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Abstract
A novel iterative k-space data-driven technique, namely Parallel Reconstruction Using Null
Operations (PRUNO), is presented for parallel imaging reconstruction. In PRUNO, both data
calibration and image reconstruction are formulated into linear algebra problems based on a
generalized system model. An optimal data calibration strategy is demonstrated by using Singular
Value Decomposition (SVD). And an iterative conjugate- gradient approach is proposed to
efficiently solve missing k-space samples during reconstruction. With its generalized formulation
and precise mathematical model, PRUNO reconstruction yields good accuracy, flexibility,
stability. Both computer simulation and in vivo studies have shown that PRUNO produces much
better reconstruction quality than autocalibrating partially parallel acquisition (GRAPPA),
especially under high accelerating rates. With the aid of PRUO reconstruction, ultra high
accelerating parallel imaging can be performed with decent image quality. For example, we have
done successful PRUNO reconstruction at a reduction factor of 6 (effective factor of 4.44) with 8
coils and only a few autocalibration signal (ACS) lines.
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INTRODUCTION
Parallel magnetic resonance imaging (pMRI) techniques have been proposed and widely
introduced into clinical applications over the last decade. In pMRI, spatial sensitivity
encodings are provided by utilizing an array of multiple receiver surface coils. With this data
redundancy, we are able to reconstruct unaliased images from k-space data sampled below
the Nyquist rate with fewer k-space phase encodes. This acceleration can be used to save
scan time, increase temporal or spatial resolution [1–3], or reduce imaging artifacts [4,5].
Various parallel imaging reconstruction methods have been invented. Among those, the
most widely used pMRI techniques are sensitivity encoding (SENSE) [6] and generalized
autocalibrating partially parallel acquisition (GRAPPA) [7]. Other Cartesian pMRI
reconstruction methods including SMASH [8,9], AUTO-SMASH [10], VD-AUTO-SMASH
[11], Generalized SMASH [12], mSENSE [13], PILS [14], and SPACE-RIP [15] have also
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been demonstrated and implemented into numerous applications. Recently, several non-
Cartesian pMRI reconstruction techniques have been investigated as well, such as non-
Cartesian SENSE (NC-SENSE) [16] and kSPA [17,18]. All of these reconstruction
algorithms can be classified into two categories, based on how the sensitivity encoding is
decoded from the multi-channel data, i.e., physically-based reconstruction and data-driven
reconstruction [19]. SENSE reconstruction is a typical physically-based algorithm, in which
all coils sensitivity maps have to be estimated explicitly because image needs to be unfolded
in the image domain based on these maps. On the other hand, GRAPPA is a data-driven
method, in which the sensitivity information is merely implicitly derived in the k-space
through data calibration, and the missing samples are fitted in k-space based on this
information.

As a k-space data-driven method, GRAPPA has become the most successful pMRI
technique in recent years, due to its convenience, flexibility and good performance.
Compared to SENSE, the cumbersome coil sensitivity measurement is not required in
GRAPPA. In addition, neither data calibration nor k-space fitting is computationally
demanding. And many experimental results have shown that GRAPPA reconstruction yields
relatively good image quality for low accelerating pMRI, for example, with a reduction
factor of 2 to 3. However, the performance of GRAPPA reconstruction usually degrades
significantly as the reduction rate gets higher [20], unless a very large number of
autocalibration signal (ACS) lines are imposed.

In this work, an iterative k-space data-driven pMRI reconstruction algorithm is
demonstrated, termed Parallel Reconstruction Using Null Operations (PRUNO). Based on a
generalized problem formulation of k-space reconstruction, we show that PRUNO is a more
flexible algorithm than GRAPPA. In PRUNO, both data calibration and image
reconstruction are formulated into linear algebra problems and an iterative conjugate-
gradient (CG) algorithm is proposed to solve the reconstruction equation efficiently. Both
simulation and in vivo results show that PRUNO provides significantly improved image
quality compared to GRAPPA while requires a reduced number of ACS lines, especially
under high reduction factors.

THEROY
In this section, only study the case of 2D Cartesian pMRI is studied for simplicity. The same
theory can be easily extended to 3D reconstruction. Let's denote the image size to be Nx ×
Ny. Without loss of generality, it is assumed that the phase encoding (PE) is along the y
direction. Due to the discreteness of data acquisition in MRI, we formulate both acquisition
and reconstruction as discrete system problems. Furthermore, two major assumptions are
made about the sensitivity encoding:

Assumption 1: All sensitivity maps are band-limited, with a full width of ws in k-
space. Due to the smoothness of coil sensitivity maps in nature, ws is usually
approximated as a reasonably small number.

