (B) Quantification of ER stress marker GRP78 upregulation
levels in IPNV-infected cells at early and middle replication stages.
Protein expression level was quantified by Personal Densitometer
(Molecular Dynamic). Data were analyzed using either paired or
unpaired Student’s t-tests, as appropriate. * p<<0.05 was taken as a
statistically significant difference between group mean values.
doi:10.1371/journal.pone.0022935.g001

positive control (Fig. 2A:a, lane 4). The un-phosphorylation of elF-2
and actin as a internal control are shown in Fig. 2A:a, lanes 1-3.
The PERK autophosphorylation ratios are shown in Fig. 2B that
are gradually increased from one fold (0 h) to 1.2 folds (6 h p.1.) and
2.0 folds (12 h p.1.). The eIF2a phosphorylation ratio by PERK are
quickly increased from one fold (0 h) to 2.1 folds (6 h p.i.) and 3.0
folds (12 h p.i.). Furthermore, In nuclear fraction (Fig. 2D:a) and
cytosoloic fraction (Fig. 2D:b) also found that PERK/elF2a
signaling can upregulate the CHOP protein expression at 6 h p.i.
(2.7 folds), 10 h p.i. (3.0 folds) and 12 h p.i. (4.0 folds) in total
amount of expression level that includes nuclear and cytosolic
fractions (Fig. 2E) as compared with 0 h (1 fold).

These data suggest that ell2 phosphorylation can regulate the
downstream CHOP expression at early and middle replication
stages.

IPNV-induced elF20/CHOP death signaling can affect Bcl-
2 family protein expressions

Furthermore, as we known to upregulate CHOP protein
expression the PERK-elF20-ATF4 branch of the UPR is essential
that promotes apoptosis. In our system, dramatically found that
CHOP upregulation can connect to suppress the Bcl-2 family
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proteins as Bcl-2, Mcl-1 and Bcl-xL, which also suppress the host
cell apoptotic cell death (21-23). In western blot analysis, the Bcl-2
families were also mild upregulated at 6 h p.i. (Fig. 3A, lane 2) and
9 h p.. (Fig. 3A, lane 3) as compared with negative control (0 h;
Fig. 3A, lane 1) and positive control HeLa cell lysate (Fig. 3A, lane
5), but then dramatically downregulated their proteins expression
at 12 h (Fig. 3A, lane 4) p.i. that up- and downregulation ratios
were shown in Fig. 3B-D for tracing Bcl-2, Mcl-1 and Bcl-xL.
expression profiles, respectively. The Bcl-2 family proteins
downregulation was correlated to host cell death (Fig. 3E: c—d;
indicated by arrows) as compared with negative control (Fig. 3E:
a-b) by Annexin V-staining at 12 h p.i. that Annexin V-positive
cell ratio was shown in Fig. 3F, which was up to 50% than
negative control. These data suggest that IPNV infection-triggered
elF20/CHOP signaling significantly involved in downregulation
of Bcl-2 family proteins as Bcl-2, Mcl-1 and Bcl-xL and cell death.

