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Abstract

Introduction: To prospectively evaluate the performance of Lipopolysaccharide-Binding Protein (LBP) in prediction of
hospital mortality and its correlation to C-reactive Protein (CRP), we studied sixty consecutive, postoperative patients with
sepsis admitted to the university hospital intensive care unit.

Measurements and Methods: Plasma LBP and CRP were serially measured from day(d)1 (onset of sepsis) to d14 in parallel
with clinical data until d28. Predictive value and correlation of LBP and CRP were analyzed by Receiver Operating
Characteristic (ROC) curve analysis and Pearson’s test, respectively.

Main Results: LBP and CRP showed the highest levels on d2 or d3 after the onset of sepsis with no significant difference
between survivors and nonsurvivors. Only at d7, nonsurvivors had significantly (p = .03) higher levels of CRP than survivors.
Accordingly, in ROC analysis, concentration of CRP and LBP on d7 poorly discriminated survivors from nonsurvivors (area
under curve = .62 and .55, respectively) without significant difference between LBP- and CRP-ROC curves for paired
comparison. LBP and CRP plasma levels allocated to quartiles correlated well with each other (r2 = .95; p = .02). Likewise,
changes in plasma concentrations of LBP and CRP from one observation to the next showed a marked concordance as both
parameters concomitantly increased or decreased in 76% of all cases.

Conclusions: During the first 14 days of postoperative sepsis, LBP plasma concentrations showed a time course that was
very similar to CRP with a high concordance in the pattern of day-to-day changes. Furthermore, like CRP, LBP does not
provide a reliable clue for outcome in this setting.
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Introduction

Sepsis is still the main cause of death in surgical intensive care

units with a continuously increasing incidence and a mortality rate

ranging from 30% to 60% depending on sepsis severity and the

days of hospital stay [1,2]. Therefore, both an early diagnosis and

prognosis of sepsis are of utmost importance to control efficacy of

antibiotic and surgical therapy, to manage further diagnostics and

interventions and to optimize cost containment. To identify

patients that are at high risk to succumb to sepsis, however, is

difficult, due to a vast variety of influencing factors (e.g. age,

underlying disease, co-morbidity, focus and type of infection,

readiness and adequacy of therapy). Clinical and routine

labarotory signs, like fever and leukocytosis, respectively, as well

as clinical scores like APACHE II and SAPS II are not always

helpful for outcome prediction [3,4]. Therefore biomarkers that

are released during the inflammatory response, like PCT, IL6 and

CRP, have been investigated and suggested as useful parameters to

determine the outcome of septic patients [4,5,6,7,8,9,10,11].

However, there is no generally accepted marker for monitoring

the evolution of sepsis. More recently, Lipopolysaccharide-binding

protein (LBP) has been proposed as a sensitive marker for bacterial

infection [12,13] and possibly useful follow-up parameter in

detection and resolution of sepsis [14,15]. Like CRP, LBP is an

acute phase protein, that is produced by hepatocytes as well as

epithelial cells of the intestine and the lungs [16,17] after induction

by interleukin-(IL)-6 and IL-1, and a key participant in the innate

immune response to Gram-negative, Gram-positive bacterial and

fungal infections. Due to a binding site for the lipid A moiety of

Lipopolysaccharide (LPS) from Gram-negative bacteria [18], LBP

facilitates the transfer of LPS to the membrane-bound CD14-

receptor [19]. Thereby low concentrations of LBP enhance LPS-

induced cell activation and may induce inflammation at local sites

of infection, whereas higher concentrations of LBP can neutralize

LPS-induced activation and may prevent systemic inflammation

[20]. LBP is constitutively present in human plasma at low

concentrations (3–15 mg/ml) [21] and can increase up to 200 mg/

ml during the acute phase response [22,23]. There are several
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studies investigating the role of LBP in outcome prediction in

critically ill patients with sepsis and infection, however, in part with

inconsistent result [15,22,23,24]. C-reactive protein (CRP) is a well

established parameter to detect local infection and has also been

used for many years in monitoring the inflammatory response to

sepsis [15,22,24].