Assumption 2: The overall sensitivity encodings yield good orthogonality. That is,
the pMRI reconstruction can be treated as an overdetermined problem if Nc > R and
the k-space sampling is relatively uniform. Here R is the reduction factor and Nc is
the number of coils. (Only the cases of Nc > R are investigated in this work.)

These conditions essentially form the basis behind most k-space data-driven pMRI
reconstruction methods, such as GRAPPA [7,21] and kSPA [17,18]. To simplify the
following discussion, we treat Nx, Ny and ws as even numbers.
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A. Principle of k-Space Based pMRI Reconstruction
For multi-channel acquisition, k-space data acquired from the n-th coil can be approximated
as

[1]

Here m(kx, ky) stands for the sampled true magnetization to be imaged in the k-space.
dn(kx,ky) and sn (kx, ky) represent k-space samples of the acquirable data from the n-th coil
and the spectrum of sensitivity map of that coil, respectively. “*” denotes the operator of
two-dimensional convolution. Based on our first assumption, sn (kx, ky) is treated as a small
kernel. Since a system convolution is essentially a linear operation, the sensitivity encoding
can thus be formulated as a system of linear equations,

[2]

where d is a vector of concatenated fully-sampled k-space data from all coils (encoded
samples) and m is a column vector containing the true magnetization in the k-space
(unencoded samples). Hence, S is called sensitivity encoding matrix. The primary goal of a
k-space based reconstruction is to compute either m or full presentation of d, from which the
final image will be synthesized in image domain. With data undersampling, all samples in d
can be classified into two groups according to their existence upon reconstruction, i.e.,
missing samples and acquired samples. To separate the two groups, masking operators can
be applied to Eq. [2]:

[3]

Here the subscripts “m” and “a” represent “missing” and “acquired”, respectively. I denotes
an identity matrix, which can be decomposed into two diagonal masking matrices, Im and Ia.
Each masking only preserves samples from one category by setting entries corresponding to
the other category to 0's. We can thus split Eq. [2] into two separate equations: Imd =
(ImS)m and Iad = (IaS)m. If rows of all zeroes are eliminated from each equation, they are
formulated more compactly as

[4]

and

[5]

Now dm is the vector including only missing samples and da is the other vector including
only acquired ones. Sm and Sa are the corresponding row pruned matrices from ImS and IaS,
respectively.

With the two assumptions stated at the beginning of this section, Eq. [5] should be an over-
determined linear equation with a very sparse system matrix. If the encoding matrix Sa is
known, the image reconstruction will be directly performed by solving m from this equation.
However, the knowledge of Sa usually requires a complete estimation of all sensitivity
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maps. This scenario is a k-space “physically-based” reconstruction, which is essentially
similar to Generalized SMASH [12].

To avoid the measurement of sensitivity maps due to its complexity and inaccuracy, we can
solve dm first, and then apply a coil-by-coil reconstruction followed by a sum-of-squares
(SOS) synthesis in image domain, as in GRAPPA. By using Eq. [4] and [5], this k-space
data-driven method can be explicitly formulated as

[6]

We use R to denote an overall reconstruction matrix here. And the superscript H is used to
label a Hermitian matrix (conjugate transpose). In a more generalized form, Eq. [6] can be
rewritten as

[7]

And if we re-permute the matrices back according to the original order of all k-space
samples, we will end up with

[8]

Here N denotes a non-zero system matrix, each row of which can null k-space samples from
all coils through multiplication. This equation carries one of the fundamental forms of k-
space data-driven reconstruction. Generally speaking, it implies that k-space samples from
all receiver channels are essentially linearly correlated through null operations, which results
from the intrinsic nature of sensitivity encodings. Once the matrix N is determinable, Eq. [8]
can be utilized to solve pMRI reconstruction problem through a procedure that is termed
Parallel Reconstruction Using Null Operations (PRUNO).

B. PRUNO
In this section, we will first find a more tractable form of N by directly exploring the linear
dependence among local k-space samples. And it will be shown that the resulting null
operations may be characterized by a group of 2D convolutions with small kernels. N can
thus be feasibly derived through data-calibration. Finally, an iterative conjugate-gradient
method will be presented to solve dm from Eq. [8] efficiently.

1) Deriving null operations through convolutions—As illustrated in Eq. [1], each
encoded sample dn(kx0,ky0) is correlated with m(kx, ky) locally in k-space, i.e., only for

,  in the unit of Δk, where Δk = 1/
FOV and FOV refers to imaging field of view. Therefore, if we look at a small square-
shaped “target subset” from the n-th coil dn(kx, ky), samples of m(kx, ky) that are being
encoded into these targets also completely come from a small local “source subset”, as
shown in Figure 1. Apparently, this correspondence extends to every coil. If we use wd to
denote the width of the target subset, the width of the source subset should be wm = wd + ws
− 1.