Dual signal of PERK/PKR regulates elF20. phosphorylation
with IPNV infection

In our system, IPNV infection may upregulate the chaperone
protein GRP78 (Fig. 1A) for modulate the unfold proteins during a
large amount of viral protein expressions. Then, we try to block
GRP78 induction whether connects to reduce ER stress. The
results of GRP78 inhibitor vomintoxin (VT; 1 pg/ml) treatment,
can effectively block the GRP78 upregulation at 6 h (Fig. 4A:a,
lane 6) and 12 h (Fig. 4A:a, lane 7) p.i. as compare with without
treatment group at 6 h (Fig. 4A:a, lane 4) and 12 h (Fig. 4A:a, lane
5) p.1. and negative control at O h, 6 h and 12 h (Fig. 4A:a, lanes
1-3), which also apparently blocked GRP78 expression up to 6
folds as shown in Fig. 4A:b at 6 h and 12 h p.i. Then, we found
that V'T' can block GRP78 induction but did not inhibit the PERK
phosphorylation (Fig. 4B:a, lane 3) at 12 h pi when compared with
IPNV infection group (Fig. 4B:a, lane 2) and negative control
(Fig. 4B:a, lane 1). On the other hand, it is very interesting that V'T
did block PERK phosphorylation, but can inhibit elF2a
phosphorylation (Fig. 4B:a, lane 3) from two folds down to one
fold (Fig. 4B:b) as compared with mock group and VT plus IPNV
group. So, we try to ask other possibility whether elF2a
phosphorylation is via PKR pathway. Then, we try to treat
PKR specific inhibitor 2-AP for blocking ell2a0 phosphorylation.
The results of 2-AP (0.1 uM) can block eIF2o phosphorylation at
12h pi. (Fig. 4C:a, lane 4) when compared with without
treatment group (Fig. 4C:a, lane 3) and negative control group
(Fig. 4C:a, lanes, 1-2), which reduces phosphorylation ratio is
apparently from 2.1 folds down to 0.8 fold (Fig. 4C:b). These data
suggest that IPNV-induced ER stress signal for ellF20. phosphor-
ylation, which phosphorylated by using dual signal (PERK/PKR)
pathways during in the early and middle replication stages.

IPNV infection-induced ER stress signal can upregulate

CHOP and can downregulate Bcl-2 family proteins
When unfold proteins continue to accumulate beyond the
capacity of the ER, apoptosis may occur. Under the ER stress,
CHOP is activated to facilitate cell death, which the downstream
targets of CHOP remain unknown, but CHOP-mediated apoptosis
has been coupled to a pathway that suppresses Bcl-2 expression,
depletion of intracellular glutathionine, and an increase of free
radicals [45]. In our system, IPNV-induced the PERK-elF2a
signaling pathway can upregulate the CHOP (Fig. 2D), but whether
regulate the Bcl-2 family is still unknown. When treatment of VT for
blocking GRP78, can correlate to dephosphorylate the elF2o and
reduces the CHOP expression (Fig. 5A:a and b, lane 3) at 12 h p.i.
in nuclear fraction and cytosolic form as compared with IPNV

August 2011 | Volume 6 | Issue 8 | e22935



A IPNV
kba__ 0 12  MCF-7

F ‘ S

_ (h)
95 . PERK-P

05— B B &S-Perk
{0 WS S W er2eP

B . - -l
p e —— e {111

1 2 3 4
B IPNV
kpa_ 0 6 10 12 (h) Nuclear fraction
26— - - W W CHOP
1.0 13 1.5 2.0 :Expression level

12— P
———— LaminB1 g
b Cytosolic fraction
2 (e WS - CHOP
1.0 1.4 1.5 2.0 :Expression level
O W S S Actn
1 2 3 4

IPNV Regulates Cell Death via ER Stress Signaling

s *
e
§ o 15
= #
w 7]
o
L -
Oh

6h 12h
Post-ransfection ume (h)

A9 *
Oh 6h 12h

% of clF2 alpha
phosphorlation ratio
-
A s Lnopo i

=]

>

IS

Post-transfection tme

B Cytosalic form

B MNuclear form

H”

Gh &h 10h 1Zh

% of upregulation of CHOP
ratio
(=] - D F wn

Post-wransfection ime (h)