In the present study we compared the time course of LBP and

CRP plasma levels in survivors and nonsurvivors during the first

14 days of postoperative sepsis and examined the performance of

both markers regarding outcome prediction. Moreover, we studied

whether LBP can provide useful information in addition to CRP

and determined the correlation of LBP and CRP and their

concordance concerning day-to-day changes of plasma concen-

trations.

Materials and Methods

Objectives
We conducted a prospective, observational study at the

University Hospital of Erlangen-Nuernberg, Germany, a 1400-

bed tertiary care hospital involving patients with sepsis, severe

sepsis and septic shock. Surgical adult patients postoperatively

admitted to the interdisciplinary operative ICU (24 bed) after

elective major abdominal or thoracic surgery, were included as

soon as they met the criteria of sepsis, as defined by the

International Sepsis Definitions Conference [25]. Patients were

observed for 28 days from enrollment, or until death or discharge

from the hospital if either occurred before day 28. They were

classified as survivors and nonsurvivors of sepsis according to the

outcome at day 28 after study enrollment. The primary study

endpoint was 28-day mortality from sepsis.

Ethics
The study was approved by the Institutional Ethics Committee

(Ethik-Kommission der Medizinischen Fakultät der Universität

Erlangen-Nürnberg) according to the International Declarations

of Helsinki and Tokyo (approval No.: 3298). For participation in

the study, informed written consent was obtained from all patients,

legal representatives or next of kin.

Study protocol
At time of enrollment, all included patients had to have a

microbiologically confirmed or definite clinical evidence of

infection and at least two of the following criteria of a Systemic

Inflammatory Response Syndrome (SIRS) within a few hours, not

exceeding 24 hours: core body temperature .38.0uC or ,35.6uC;

tachycardia .90 bpm; tachypnea .20 breaths/min or need for

mechanical ventilation; leukopenia (WBC,4000/ml) or leukocy-

tosis (WBC.10000/ml) or more than 10% unsegmented neutro-

phils. At the onset of sepsis, the severity of the patient’s condition

was determined by using Acute Physiology and Chronic Health

Evaluation II (APACHE II) score. Patients who died of causes

clearly not related to sepsis were excluded from outcome analysis

(dropouts). All patients were daily screened for the presence of

clinical and analytical signs of sepsis and, when indicated, blood

cultures, swabs, aspiration or biopsies of suspected sites of infection

were obtained to ensure early identification of causative

microorganisms. Broad spectrum antibiotic therapy was adminis-

tered to all patients as soon as sepsis was suspected and adapted

according to the antibiogram as soon it was obtained. Diagnostic

procedures, e.g. blood gases, laboratory and imaging exams, and

supportive therapy (noradrenalin, dobutamine) were performed as

clinically indicated. None of the patient studied received Activated

Protein C, whereas all patients with septic shock were treated with

low dose corticosteroids as adjunctive therapy.

Measurements and data collection
Within 12 h after study entry, serial, heparinized blood samples

were drawn (Heparin-Monovette, Sarstedt, Nuernbrecht, Ger-

many) via an arterial line for inflammation marker measurements

on day 1 (i.e. onset of severe sepsis), and at 7–8 a.m. on days 2, 3,

5, 7, 10, and 14. In addition, clinical data were recorded daily

during follow-up including demographic data, diagnosis, surgical

intervention, site of infection and results from microbiological

cultures. Plasma was analyzed the same day or stored at 220uC
until further analysis. CRP was measured using a turbidimetric

assay with a detection limit of 1 mg/l. Plasma levels of LBP were

measured using a semiautomated, chemiluminescent immunoas-

say (ImmuliteTM, Siemens Healthcare Diagnostics, Eschborn,

Germany) with an assay sensitivity of 0.2 mg/ml. Trained

laboratory technicians, blinded to the patient’s clinical course,

treatment assignments and outcome of the patients performed all

measurements. Clinicians responsible for the care of the patients

were aware of CRP, but unaware of LBP and the data evaluation.