In other words, a local sensitivity encoding relationship can be formulated as
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[9]

To differentiate from Eq. [2], we use tilde symbols to denote the small local subsets  and 
here.  is the corresponding local encoding matrix, which is  by . As the size of the
target subsets grow, the encoding matrix  tends to be a “taller” matrix because the total
number of target samples ( ) increases much faster than that of the corresponding source
samples ( ) (see Appendix A).

According to the theorem of linear algebra, any “fat” matrix (row < column) has a nonempty
null space. Therefore, , the Hermitian of the encoding matrix, would eventually have a
non-empty null space if we increase the size of source subsets so that . Furthermore,
at least r independent non-zero nulling kernels exist if the following equation is satisfied
(see Appendix A)

[10]

For each of these nulling kernels, n1, n2, …, nr, . If applying these
kernels to both sides of Eq. [9], we will get

[11]

Here , r by , turns out to be a local nulling system matrix on . Since sensitivity
encoding is essentially shift-invariant in k-space, both  and  are independent of k-space
location. Therefore, we are now able to apply the nulling kernels to all k-space locations so
that the full nulling matrix N in Eq. [8], which is r Nx Ny by NcNxNy, can be constructed row
by row. On the other hand, if each ni is treated as a weighting kernel, we can conclude that
multiplying each ensemble of NxNy rows of N by d is equivalent to a series of 2D filtering
(inside each coil) followed by a summation (across all coils) in the 2D k-space. Furthermore,
N can be fully characterized by all nulling kernels, that can be feasibly estimated through
data calibration.

We call these nulling kernels as PRUNO kernels. And wd is just the kernel size used in
PRUNO. Based on the first assumption and empirical approximation, ws is usually estimated
to be less than10 for typical imaging FOV and practical coil configurations. For example, if
we approximate ws as 8 and use 8 receiver channels, it requires a minimum kernel width of 4
to obtain 8 nulling kernels according to Eq. [10]. This is a feasible number for both data
calibration and reconstruction in terms of computational time and the number of required
ACS lines, which will be addressed later.

Once N has been determined, the image reconstruction can be proceeded by solving dm
from Eq. [8]. The is very similar to the derivation of Eq. [6]. By applying the same masking
operators to Eq. [8], we get Nmdm + Nada = 0, or
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[12]

Here Nm and Na denote the two column pruned matrices, similar to the previous notations of
Sm and Sa. In a positive (semi-)definite system form, Eq. [12] turns to be

[13]

Essentially, this is another representation of Eq. [6].

2) Data calibration and kernel selection—As stated above, a set of local nulling
kernels (columns of ) need to be found in PRUNO through data calibration. This procedure
is similar to GRAPPA calibration. For each kernel, a series of linear equations can be
established by sliding the kernel window within a certain k-space calibration region. And the
calibration is again a linear algebra problem, which is illustrated as

[14]

Here l denotes the total number of calibration locations.  is a calibration matrix, of which
each column is one windowed subset of calibration data, as shown in Figure 2.

To ensure Eq. [12] an overdetermined system, Nm needs to be a tall matrix, i.e.,

. Although Nc kernels always seem to be sufficient from this perspective, the
condition of the final reconstruction system (Eq. [13]) strongly depends on the number of
independent equations in Eq. [12], i.e., the number of PRUNO kernels and the orthogonality
among them. On the other hand, imposing a larger number of kernels may increase the
kernel size and consequently the computational time. We call the procedure of determining
the number of kernels and defining the size of kernels as kernel selection.

One simple strategy of kernel selection is inspired by GRAPPA, in which a small number
(usually Nc) of template based kernels are used [20]. However, the performance of this
method is limited by its inflexibility and instability. An optimal kernel selection strategy is
to find all generalized nulling kernels directly from Eq. [14], i.e., from the null space of .
This can be easily achieved by performing a Singular Value Decomposition (SVD) on ,
and extracting the null space from its eigenspace [22]. One example is shown in Figure 2. In
this case, a full kernel width of 5 was used on 8-channel simulated phantom data. Around
1000 k-space subsets (vectors) were collected to form the calibration matrix , with a vector
length of 200 for each. SVD was then applied on this matrix. The eigenvalue plot indicates
that the span of the column vector space is in a much lower rank than 200 if reasonable
thresholding is applied to its eigenvalues. Once a cut-off is determined, all nulling kernels
are simply eigenvectors corresponding to those eigenvalues that are smaller than the
threshold. In this example, around 100 kernels were obtained.