Figure 2. Identification of IPNV-induced ER stress signal can phosphorylate the PERK and elF-20 protein and upregulate CHOP
protein in CHSE-214 cells. Infection of IPNV in CHSE-214 cells following incubation for 0 h, 6 h, 10 h.and 12 h p.i. (A) PERK and elF2a proteins and
its phosphorylated levels were detected by Western blots, and the gels were immunoblotted with a polyclonal antibody to mouse phosphor-PERK
(Thr980), PERK, phosphor-elF2a (Ser51) and elF2a. Lanes 1-3: Cells infected with IPNV were incubated for 0 h (lane 1), 6 h (lane 2), and 12 h (lane 3).
The MCF-7 cell lysate is a positive control as shown in lane 4. Internal control Actin for experiments whose results are depicted in panel A. (B-C)
Quantification of phosphor-PERK (Thr980) and phosphor-elF2a (Ser51) phosphorylation upregulation levels in IPNV-infected cells at early and middle
replication stages. Protein expression level was quantified by Personal Densitometer (Molecular Dynamic). Data were analyzed using either paired or
unpaired Student’s t-tests, as appropriate. * p<<0.05 was taken as a statistically significant difference between group mean values. (D) CHOP
(GADD153), Lamin B1 and Actin expression levels were detected by Western blots, and the gels were immunoblotted with a polyclonal antibody to
CHOP (GADD153) and Lamin B1, with a monoclonal antibody to Actin. D:a, lanes 1-4: Cells infected with IPNV were incubated in nuclear fraction
samples for 0 h (lane 1), 6 h (lane 2), 10 h (3) and 12 h (lane 4). Nuclear control Lamin B1 for experiments whose results are depicted in panel D:a. D:b,
lanes 1-4: Cells infected with IPNV were incubated in cytosolic fraction samples for 0 h (lane 1), 6 h (lane 2), 10 h (3) and 12 h (lane 4). Cytosolic
control Actin for experiments whose results are depicted in panel D:b. (E) Quantification of CHOP expression levels in IPNV-infected cells at early and
middle replication stages. Data were analyzed using either paired or unpaired Student'’s t-tests, as appropriate. * p<<0.05 was taken as a statistically

significant difference between group mean values.
doi:10.1371/journal.pone.0022935.g002

infection group (Fig. 5A:a and b, lane 2) and negative control
(Fig. 5A:a and b, lane 1), which downregulation ratio from 2.3 folds
was down to 1.4 folds in nuclear form and from 1.5 folds was down
to 1.1 folds as compared with mock control one fold each in nuclear
and cytosolic form (Fig. 5A:c). Furthermore, downregulation of
CHOP are increased the Bcl2 family protein expression levels such
as Bcl-2, Mcl-1 and Bel-xL (Fig. 5B, lane 3) as compared with IPNV
infection group (Fig. 5B, lane 2) and mock group (Fig. 5B, lane 1) at
12 h p.i., which expression level of Bcl-2 increased from 0.4 folds to
0.6 folds (Fig. 5C); Mcl-1 increased from 0.5 folds to 1.1 folds
(Fig. 5D); and Bcl-xL increased from 0.5 folds to 1.1 folds (Fig. 5E).
The mock groups were as one fold (Fig. 5B, lane 1) for Fig. 5C-E.

IPNV-induced ER stress signals affect the MMP loss,
caspase-3 activation

Then, to modulate the elF-2/CHOP signalings by VT for
inhibition of GRP78 synthesis whether correlates to disrupt the
mitochondria function is still unknown. To determine whether