Statistics
Variables with nominal scale (sex) are described using absolute

and relative frequencies. Kolmogorov-Smirnov test was employed

to verify the normality of distribution of continuous variables. For

univariate description of normally distributed variables, mean

values and standard deviation (SD) are given. For univariate

description of non-normally distributed variables, median with 25–

75 interquartile ranges (boxes) and 5th and 95th percentile

(whiskers) were used. To compare concentrations along time

within groups Kruskal-Wallis analysis of variance followed by

Mann-Whitney U test were applied. Comparisons between

survivors and nonsurvivors were performed by using Mann-

Whitney U test. To correct for multiple testing, Bonferroni

correction was performed. Univariate analysis of predictive

accuracy of CRP and LBP plasma concentrations in discriminat-

ing survivors from nonsurvivors was done by using receiver

operating characteristic (ROC) curves with the area under curve

(AUC) as measure of overall performance. The relationship

between CRP and LBP plasma concentrations were analyzed by

simple linear regression of CRP on LBP after allocating the levels

to quartiles (Q1: 0–25th, Q2: 26th–50th, Q3: 51st–75th, Q4:

76th–100th percentile). Correlation between CRP and LBP levels

transformed to quartile numbers was investigated by Pearson’s

test. P-values of 0.05 or less were considered significant. All

analyses were done using Statistica (version 6.0, StatSoft, Tulsa,

OK, USA) and MedCalc (version 11.1.1, MedCalc Software,

Mariakerke, Belgium).

Results

Sixty consecutive patients meeting the criteria of sepsis, severe

sepsis or septic shock after abdominal or thoracic surgery and

admitted to the interdisciplinary ICU were screened for eligibility.

One patient was excluded from analysis due to death not related to

sepsis (pulmonary embolism). The demographics and clinical

characteristics of the fifty-nine patients that were included in the

per-protocol analysis are shown in Table 1. There were 40 (68%)

survivors (group S) and 19 (32%) nonsurvivors of sepsis (group NS)

28 days after onset of sepsis (day 1) (Figure 1). The two groups had

similar demographic and clinical characteristics including site of

infection, surgical intervention and identified microorganisms.

Both in S and NS, Gram-negative bacteria were identified in less
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than 50% of the patients. Likewise, severity of illness at onset of

sepsis, as judged by the APACHE II score, was similar both in

sepsis survivors and nonsurvivors. For the entire population

studied, the APACHE II score at day 1 was 22.566.3 (mean 6

SD) due to a high percentage (95%) of patients with severe sepsis

and septic shock on admission. Within 3 days after admission, all

patients enrolled were intubated, mechanically ventilated and

received catecholamines (dobutamine, noradrenalin) to keep the

sytemic blood pressure above 90 mmHg., and thus fulfilled the

criteria of septic shock. All deaths were due to multiple organ

failure.

Time course of LBP and CRP plasma concentrations
during the first 14 days of sepsis

Plasma levels of LBP and CRP serially measured at day 1 (onset

of sepsis), d2, d3, d5, d7, d10 and d14 are depicted in Figure 2A–

B. During the first week of sepsis, both CRP and LBP showed the

highest plasma levels at d2 or d3 after onset of sepsis with median

values above 100 mg/L and 50 mg/L, respectively, in both

groups (S and NS). During the first five days of sepsis, there was no

significant difference between S and NS in both plasma markers.

Toward the end of the first week, we observed a decline in LBP

and CRP to lower levels that was more pronounced in survivors

than in nonsurvivors. With a nadir at d5 in nonsurvivors, LBP and

CRP levels started to markedly increase within the second week.