3) Conjugate-Gradient solver—As the nulling matrix has been calculated from data
calibration, the remaining objective is to solve Eq. [13]. Considering the huge matrix size, it
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would usually be computationally infeasible to perform a direct matrix inversion. An
alternative indirect solver is thus desired. Using the representation of non-pruned matrices,
the system equation can be rewritten as

[15]

Now that each forward matrix-vector multiplication in Eq. [15] is either simply a masking
operation or essentially composed of 2D convolutions and summations, which are not
computationally demanding, a feasible iterative algorithm can be implemented to solve this
system. A conjugate-gradient method has been developed and demonstrated in [20], in
which matrix-vector multiplications are performed step by step during the reconstruction.
This is very similar to NC-SENSE reconstruction [16].

According to the construction of nulling matrix, N can be decomposed into r × Nc blocks,

[16]

Here each Nij is a NXNy × NXNy matrix, corresponding to the 2D convolution of the i-th null
operation performed on the j-th coil. Eq. [16] illustrates that rNc convolutions are involved
in each ensemble of null operations Nx, where the vector x refers to certain k-space data on
that the null operations are performed. On the other hand, it is easy to show that in each
ensemble of conjugate null operations NH (Nx), rNc convolutions need to be performed as
well. Therefore, a total number of 2rNc 2D convolutions are required during each CG loop
when applying step-by-step matrix-vector multiplications [20], which constitute the major
portion of reconstruction time. In this case, the reconstruction time is nearly proportional to
r, which prohibits us from using a large number of kernels in practice, for example, using
more than 100 kernels.

Immediately from the decomposition of N (Eq. [16]), we have

[17]

This equation shows that one “composite” null operation NHNx is actually equivalent to 
2D convolutions, independent of the number of kernels (r). We can thus combine the
sequential null operations Nx and their conjugate operations NH (Nx) into single-step
convolutions, .i.e., calculate (NHN)x directly. In this case, the representation of a local
composite convolution kernel can be directly derived as:

[18]
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Here n and n* denote a local 2D convolution kernel and its conjugate, respectively. And η is
a composite kernel, corresponding to one block in (NHN). Because these convolutions are
calculated among very small kernels and only performed once prior to the CG iterations, its
computational load is nearly negligible. Although the size of a composite kernel (2wd −1) is
larger than that of a nulling kernel, the number of convolutions involved in each CG step
will be reduced to  if these composite kernels are being used. Therefore, it is favorable to
use composite kernels in PRUNO reconstruction because the overall computational time is
almost independent of the number of nulling kernels. Such a modified reconstruction
algorithm is shown in Figure 3. Details of a CG algorithm can be found in [23] and [16].

4) Summary of PRUNO reconstruction—The procedure of an optimized PRUNO
reconstruction is summarized below:

a. Determine the size of PRUNO kernels (wd).

b. Construct the calibration matrix  from ACS data (Eq. [14]).

c. Apply SVD on  and choose the number of nulling kernels (r) that will be used.

d. Select the eigenvectors corresponding to the r smallest eigenvalues as PRUNO
kernels.

e. Compute the  composite kernels (Eq. [18]).

f. Provide an initial guess of k-space missing data and perform CG reconstruction
(Figure 3).

g. Generate coil images and synthesize the final image by using SOS.

MATERIALS AND METHODS
For comparison, PRUNO and GRAPPA reconstructions have been applied to Cartesian
pMRI for both computer simulated phantom and in vivo studies. A wide range of reduction
factors were tested with 8-channel coils. Both data simulation and image reconstruction
were implemented by using MATLAB 7.7 (The Mathworks, Inc, Natick, MA, USA) on a
Linux PC with a 3.20 GHz Intel Pentium 4 CPU and 4GB RAM.