@ PLoS ONE | www.plosone.org

MMP loss was affected by IPNV infection in CHSE-214 cells, a
mitochondrial function dye (JC-1 dye) was used to determine
change in the MMP of IPNV-infected cells. The dye aggregates in
the mitochondria of healthy cells and fluoresces red. In apoptotic
cells, the dye cannot accumulate in mitochondria, remains as
monomers in the cytoplasm, and fluoresces green. The VT
treatment group can block IPNV-induced MMP loss in CHSE-
214 cells (Fig. 6A: ¢, f and i) as compared with IPNV infection
group (Fig. 6A: b, e and h; indicated by arrows) and negative
control (Fig. 6A: a, d and g). The MMP loss ratio is shown in
Fig. 6B, at 6 h p.i. 10% was down to 3%; 12 h p.i. 69% was down
to 4% in VT plus IPNV group as compared with IPNV infection
group. The negative control group is 1.5% and 2% at 6 h and
12 h p.., respectively. Furthermore, we have found that the
cytochrome ¢ release in IPNV-infected cells from mitochondrial
membrane form (Fig. 6C:a, lane 2) and cytosolic form (Fig. 6C: b,
lane 2) at 12 h p.i. as compared with VT plus IPNV infection
group In membrane form (6C:a, lane 3) and cytosolic form
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Figure 3. Identification of IPNV-induced ER stress signal can induce Bcl-2 family proteins downregulation and apoptotic cell death.
Infection of IPNV in CHSE-214 cells following incubation for 0 h, 6 h, 9 h and 12 h p.i. (A) Bcl-2, Mcl-1 and Bcl-xL proteins expression levels were
detected by Western blots, and the gels were immunoblotted with a polyclonal antibody to Bcl-2 and Bcl-xL, and with a monoclonal antibody to Mcl-
1. Lanes 1-4: Cells infected with IPNV were incubated for 0 h (lane 1), 6 h (lane 2), 9 h (lane 3) and 12 h (lane 4). The Hela cell lysate is a positive
control as shown in lane 5. Internal control Actin for experiments whose results are depicted in panel A. (B-D) Quantification of Bcl-2, Mcl-1 and Bcl-xL
proteins expression levels in IPNV-infected cells at early and middle replication stages. Protein expression level was quantified by Personal
Densitometer (Molecular Dynamic). Data were analyzed using either paired or unpaired Student’s t-tests, as appropriate. * p<<0.05 was taken as a
statistically significant difference between group mean values. (E) Identification of IPNV induces apoptotic and post-apoptotic necrosis in CHSE-214
cells. Annexin V-labeled (fluorescing) apoptotic cells indicated by arrows at 12 h p.i. with IPNV infection. (Fig. 3E, panels ¢ and d); without infection
group as negative control (Fig. 3E, panels a and b) at 12 h p.i. (Bar=10 um.). (F) Annexin-V positive cells were counted per 200 cells and data was
analyzed using either or unpaired Student t-tests as appropriate at 0 and 12 h p.i. A value of p<<0.02 was taken to represent a statistically significant
difference between mean values of groups.

doi:10.1371/journal.pone.0022935.9g003

(Fig. 6C: b, lane 3) and negative control group membrane form
(6C:a, lane 1) and cytosolic form (6C:a, lane 1). The Jurkat cell

These data suggest that blockade of GRP78 upregulation by VT
can reduce ER stress signal induces mitochondria/caspase-3-

lysate as a positive control is shown in (6C:a and b, lane 4). The
internal control cyto ¢ oxidase I for membrane form is shown in
Fig. 6C:a, lanes 1-3; Actin for cytosolic form is shown in Fig. 6C:b,
lanes 1-3. In addition to determine whether caspase-3 activation
was blocked by VY treatment. In caspase-3 activation assay, we
found that VT treatment can effectively reduce caspase-3
activation (Fig. 6D: ¢ and f) as compared with IPNV infection
group (Fig. 6D: b and e; positive cell indicated by arrows) and
negative control (Fig. 6D: a and d), which percentage of caspase-3
positive cell is shown in Fig. 6E. At 12 h p.i.,, 45% (IPNV infection
group) was down to 2% (VI+IPNV) and negative control 1%.

@ PLoS ONE | www.plosone.org

mediated cell death.