Surprisingly, we also found moderately increasing LBP and CRP

levels from d7 to d14 in the surviving group. In contrast, there was

no significant change in white blood count (WBC) during this time

period (1536366860/ml at day 7; 1595966264/ml at day 10;

1108263098/ml at day 14; WBC 6 SD). The only significant

difference between S and NS during the entire study period was

observed for CRP at d7 (p = .049).

Performance of LBP and CRP to predict outcome and
correlation of both markers

To evaluate the predictive accuracy of CRP and LBP plasma

levels in discriminating survivors from nonsurvivors, ROC analysis

was performed. During the first 5 days of sepsis, median plasma

concentrations of LBP and CRP were even higher in S than in NS

and did not discriminate both groups as assessed by ROC analysis

(AUC,.55; data not shown). Only at day 7, CRP levels poorly

discriminated S from NS with an area under the curve (AUC) of

0.63 (CI 0.49–0.76; p = 0.16), whereas LBP again failed to

discriminate both groups (AUC = 0.55, CI 0.40–0.69; p.0.5)

(Figure 3). Pairwise comparison of ROC curves of LBP and CRP

showed no significant difference between areas under curve

(p = 0.50).

For determination of the relationship between LBP and CRP,

plasma levels were transformed to quartile numbers (1–4)

according to the quartile (Q1: 0–25th, Q2: 26th–50th, Q3: 51st–

75th, Q4: 76th–100th percentile) they were located, in order to

account for a variable degree of association between LBP and

CRP. Quartile numbers of LBP and CRP plasma concentrations

that were obtained from a patient at the same time point were

found to highly correlate with each other (r2 = .95, p = .02), i.e. the

higher the quartile a patient’s CRP level was assigned to, the

higher the quartile of its concomitant LBP level (Figure 4).

Moreover, the mean quartile number of LBP associated with the

3rd and 4th CRP quartile, respectively, was significantly above

that of the 1st CRP quartile. In addition, we also studied whether a

change (increase or decrease) of CRP from one time point to the

next following was associated with a concomitant change of the

LBP concentration in the same direction. There was a strong

Figure 1. Kaplan-Meier Plots showing the survival rate of the
entire study group during 28 days of observation. Before day 14,
only 6 (10%) out of 59 patients died. In the third and forth week after
onset of sepsis, 7 (12%) and 6 (10%) patients died, respectively. Forty
(68%) out of 59 patients survived day 28.
doi:10.1371/journal.pone.0023615.g001

Table 1. Demographic and (post)operative characteristics of
patients enrolled in the study.

Survivors Nonsurvivors

(n = 40) 68% (n = 19) 32%

Age (yrs) 64.1616.2 61.5618.5 p.0.5

Weight (kg) 78.462.4 80.662.1 p.0.5

Height (cm) 173.369.4 171.169.1 p.0.5

Gender (%) male 75 74

APACHE II score (day1) 20.566.6 23.565.9 p = .098

Cause of death

MODS n.a. 19

Surgery

Esophagus 8 (20%) 3 (16%)

Gastrointestinal 17 (43%) 9 (47%)

Liver/Gall 4 (10%) 2 (11%)

Pancreas 4 (10%) 1 (5%)

Other 7 (18%) 4 (21%)

Site of Infection

Lung only 7 (18%) 4 (21%)

Abdomen only 10 (25%) 5 (26%)

Combined 19 (48%) 8 (42%)

Other 4 (10%) 2 (11%)

Identified Organisms

Bacteria Gram positive only 11 (28%) 5 (26%)

Bacteria Gram negative only 15 (38%) 8 (42%)

Polymicrobial 10 (25%) 5 (26%)

Other (unidentified, fungi only) 4 (10%) 1 (5%)