Phantom Simulations
A 256×256 Shepp-Logan image was used for the simulation. Pre-measured sensitivity maps
from an eight-channel receiving coil were used for sensitivity encodings [6,24–26]. Full k-
space data of each coil were generated by applying fast Fourier transform to the encoded
coil image, which was produced by multiplying the original image by the corresponding
sensitivity map. Complex white Gaussian noises were added to the phantom image during
the simulation, which corresponds to a signal to noise ratio of 25. Uniform data
undersampling was then performed while preserving a small number of ACS lines near k-
space center. The reduction factors were varied from 2 to 7 in these experiments. Two
calibration data blocks (Nb=2), or 2 (R-1) ACS lines, were used in the cases of 2 to 4-fold.
And three blocks were used if R is greater than 4. A calibration block refers to one
unsampled slab in k-space, as shown in Figure 4. The exact number of ACS lines and the
effective reduction factor of each study are listed in Table 1. The same k-space data were
used for both GRAPPA and PRUNO calibration and reconstruction, with all ACS lines
preserved during reconstruction.
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In Vivo Experiments
In vivo brain images of a healthy volunteer were acquired on a 3T whole-body scanner (GE
MR750; GE Healthcare, Waukesha, WI, USA) with an array of 8 receiver coils. A 2D FSE
T2-FLAIR sequence was used to obtain axial images. In this experiment, the following scan
parameters were used: FOV=24cm, TE/TR =50ms/2s, rBW(receiver bandwidth)=15.63kHz,
slice-thickness=5mm, and matrix size = 256×256. Full Cartesian k-space samples were
acquired from scanner without undersampling. The data were uniformly undersampled along
the phase encoding direction offline, by using reduction factors ranging from 2 to 6. In each
experiment, the same strategy was used to keep necessary ACS lines, as in the phantom
simulation.

Image Reconstruction
Numerous parameter configurations were first tested for both reconstruction algorithms,
including kernel width of GRAPPA, kernel selection of PRUNO (size and number), initial
guess and stopping criteria of the CG algorithm. The stopping criterion is defined as a
condition that either the relative residual RMS error is lower than an error bound or a
predefined maximum loop number has been reached. In both GRAPPA and PRUNO, the
ACS blocks are always preserved during the reconstruction. The effective reduction factors
(Reff) of all experiments are calculated, as shown in Table 1.

For GRAPPA, we have evaluated various kernel sizes, including 2×3, 2×5, 4×3, and 4×5 for
each experiment. The kernel size mentioned here is defined on acquired samples only, as
shown in Figure 4. In each case, the best GRAPPA image was picked according to its
minimum RMS reconstruction error. A similar scenario applies to the PRUNO kernel
selection as well. The optimal PRUNO kernel selection strategies varied among different
studies. Detailed optimal GRAPPA and PRUNO kernel configurations for each study are
listed in Table 1. The LSQR algorithm was used for each data calibration. No other
regularization was applied during the following image reconstruction so that we could
compare the intrinsic reconstruction power of GRAPPA and PRUNO.

In each experiment, a GRAPPA reconstruction was performed first. The output k-space data
of GRAPPA was used as a good initial guess to the following PRUNO reconstruction
because it usually offers fast algorithm convergence. For all phantom experiments, the CG
error bound was set to 0.01% and the maximum iteration number was 200. While for all in
vivo experiments, the error bound was relaxed to be 0.1% and the maximum step size was
300.

RESULTS
Figure 5 and Figure 6 compare PRUNO and GRAPPA reconstructions of phantom
simulations and in vivo experiments, respectively. Each reconstructed image was also
compared with a reference image, which was reconstructed under full k-space sampling, and
the image difference (×10) was taken for evaluating the quality of this reconstruction. The
actual reconstruction time of each study is listed in Table 1.

Figure 5 shows that the reconstruction error of PRUNO is consistently smaller than that of
GRAPPA, which indicates that a solution that is closer to the actual missing data has been
derived in the CG algorithm by utilizing the equations established from null operations.
GRAPPA performs very similar to PRUNO at R = 2, with good image quality. As the
reduction factor increases, the reconstruction quality degrades for both algorithms. However,
the performance of GRAPPA reconstruction drops much more rapidly than that of PRUNO.
It can be seen that there are obvious unfolded aliasing artifacts in GRAPPA images as R
exceeds 3. On the contrary, PRUNO is capable of producing much better images with the
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same data availability. Nearly no visible artifacts are observed on PRUNO images for high
accelerating cases, up to R = 5. Even if the reduction factor is pushed into 6, the PRUNO
reconstruction still yields reasonably good image quality. However, as R grows even further,
the image aliasing can hardly be eliminated because the PRUNO reconstruction tends to be a
severely ill-posed problem. Furthermore, it can be seen that the reconstruction errors and
noises are distributed more uniformly in PRUNO.

Very similar phenomena are observed in the in vivo studies as well, as demonstrated in
Figure 6. GRAPPA yields comparable performance to PRUNO at R = 2. Small visible
aliasing artifacts are present in the GRAPPA image at R = 3. At reduction rates higher than
3, the image quality of GRAPPA reconstruction is not acceptable given the number ACS
lines we have. On the other hand, PRUNO works robustly as long as the reduction factor is
no greater than 5. At R = 6, some high-frequency reconstruction errors can be seen in
PRUNO due to the poor system condition in Eq. [12].