Discussion

Infectious pancreatic necrosis virus (IPNV) is a fish pathogen
E1-S of the IPNV Ab strain induces apoptotic cell death in CHSE-
214 cells as suggested previously by Hong [30-33] and induces
apoptotic death in zebrafish ZLE cells [34]. In this study, we
examine the double-stranded RNA-IPNV and attempted to
interpret how the virus triggers an PKR/PERK/elF2a-mediated
death signal for transcription and translation of a CHOP, a Bcl-2
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Figure 4. Identification of PKR/PERK two signal pathways on elF2 phosphorylation in CHSE-214 cells with IPNV infection.
Pretreatment chaperone GRP78 inhibitor VT (1 ug/mL) with CHSE-214cells for two hours, then infection of IPNV in CHSE-214 cells following
incubation for 0 h, 6 h and 12 h p.i. (A:a) western blot analysis of GRP78 protein expression in IPNV-infected CHSE-214 cells. IPNV-infected CHSE-214
cells at 6 h p.i. (lane 4) and at 12 h p.i. (lane 5); with VT (1 ug/mL) treatment at 6 h p.i. (lane 6), and at 12 h p.i. (lane 7); uninfected cells at 0 h p.i. (lane
1), 6 h (lane 2) and 12 h (lane 3). Actin was used as an internal control in lanes 1-7. Quantification of GRP78 expression levels in IPNV-infected cells at
early and middle replication stages. (A:b) Protein expression level was quantified by Personal Densitometer (Molecular Dynamic). Data (three times
independent experiments) was analyzed using either or unpaired Student t-tests as appropriate at 0, 6 and 12 h pi. A value of p<<0.05 was taken to
represent a statistically significant difference between mean values of groups. (B:a) western blot analysis of PERK and elF2a. protein phosphorylation
level in IPNV-infected CHSE-214 cells at 12 h p.i,; lane 1 without IPNV-infected cells; lane 2, IPNV-infected CHSE-214 cells; lane 3, with VT (1 ug/mL)
treatment and IPNV-infected CHSE-214 cells; lane 4, with ER stress drug A23187 treatment for 2 hours. Actin was used as an internal control in lanes
1-4. (B:b) Quantification of elF2a protein phosphorylation level in IPNV-infected cells at middle replication stage. Protein expression level was
quantified by Personal Densitometer (Molecular Dynamic). (C:a) western blot analysis of elF2a protein phosphorylation level in IPNV-infected CHSE-
214 cells at 12 h pi. IPNV-without infected cells (lane 1); with protein kinase inhibitor 2-aminopurine (2-AP; 20 mM) pretreatment two hours CHSE-214
cells; with IPNV-infected CHSE-214 cells (lane 3); with 2-AP treatment plus IPNV-infected CHSE-214 cells (lane 4). Actin was used as an internal control
in lanes 1-4. (C:b) Quantification of elF2a protein phosphorylation level in IPNV-infected cells at middle replication stage. Protein expression level was
quantified by Personal Densitometer (Molecular Dynamic).

doi:10.1371/journal.pone.0022935.9g004

Protein kinase PKR inhibitor 2-AP treatment

suppressor leading to induction of host mitochondria-mediated cell

death.

and DNA viruses and produce viral proteins within its host cells.
Consequently, viral replication how to elicit cellular responses such
as endoplasmic reticulum (ER) stress and interferon responses is

RNA virus induces ER stress still overcome. Therefore, it is not surprising that viruses have

Virus infection of mammalian and animal cells consists of a
series of events, which involve in entry, RNA expression and
processing, polypeptides synthesis and modification, genome
replication, and maturation. On the other hand, as intracellular
parasites, viruses rely on the utilization of cellular machinery and
resource to complete their replication cycle, which stage viruses
synthesize double-stranded RNA intermediates including RNA