Values are mean 6 SD or actual numbers (percentages) of postoperative
patients with sepsis (per protocol analysis, n = 59), assigned to survivors (n = 40)
or nonsurvivors (n = 19) according to their survival on day 28 after onset of
sepsis. Indicated surgery refers to the main organ operated prior to study
enrollment. n.a. not applicable. There were no significant differences between
the groups.
doi:10.1371/journal.pone.0023615.t001
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concordance of day-to-day changes of CRP levels (n = 242) with

the associated LBP changes for all patients and time points studied

during the first 14 days of sepsis (Table 2). In 76% of all cases,

where CRP concentrations increased or decreased from one time

point to the next, LBP behaved accordingly. Only twelve percent

of all CRP increases and 12 percent of all decreases, from one

observation day to the next, were not accompanied with a

simultaneous change of LBP concentration in the same direction.

Discussion

The present study demonstrates that LBP and CRP plasma

concentrations have a similar time course during the first 14 days

of postoperative sepsis: First an increase with a maximum around

the first or second day after onset of sepsis followed by a decrease

in the first week and a re-increase in the second week. Plasma

concentrations of both LBP and CRP in nonsurvivors did not

significantly differ from survivors and were rather lower than those

in survivors during the first five days of sepsis. Similar findings

have been reported on LBP by other investigators, showing either

no difference between S and NS of severe sepsis [15,24] and

critically ill patients [22], respectively, or significantly higher LBP

levels in survivors than in nonsurvivors of severe sepsis at study

entry [23]. In a mixed study population with SIRS, sepsis and

severe sepsis, the maximum LBP concentration during the first 3

days in the ICU was found to moderately discriminate between S

and NS [24]. However, as LBP plasma levels have been shown to

correlate with sepsis severity [12,22], differences in LBP plasma

concentrations between S and NS are to be expected in

inhomogeneous populations with different levels of severity.

Figure 2. A. Time course of CRP plasma concentrations in
postoperative septic patients during the first 14 days of sepsis
(n = 59). Data are presented as box-plots (open, survivors, n = 40;
hatched, nonsurvivors, n = 19) depicting the lower and upper quartiles
(boxes) and the 5th and 95th percentile (whiskers). * p,.05 for
intergroup comparison of septic survivors vs. nonsurvivors. B. Time
course of LBP plasma concentrations in postoperative septic patients
during the first 14 days of sepsis (n = 59). Data are presented as box-
plots (open, survivors, n = 40; hatched, nonsurvivors, n = 19) depicting
the lower and upper quartiles (boxes) and the 5th and 95th percentile
(whiskers). * p,.05 for intergroup comparison of septic survivors vs.
nonsurvivors.

Figure 3. Receiver operating characteristic (ROC) curves of CRP
and LBP on day 7 after onset of sepsis analyzed for prediction
of survival on day 28. The area under curve (AUC) of CRP and LBP, a
measure of predictive accuracy, was 0.63 (CI 0.48–0.76; p = 0.16) and
0.55 (CI 0.40–0.69; p.0.5), respectively.
doi:10.1371/journal.pone.0023615.g003

Figure 4. Relationship between CRP and LBP plasma concen-
trations after transformation to quartiles (Q1–Q4). Data repre-
sent the regression of CRP on LBP quartiles and the correlation between
CRP and LBP (r2 = 0.95, p = 0.16). For every CRP quartile, mean, lower
and upper quartile (boxes) and standard deviation (whiskers) of the LBP
quartiles are shown. * p,.05 for intergroup comparison of the mean of
LBP quartiles associated with Q3 and Q4 vs. Q1 of CRP.
doi:10.1371/journal.pone.0023615.g004
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Therefore, our finding that LBP and CRP concentrations in

nonsurvivors increased above that of survivors only from day 7 to

day 14, but not in the first three days, may rather be due to the

relatively good homogeneity of our study group regarding sepsis

severity at study entry.

In the second week of sepsis, we found a marked re-increase of

LBP and CRP in the nonsurviving group most likely as part of an

inflammatory response to a recurrent or unresolved infection.