DISCUSSION
We have shown that PRUNO is an iterative k-space data-driven parallel imaging
reconstruction algorithm that is more robust than GRAPPA, especially for ultra-high
accelerating MRI. With its generalized formulation and precise mathematical model,
PRUNO offers excellent flexibility and accuracy. Our experimental results have shown that
PRUNO performs fairly stable against various influencing factors such as reduction factor
and low SNR. In addition, the PRUNO algorithm usually requires a smaller number of ACS
lines to achieve acceptable reconstruction quality, which can help further reduce scan time.

Kernel Selection
The width and content of all kernels have an important impact to the system condition
according to Eq. [12]. A good ensemble of null operations is expected to capture sufficient
impendent linear equations between missing samples and acquired samples. In general,
larger kernels are always favorable because more samples can be correlated in each null
operation. However, using larger kernels demands more ACS lines and longer
reconstruction time. On the other hand, PRUNO kernel width cannot be too small either, as
addressed in Eq. [10]. Our empirical choice of kernel width is 5 to 7 for typical imaging
protocols, which has been tested by using our 8-channel coils in site. At small reduction
rates such as 2 or 3, a width of 5 should be used to lower the ACS requirement, without
clearly degrading the performance of the algorithm. However, larger kernels are usually
necessary as R gets larger, which ensures that missing samples and acquired samples are
coupled with each other in a long distance (along y).

There is another tradeoff between the number of kernels (or system condition) and the
accuracy of null operations resulting from these kernels. Less PRUNO kernels ensures a
more strict null space, thus produces smaller residual errors. On the contrary, a larger
number of nulling kernels form more equations in Eq. [12] that improves the condition of
the linear system and speeds up the convergence of CG. Choosing a moderate number of
kernels can thus optimize the performance of PRUNO reconstruction. In practice, however,
the image quality of the final reconstruction is not quite sensitive to the number of kernels if
it is chosen in a reasonable range. This can be seen from Figure 7. In this R = 4 example, we
may choose the number of kernels from a really wide range without significantly affecting
the reconstruction quality. But more kernels are usually preferred to speed up the
reconstruction speed. To have a better convergence rate, the number of PRUNO kernels was
empirically determined in our experiments, based on the eigenvalues of the calibration data.
A threshold that roughly corresponds to 0.1% of the maximum eigenvalue was used in each
case to separate null space and span space. Alternatively, the necessary number of kernels
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may also be estimated if we have a reasonable estimation of the maximum bandwidth of
sensitivity maps (ws) [17], as discussed in Appendix A, such that

[19]

In phantom experiments, ws is approximated to be 6. In this case, Eq. [19] returns r ≤ 100 if
the kernel width is 5, and it returns r ≤ 248 if the kernel width is 7. For in vivo experiments,
a slightly larger ws is assumed to improve the accuracy of data calibration. If ws = 8 is used,
Eq. [19] returns r ≤ 56 when wd=5, and r ≤ 196 when wd=7. All these numbers are close to
our actual selections, as shown in Table 1.

Reconstruction Time
In these experiments, a PRUNO reconstruction usually takes ten to hundreds of CG steps to
converge with our stopping criteria. The computational time of a single CG loop varies from
1 to 3 seconds in the actual implementations, depending on the image size, number of coils,
and the width of PRUNO kernels. Therefore, a typical PRUNO reconstruction takes several
minutes. The actual converging speed of the CG algorithm is determined by several factors,
which have been mostly addressed already, including the reduction factor, the exact
sampling pattern, the number and quality of PRUNO kernels, the initial guess of missing
data, and the image noise level.

There are a few options in generating the initial guess data. The simplest strategy is to set
values of all missing samples to 0's, which doesn't require any extra effort. Another
straightforward strategy is to perform a certain interpolation at the missing k-space
locations. More accurate estimates can be made as well, such as the approach used in our
demonstrated experiments. That is, a GRAPPA reconstruction is performed first and the
fitted k-space data are used as the initial guess of the PRUNO reconstruction. According to
our evaluations, the choice of the initial guess does not necessarily have a significant impact
onto the quality of the final image in most cases. However, a good starting guess does help
improving the converging speed of the algorithm. This can be clearly observed from the top
two rows of Figure 8. It would thus be worthy of generating the initial guess data through a
rough GRAPPA reconstruction, as the computational time of GRAPPA is much shorter
compared with that of PRUNO.