@ PLoS ONE | www.plosone.org

evolved various mechanisms to cope with these responses that limit
or inhibit viral replication [45]. Recently, some viruses can induce
ER stress as the tula virus [3], mouse retrovirus [13], hepatitis C
virus [15], Japanese encephalitis virus [17] and betanodavirus [46]
induce the ER stress response via upregulation of the ER
chaperone protein GRP78. However, a few is known about ER
stress responses to aquatic virus infection. In our system, we have
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Figure 5. Identification of IPNV-induced ER stress signal can up-regulate CHOP and can downregulate the Bcl-2 family protein at
middle replication stage. (A:a, nuclear form and b, cytosolic form) Western blot analysis of CHOP protein expression in without IPNV-infected
CHSE-214 cells (lane 1), with IPNV-infected CHSE-214 cells (lane 2), with VT pretreatment and IPNV-infected CHSE-214 cells (lane 3) at 12 h p.i. Actin
was used as an internal control in lanes 1-3. (A:c) Quantification of CHOP expression level in RGNNV-infected cells at middle replication stage. (B)
Western blot analysis of Bcl-2. Mcl-1 and Bcl-xL protein expressions in IPNV-infected CHSE-214 cells with VT (1 ug/mL) treatment at 12 h p.i (lane 3);
IPNV-infected CHSE-214 cells at 12 h pi (lane 2); uninfected cells at 12 h (lane 1); Hela cell lysate as a positive control (lane 4). Actin was used as an
internal control in lanes 1-4. (C-E) Quantification of Bcl-2, Mcl-1 and Bcl-xL expression levels in IPNV-infected cells at middle replication stage. Protein
expression level was quantified by Personal Densitometer (Molecular Dynamic).

doi:10.1371/journal.pone.0022935.g005

found that IPNV infection could induce ER stress response via
PKR/PERK/elF2 signal death pathway for controlling the
downstream CHOP and Bcl-2 expression.

Dual kinase (PKR/PERK) modulate elF2 phosphorylation
Unfolded proteins stimulate ER stress pathways, whereas
dsRNA produced by viruses triggers the interferon pathway.
These stress-responsive pathways converge at the subunit o of
translation initiation factor 2 (eIlF20r), which is essential for protein
synthesis. Up to date, four different ell'20 kinases have been
identified [47-48]. Amongst these kinases, PKR as well as PERK
are activated by virus infection. Notably, PKR is a cytosolic and
nuclear protein, which acts as an intracellular receptor for dsRNA
produced by viral replication. In contrast, PERK is an ER-resident
membrane protein that transmits ER stress signal. So PKR and
PERK is activated by the virus in the cell is still not well defined.
Several lines of evidence have indicated a link of viral replication

@ PLoS ONE | www.plosone.org

to the PERK pathway [5,14,16,49,50,51]. In the early phase of
ER stress, accumulation of unfolded or misfolded protein activates
PERK, which then phosphorylates elF2o at serine 51. This leads
to inhibition of general protein synthesis and reduces the protein
load in ER. Furthermore, elF2a phosphorylation also induces the
expression of activating transcription factor 4 (ATF4), a transcrip-
tion factor that stimulates the expression of C/EBP homologous
protein (CHOP). In contrast, recent studies have shown that
cytomegalovirus and African swine fever virus also perturb the
PERK pathway [14,51,52]. Cytomegalovirus is a B-herpesvirus,
which gene expression occurs in an ordered temporal pattern.
Compared to the prototype herpes simplex virus-1, it is a slowly
replicating virus. In cells infected with cytomegalovirus, PERK is
not phosphorylated in the early phase, but as viral replication
proceeds, in the level of PERK phosphorylation is increased later
in infection [51-52]. In our system, we found that PERK
autophosphorylation for phosphorylation of its substrate elF2a