Surprisingly, we also observed a moderate, but noticeable rise in

LBP and CRP plasma levels from day 7 to day 14 in patients of the

surviving group without any evidence for a new or recurrent

infection. That is, we neither observed clinical and radiological

signs nor significant changes in body temperature (data not shown)

or white blood count during the second week in group S. We

therefore assume that in these patients LBP and CRP unspecifi-

cally increased due to stressful maneuvers imposed upon them in

the ICU (i.e. end of analgosedation, 9 and extubation, vigorous

physiotherapy etc.). Therefore, a moderate re-increase in LBP or

CRP plasma concentration in the second week of sepsis is no

reliable indicator of a recurrent infection in this setting of

postoperative sepsis.

Due to a broad overlap between S and NS both in LBP and

CRP plasma concentrations during the first 5 days of sepsis, their

predictive accuracy for mortality (at day 28) as assessed by ROC-

analysis was very poor (AUC,.55). Similar findings were reported

for LBP (AUC = .53) and CRP (AUC = .56) plasma concentrations

on ICU admission in a heterogeneous population of postoperative

patients with SIRS, sepsis or septic shock [24]. Likewise, Prucha

et al [22] found no significant difference in LBP concentrations

between survivors and nonsurvivors at study entry in a mixed

group of critically-ill patients. In a more recent study on patients

with severe sepsis, Villar et al. confirmed this result for LBP at

study entry (AUC: 0.57, CI: 0.52–0.71, p = .173). However,

48 hours later, LBP plasma concentration was found a better

outcome predictor (AUC: 0.71, CI: 0.61–0.80, p,.0001) [15].

Although the population of that study seems to be quite

comparable to our study regarding sepsis severity (mean APACHE

II score 23.2 vs. 22.5) and mortality (40% vs. 32%), there may be

two relevant differences in the populations that would explain why

we could not reproduce Villar’s finding that LBP at 48 h is a good

predictor of outcome: First, we studied only postoperative septic

patients, whereas Villar’s study seemed to include medical patients

with sepsis and pneumonia as well. As shown for CRP and other

acute phase proteins [26], postoperative LBP plasma concentra-

tions could be unspecifically elevated due to surgical trauma. In

the present study, therefore, possible differences between S and NS

in the LBP levels 48 h after onset of sepsis might have been

blurred by an unspecific response to surgery.

Second, in contrast to our study, where only 2 (3%) of the

patients had Adult Respiratory Distress Syndrome (ARDS), 55%

of Villar’s patient population suffered from ARDS [15]. Those

ARDS patients as well as the nonsurvivors were reported to have

the highest values of LBP, whereas patients who survived and

those who did not develop ARDS had significantly lower LBP

levels at 48 h [15]. As previously has been shown, LBP can be

produced by epithelial cells of the lungs under pathophysiological

conditions found in ARDS in response to inflammatory mediators

(IL-1, IL-6 and TNF alpha) [16]. Therefore, in Villar’s study, the

difference in LBP levels between NS and S may rather be

attributed to a higher percentage of ARDS patients in the

nonsurviving group and not merely to sepsis.

Our finding that CRP plasma levels either did not (d1–d5) or

only poorly (AUC = 0.63 at d7) discriminate S from NS during the

first week of sepsis, is in good agreement with the studies of Villar,

Sakr and other previous investigations [10,15,24]. Furthermore,

for the entire population studied and across all observation time

points, we found a strong correlation between the quartile

numbers LBP and CRP plasma concentrations were assigned to

(r2 = .95, p = .02). This result is not unexpected, since CRP and

LBP are both acute phase proteins, induced by the same

inflammatory mediators, and correlate significantly well with each

other (r = .71, p,.001) in an experimental LPS-inhalation study in

healthy volunteers [27]. A strong correlation (r = 0.84, p,.0001)

between LBP and CRP was also found by Gaini et al. in patients

with suspected community-acquired infection and sepsis [12] and

in surgical ICU patients with sepsis syndromes (r2 = .36, p,.001)

[24]. Likewise, a significant, but less strong correlation (r = .54,

p = .002) between LBP and CRP was described in patients with

sepsis and septic shock [22].