Revisit to GRAPPA
As another k-space coil-by-coil reconstruction algorithm, GRAPPA reconstruction also
yields a formulation of Eq. [6]. In GRAPPA, the reconstruction matrix R itself is assumed to
be sparse and in a shift-invariant pattern, so that it can be directly approximated from data
calibration. In this case, each missing k-space sample is fitted from multiple neighboring
acquired samples, which is equivalent to applying a template based PRUNO kernel.
Therefore, GRAPPA requires that there exists a nulling kernel for each particular template.
For small reduction rates, this fitting model may be a good approximation since the target
sample and the fitting samples are close to each other, so that there would be strong linear
correlation between them. However, as the reduction rate goes higher, the distance between
target sample and fitting samples increases as well. Consequently, correlation between these
samples becomes weaker and the template based nulling kernel may not be applicable any
longer. To obtain an accurate fitting kernel, many more fitting samples must be involved
(larger kernels) which requires a larger number of ACS lines. In addition, the distances
between fitting samples and the target differ significantly among each other under high
acceleration rates. Because the k-space data exhibit exponential decay in distance, the data
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calibration in GRAPPA would tend to be a highly ill-posed problem. These factors make
GRAPPA an invalid reconstruction algorithm for ultra-high accelerating pMRI.

On the contrary, PRUNO always uses a local convolution kernel regardless of the reduction
factor. With a proper kernel size, each nulling kernel in PRUNO yields better fitting
accuracy due to the greater number of involved samples and better locality. With iterative
reconstruction, each missing sample will eventually be fitted by using all available k-space
data. This explains why PRUNO always performs better than GRAPPA, especially under
high reduction rates.

However, unlike in GRAPPA, ACS blocks should be always added into the PRUNO
reconstruction. The existence of a continuous ACS band in CG not only helps increase the
SNR of the reconstruction, but also significantly improves the condition of the entire linear
system. Otherwise, the original under sampling pattern may easily lead Eq. [12] into a
seriously ill-posed system. In other words, the ACS samples are essentially strong and
important constraint conditions when solving this linear system by using a least square
approach. This effect can be clearly seen if we compare the second and third rows of Figure
8.

Future Directions
PRUNO doesn't require any regularization during either data calibration or image
reconstruction. However, a proper regularization during CG loops might further improve the
performance of the algorithm, by either improving the image quality or achieving faster
converging rate. For instance, the noise-like high-frequency reconstruction errors observed
in the R = 6 case of in vivo study (Figure 6) are expected to be suppressed if the CG
algorithm is combined with an image domain smoothness constraint, such as total variance
(TV) regularization [27]. Hench, an even higher reduction factor might be achieved with
regularized PRUNO reconstruction. This is beyond the scope of this work and will be
investigated in our future research.

Only 1D-PRUNO has been discussed in this work. However, there is not any restriction
about the undersampling pattern in the formulation of PRUNO. It hence suggests that
PRUNO reconstruction could also deal with any 2D undersampling problem. Although
issues such as system condition of 2D-PRUNO and optimal 2D sampling scheme still need
to be investigated, we believe PRUNO will offer many opportunities in ultra-fast 3D parallel
imaging as well.

CONCLUSION
In this work, an iterative parallel imaging reconstruction algorithm termed PRUNO has been
demonstrated, which is based on a generalized formulation of k-space data-driven pMRI
reconstruction. Both simulation and in vivo studies have shown that PRUNO offers better
image quality than GRAPPA with very light ACS requirement, especially under high
accelerating rates. Data calibration and image reconstruction in PRUNO are both tractable
linear algebra problems and hence easy to implement. With its robustness and flexibility,
PRUNO is expected to be applied to various clinical applications to offer improved pMRI
reconstruction.
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APPENDIX

k-Space Locality and Existence of Nulling Kernels
If we use Ld and Lm to denote the vector length of  and  in Eq. [9] respectively, we will
have

and

Apparently, if multiple receiver coils are used, i.e., Nc > 1, Ld increases more rapidly than
Lm as wd gets larger. In another word, we may make Ld > Lm if wd is sufficiently large. In
this case,  (Lm × Ld) is a flat matrix, having a non-empty null space. If we denote r0 as the
rank of its null space, according to the rank-nullity theorem, we will have

Therefore, existence of r independent non-zero nulling kernels in Eq. [11] requires that

[A.1]