August 2011 | Volume 6 | Issue 8 | e22935
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Figure 6. Inhibition of ER stress signal can reduce IPNV-induced MMP loss and caspase-3 activation. (A) MMP loss was demonstrated by
either strong green fluorescence or loss of red fluorescence via inhibition of GRP78 expression by its inhibitor VT. Phase-contrast and fluorescence
images of uninfected cells as a negative control (a, d and g) at 12 h; IPNV-infected cells (b, e and h) at 12 h; IPNV-infected with VT treatment cells (c, f
and i) at 12 h that were stained with the lipophilic cationic dye at 12 h p.i,; loss of red fluorescent cells or strong green fluorescent cells are indicated
by arrows. (B) The percentage loss of MMP was calculated at 0 h, 6 h and 12 h p.i. for uninfected, IPNV-infected cells and IPNV-infected with VT
treatment cells. Data were analyzed using either paired or unpaired Student’s t-tests, as appropriate. * p<<0.05 was taken as a statistically significant
difference between group mean values. (C) The release of cytochrome ¢ in CHSE-214 cells is shown at 12 h pi. with uninfected (lane 1), IPNV-infected
cells (lane 2), IPNV-infected with VT treatment cells (lane 3) and Jurkat cell lysate (lane 4). (Fig. 6C: a) the release of cytochrome ¢ from mitochondrial
membranes was detected in gels using Western immunoblotting with polyclonal antibodies against mouse cytochrome c. Internal control,
cytochrome ¢ oxidase |, is in Fig. 6C: a. (Fig. 6C:b) the cytosolic form cytochrome ¢ was detected in gels using Western immunoblotting with
polyclonal antibodies against mouse cytochrome c . Internal control, Actin, is in Fig. 6C: b. (D) Phase-contrast and fluorescent images of VT treatment
blockade of IPNV induces effector caspase-3 activation in CHSE-214 cells by in situ assay. Treatment with VT blocked effector caspase-3 activation at
12 h p.i. Time course of cells incubated with 10 uM DEVDase ((PhiPhiLux-G,D,); red). Fluorescence images of caspase-3 in apoptotic CHSE-214 cell
derived from DEVDase are shown separately to assess their differential activity, which caspase-3 positive cells in red color were indicated by arrows.
(E) Fluorogenic substrate assays were performed in triplicate. Error bars represent standard error of the mean. Fluorescence is expressed as arbitrary
units. Data were analyzed using either or unpaired Student t-tests as appropriate. A value of p<<0.01 was taken to represent a statistically significant
difference between mean values of groups.

doi:10.1371/journal.pone.0022935.g006

mainly at middle stage (Fig. 2A, lane 3; 12h pi), but ~ CHOP induction affect Bcl-2 family protein expression

phosphorylates the ell'2 at early replication stage (Fig. 2A, lane
2 and 4C:a, lane 3; at 6 h p.1.), which PKR and PERK is activated
by the action of the virus in the cell to regulate the ell20
phosphorylation at early and middle replication stages.

@ PLoS ONE | www.plosone.org

Furthermore, to upregulate CHOP protein expression via the
PERK-elF20-ATF4 branch of the UPR signal is essential that
promotes apoptosis [8,45] and its suppressing by the activity of
antiapoptotic Bcl-2 family proteins [21]. The C/EBP homologous
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Figure 7. IPNV induces ER stress-mediated host cell death
cascade. IPNV infection and early replication causes an ER stress
response upon entry and the primary replication stage. Then, viral
replication triggers an ER stress induction stage that includes: 1)
activating ATF6 sensor that up-regulate chaperone protein GRP78; 2)
PKR can phosphorylate the elF2o; 3) PERK sensor is autophosphory-
lated, which can enhance elF2a phosphorylation. Further, the PKR/PERK
ER stress signal can induce CHOP up-regulation, which may correlate to
Bcl-2 family members downregulation such as Bcl-2, Mcl-1 and Bcl-xL at
early (0-6 h pi) and middle (6-12 h pi) replication stages. Finally, IPNV
infection induce PKR/PERK-mediated downredulate Bcl-2 expression
and MMP loss, which combined the death signals for triggering necrotic
cell death at the mitochondrial dysfunction stage at middle and late
(12-24 h pi) replication stages. Cell death could be modulated by: (a) VT
to inhibition of GRP78 expression and (b) 2-AP to reduce PKR activation.
doi:10.1371/journal.pone.0022935.g007