Although the liver is the main source of both acute phase

proteins, under certain pathophysiological conditions, CRP can

also be produced by epithelial cells of the kidneys [28] as well as

LBP can be released by epithelial cells of the intestine and the

lungs [16]. Therefore, the degree of correlation between CRP and

LBP may vary, dependent on the individual contribution of

extrahepatic sources according to the site of infection.

More often than the absolute plasma concentration of a

biomarker, its time course is used to judge the resolution of sepsis.

We therefore questioned, whether a change in LBP plasma level

from one observation day to the next occurs in parallel with CRP.

Our results show that across all time points and all patients

studied, more than three out of four changes in the LBP

concentration from one to the next observation day were

accompanied with a simultaneous change in the CRP level in

the same direction. Although LBP is known to significantly

increase in plasma approximately 12 hrs ahead of CRP in

Table 2. Association of CRP and LBP changes in the plasma concentration from one time point of observation to the other during
14 days after onset of sepsis.

CRP increase
from one to the next observation

CRP decrease
from one to the next observation

LBP increase
from one to the next observation

28%
(67/242)

12%
(29/242)

LBP decrease
from one to the next observation

12%
(29/242)

48%
(117/242)

Data represent the percentage of increases and decreases in CRP levels from one to the next observation that were accompanied by concomitant increases or decreases
in LBP levels over all patients and time points measured. Changes of CRP and LBP levels in the same direction (concordance) occurred in 76%, changes in the opposite
direction (discordance) in 24% of all cases.
doi:10.1371/journal.pone.0023615.t002
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response to inflammatory stimuli [29], the potential of LBP to get

some earlier information regarding the development of sepsis, does

not really provide an advantage in a clinical setting where

biomarkers are determined in 24-hour intervals. Therefore, our

finding does not support the notion that assessment of LBP has

significant advantage over CRP in this context. LBP and CRP

plasma concentrations, assessed in intervals of 24 hours and more,

rather show a very similar kinetics in the course of sepsis. Given

the lower costs and the long-term clinical experience with CRP

measurements, we do not consider LBP as a useful biomarker for

the monitoring of sepsis in patients post surgery.

Our study has several strengths. First, according to Randolph

et al. [30], our study population was a representative sample of

critically ill adult patients and sufficiently homogenous with respect

to prognostic outcome, since all patients had sepsis after major

surgery and were studied from day 1 of sepsis. Second, the

unbiased and well-defined endpoint used was mortality directly

related to multiple organ dysfunction due to severe sepsis within

the first 28 days.

However, some limitations also merit consideration: The

prognostic accuracy of LBP and CRP may have been negatively

influenced in our study population, because LBP and CRP are

frequently unspecifically elevated after major surgery to levels

comparable to those seen in sepsis. Therefore, in septic patients

not subjected to surgical trauma, e.g. in medical patients, LBP and

CRP may provide a better prognostic accuracy. In addition,

although statistically controlled, we cannot completely exclude

small sample size effects in our study population. Moreover, LBP

and CRP may be clinically useful in critically ill neonates and

children, where LBP has a high diagnostic accuracy to

differentiate sepsis from non-infectious SIRS [14,31].

In conclusion, our study demonstrates that LBP and CRP

plasma concentrations are well correlated with each other and

change concordantly in the course of sepsis. Furthermore, LBP

and CRP plasma levels have quite the same predictive value and

are neither suitable to monitor resolution of sepsis nor sufficiently

reliable to detect a recurrent infection during the first 14 days of

sepsis in adult postoperative patients.
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