This is exactly Eq. [19]. We can also solve wd from this equation to get Eq. [10].
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Fig. 1.
Locality of k-space sensitivity encoding.
Top box: the unencoded k-space data. Bottom boxes: k-space data from receiver coils,
which are encoded by spectra of sensitivity maps (small boxes in the middle). Each
sensitivity spectrum is approximated to be band-limited with a full width of. The meshed
regions in all large boxes label the target subsets (bottom) and their corresponding source
subset (top), respectively. When tracking back all of the source samples that correlate to the
target ones, the width of the source window is, according to the convolution theorem.
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Fig. 2.
Kernel selection strategies.
An example of SVD kernel selection with an 8-channel coil and 5×5 calibration widows
(kernel size). Number of calibration vectors ( ) is around 1000. SVD was performed on the
calibration matrix. The intrinsic rank of the vector span space is 200. The magnitudes and
logarithms of the eigenvalues are plotted in the top figure and bottom figure, respectively.
To approximate the null space of the calibration matrix, a threshold has been applied so that
smaller eigenvalues are set to 0. In this example, a cutoff was roughly set in the middle so
that the rank of the null space ( ) is 100. Finally, the eigenvectors with 0 eigenvalues form
the null space.
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Fig. 3.
Conjugate-gradient PRUNO reconstruction.
Black dots: acquired k-space samples; white dots: missing k-space samples; gray dots: ACS
samples, which are also regarded as available samples during reconstruction. Each masking
matrix (or) is used to include only one particular group of samples for the following
operation. At the beginning of reconstruction, both sides of Eq. [15] are evaluated based on
the initial guess, and the results are entered into the CG algorithm to calculate the residual
error. Afterwards, the forward “composite” null operations will be performed on one
conjugate direction ( ) in each CG step (left circle loop in the figure), until any of the
stopping criteria has been satisfied. Finally, a sum-of-square image will be synthesized.
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Fig. 4.
GRAPPA kernel and PRUNO kernel.
A reduction factor of 3 is used in this example and k-space data from one coil is displayed.
The notations of different dots are the same as Fig. 3. Red window (solid line): one of the
4×5 GRAPPA kernels (there are always (R-1) different kernels, each of which has different
fitting coefficients) and the width is defined based on the acquired/fitted data (black dots)
only. Green window (dashed line): a PRUNO kernel, which is always a continuous window
and will be applied at all k-space locations. Blue window (dotted line): one calibration
window block, which is composed of (R-1) ACS lines. Two successive calibration blocks
exist in this example.
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Fig. 5.
PRUNO and GRAPPA reconstructions of the phantom data.
Reduction factor ranging from 2 to 7 were used for both PRUNO and GRAPPA
reconstructions. A reference sum-of-square image was also reconstructed with full k-space
data, so that an exaggerated (10×) difference image was generated for each pMRI
reconstruction and displayed for comparison. ACS data were always included for each
reconstruction. GRAPPA reconstruction always yields larger residual errors, which can be
seen from the difference images. Intolerable aliasing can be seen for GRAPPA starting from
R=4; while PRUNO yields good image reconstruction up to R=5.
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Fig. 6.
PRUNO and GRAPPA reconstructions of the in vivo data.
Reduction factor of 2 to 6 were used. Difference images were computed and compared at
10× as well. ACS data were included for both PRUNO and GRAPPA reconstruction. For
GRAPPA, noticeable aliasing start showing up at R=3 and 4 (white arrows); and larger
artifacts corrupt the reconstructed images completely as the reduction factor further
increases. For PRUNO, images are consistently reconstructed with good quality as long as
R<6 ( ). Besides, the reconstruction errors (aliasing) appear relatively uniformly distributed
across PRUNO images, which tend to produce smaller visual artifacts.
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Fig. 7.
Relationship between number of PRUNO kernels and image quality.
The same R=4 data set as Figure 5 was used in this case. Number of used PRUNO kernels
and the total number of required iterations are labeled on top of each image. The asterisk
marks the cases in with the maximum number of iterations were reached. Reconstructed
images are in similar quality with moderate number of kernels (30~100). But the
convergence speed increases as the number of kernels increases. If too few kernels are used
(7 or 10), the algorithm may not converge well enough as the system condition is poor. In
these cases, small residual aliasing can be observed (white arrows). On the other hand, using
too many kernels (120 or 150) leads to inaccurate modeling. For the iteration counts in these
last two cases, the first number labels the number of steps required to reach the error bound
of CG. However, images shown here are generated after 200 CG steps after lowering the
error bounds to verify whether it is due to insufficient looping.
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Fig. 8.
Effect of initial guess and ACS signal inclusion on PRUNO reconstruction.
The same R=4 data set as Figure 5 was used here as well. First row: zero-filling was used as
the initial guess of CG. 62 iterations were taken during the reconstruction. Second row:
GRAPPA reconstruction was used as the initial guess of CG. 36 iterations were taken in this
case. Third row: GRAPPA reconstruction was also used as the initial but the ACS blocks
were removed during CG. It can be seen that the reconstruction doesn't converge to a good
solution even after 200 CG steps.
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