protein (CHOP), also known as growth arrest and DNA damage-
inducible protein (GADD153), is a dominant-negative inhibitor
of the CCAAT/enhancer-binding proteins. When expressed in
mammalian cells, CHOP/GADDI153 facilitates apoptosis [10].
The downstream targets of CHOP remain unknown, but CHOP-
mediated apoptosis has been coupled to a pathway that
suppresses Bcl-2 expression, depletion of intracellular glutathio-
nine, and an increase of free radicals [10,53], but this signal few
case correlated to regulate mitochondria functions. In addition to
CHOP, Japanese encephalitis virus infection also activates p38
MAPK [17]. Inhibition of p38 MAPK activity alleviates apoptosis
induced by Japanese encephalitis virus. In our system, we found
that IPNV-triggered ER stress signaling can activate elF2o
through PKR/PERK pathways and upregulation of CHOP,
which also correlate to suppresses Bcl-2 family proteins
expression at middle stages (12 h p.i.) (Fig. 3A, lane 4). On the
other hand, these are very interesting that Bcl-2 family proteins
Bcl-2, Mcl-1 and Bcl-xL are also upregulated by IPNV between
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early (6 h p.i.) to early-middle replication stage (9 h p.i.), which
responses may prime by host, but at 12 h p.i. (middle stage) are
dramatically decreased their proteins expression (Fig. 3A, lanes
2-3). Furthermore, CHOP-mediated suppresses the Bcl-2 family
proteins expression is modulated by GRP78 inhibitor VT (Fig. 5B,
lane 3; [54]), which reduces ER stress response and corresponded
to enhanced cell survival (Fig. 5F-G). On the other hand,
Birnavirus, infectious disease virus (IBDV) that the signaling
pathways are known. IBDV causes apoptosis and it employs p38
MAPK signal transduction machinery to elicit macrophage and
IBDV-induced apoptosis is caspase-dependent via caspase-3 and -
9 activations [55-56].

The mitochondrion functions as a central integrator of pro-
death stimuli [22] by sequestering apoptogenic proteins such as
cytochrome ¢, Smac/DIABLO, apoptosis inducing factor, and
endonuclease G in the intermembrane space, and releasing these
factors into the cytosol on exposure to proapoptotic signals [57—
58]. The mitochondrial membrane potential (MMP) loss leads to
activate the caspase-9 of the downstream activator of apoptosis
[57-58]. MMP loss can affect both the inner and outer
mitochondrial membranes, and precedes the signs of necrotic or
apoptotic cell death, including the apoptosis-specific activation of
caspases [22]. Hence, the mitochondrion functions as a central
integrator of pro-death stimuli, joining together various types of
proapoptotic signals into a common caspase-dependent pathway
[22]. In our system, we found that IPNV-induced ER stress
signaling can regulate the mitochondria function. This death
signal may suppresses Bcl-2 family proteins expression via CHOP
upregulation that also leads to loss the MMP (Fig. 6A) and
produces cytochrome ¢ release (Fig. 6C), caspase-3 (Fig. 6D)
activation, which also blocked by GRP78 inhibitor (Fig. 6) that
received a consistent results.

We schematically depict the steps to summarize the process of
IPNV-induced ER stress signaling for induction of mitochondria
mediated cell death. As shown in Fig. 7, IPNV entering and
replication in cytoplasm and induces the ER stress response for
upregulation of GRP78. Then, elF2a should be phosphorylated
by PKR through dsRNA manner at early-middle replication stage
(6 h p.i) that elF2a phosphorylation modulated by GRP78
inhibitor VI' and PKR inhibitor 2-AP. Then, this ER stress
signaling can induce of CHOP upredulation and reduce the Bcl-2
family downregulation such as Bcl-2, Mcl-1 and Bcl-xL.
Moreover, downregulation of Bcl-2 family by elF2a/CHOP
signals is correlated to disrupt mitochondria function for cyto ¢
releasing and caspase-3 activation. Our finding may provide new
insights into RNA virus activate ER stress and host interaction on
understanding molecular disease mechanism.
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