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Abstract

Interosseous sutures exhibit highly variable patterns of interdigitation and corrugation. Recent research has

identified fundamental molecular mechanisms of suture formation, and computer models have been used to

simulate suture morphogenesis. However, the role of bone strain in the development of complex sutures is lar-

gely unknown, and measuring suture morphologies beyond the evaluation of fractal dimensions remains a

challenge. Here we propose a morphogenetic model of suture formation, which is based on the paradigm of

Laplacian interface growth. Computer simulations of suture morphogenesis under various boundary conditions

generate a wide variety of synthetic sutural forms. Their morphologies are quantified with a combination of

Fourier analysis and principal components analysis, and compared with natural morphological variation in an

ontogenetic sample of human interparietal suture lines. Morphometric analyses indicate that natural sutural

shapes exhibit a complex distribution in morphospace. The distribution of synthetic sutures closely matches the

natural distribution. In both natural and synthetic systems, sutural complexity increases during morphogenesis.

Exploration of the parameter space of the simulation system indicates that variation in strain and ⁄ or morpho-

gen sensitivity and viscosity of sutural tissue may be key factors in generating the large variability of natural

suture complexity.

Key words: computer simulation; interosseous sutures; Laplace growth; morphogenetic modeling; morphometric

analysis.

Introduction

The complex and corrugated shape of cranial interosseous

sutures has long attracted the attention of morphologists.

Sutures represent growth interfaces at which two osteo-

genic fronts meet and interact with each other (Rice,

2007a,b). Cranial sutures act as bone growth sites, permit-

ting expansion of the braincase and extension of the face

(Opperman, 2000; Rice, 2007a,b). Beyond their primary

function as regions of bone growth sutures have been

proposed to act as strain dissipators. Suture lines are often

highly corrugated, thus providing large effective contact

interfaces between adjacent bony elements, which might

dissipate strain and reduce local peak strain (Sun et al.

2004). This hypothesis is corroborated by evidence from

sheep, where male crania exposed to high peak strains

during head-to-head confrontation with competitors

exhibit more corrugated interosseous sutures than female

crania (Jaslow, 1989). Similarly, patent sutures in adults of

species generating high masticatory strain have been inter-

preted as strain dissipators (Rayfield, 2005). Also, there is

experimental evidence that the morphogenesis of suture

interdigitation directly depends on the presence of strain

(Moss, 1961), and increases as a response to external forces

(Rafferty & Herring, 1999; Sun et al. 2004; Byron, 2009). A

recent morphometric study on human interparietal sutures

provides further evidence for a direct correlation between

sutural complexity and strain (Mann et al. 2009).

Various methods have been proposed to classify and ⁄ or

quantify the shape of human cranial interosseous sutures

(Hauser et al. 1991), and to use this information to infer sex

and age at death of osteoarcheological specimens (Lovejoy

et al. 1985; Meindl & Lovejoy, 1985; Mann et al. 1987;

Meindl et al. 1990; Hershkovitz et al. 1997; Schiwy-Bochat,

2001; Lynnerup & Jacobsen, 2003; Skrzat & Walocha, 2003;

Sahni et al. 2005; Wu et al. 2007; Wittwer-Backofen et al.

2008). Classification systems typically define different

degrees of ‘corrugatedness’ of the suture line, while quanti-

tative methods rely on fractal analysis. Estimated fractal

dimensions D of interparietal suture lines vary between 1.0

(straight line) and about 1.30 (Hartwig, 1991; Long & Long,

1992; Skrzat & Walocha, 2003; Yu et al. 2003). How-

ever, while suture obliteration is clearly (although weakly)
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correlated with individual age (Meindl & Lovejoy, 1985;

Meindl et al. 1990; Wittwer-Backofen et al. 2008; Harth

et al. 2009), correlation between the fractal dimension of

cranial sutures and individual age could not be confirmed

(Lynnerup & Jacobsen, 2003; Yu et al. 2003), such that it

appears that cranial suture complexity is only marginally

useful for age determination of mature individuals (Hersh-

kovitz et al. 1997). Nevertheless, the complexity of the

interparietal suture increases during the first 10 years of

life, as has been shown in a study using Fourier analysis (FA)

to quantify suture line excursions from the midsagittal

plane (Wu et al. 2007).

Techniques such as tissue culture and histochemistry have

been used extensively to elucidate the molecular mecha-

nisms of suture formation (Ogle et al. 2004; Morriss-Kay &

Wilkie, 2005; Opperman & Rawlins, 2005; Miura et al.

2009). Also, non-invasive imaging techniques such as micro-

computed tomography and synchrotron tomography are

increasingly used to analyze the micromorphology of

sutures (Skrzat et al. 2002; Reinholt et al. 2009; Corega et al.

2010; Harth et al. 2010; Regelsberger et al. 2010). Miura

et al. (2009) integrated the current knowledge about the

molecular basis of suture formation into a morphogenetic

model, and showed that a reaction-diffusion (RD) model

involving two classes of molecules is well suited to repro-

duce many of the characteristic features of convoluted

suture lines. One important perspective offered by this study

is that standard morphogenetic models provide valuable

approximations of complex regulatory genomic networks

governing pattern formation (Kondo & Miura, 2010).

Cranial suture biology has also become an important

focus of clinically oriented research. Data on suture forma-

tion at different levels of organization are integrated to

investigate how molecular (Kim et al. 1998; Ogle et al.

2004), cellular and biomechanical mechanisms act together

to give rise to the wide variety of observed sutural forms

(Opperman et al. 1999; Opperman, 2000; Henderson et al.

2004; Opperman & Rawlins, 2005; Byron, 2006; Vij & Mao,

2006), and how disruption of normal signaling pathways

leads to congenital malformations of the head involving

premature suture closure (Cohen, 2002; Connerney et al.

2006). Along another line of research, various biophysical,

molecular and cellular models have been proposed to study

suture formation by means of computer simulations. These

models investigate the role of statistical fluctuations (Oota

et al. 2006), biochemical ⁄ cellular mechanisms (Miura et al.

2009) and strain (Garcia-Ruiz et al. 1990).

Based on current empirical evidence, cranial suture mor-

phogenesis thus appears as a multifactorial process, in

which local mechanisms of tissue differentiation and surface

growth lead to globally convoluted structures. Various

questions, however, remain open. For example, while it has

been shown that osteocytes are strain-sensitive and that

bone growth is a strain-mediated process, the possible role

of bone strain during suture morphogenesis and its implica-

tions for suture morphology have not yet been studied in

detail. Specifically, it remains to be tested whether suture

morphology reflects in vivo adaptation to strain, and

whether it is functionally optimized for strain dissipation

and mechanical stability. A second open question is how

sutural form and form variability can be quantified compre-

hensively. Fractal geometry is a means to quantify scale-

independent (hierarchical) properties of geometric struc-

tures. Suture lines have been shown to exhibit fractal prop-

erties such as hierarchically organized convolutions

(‘convolutions within convolutions’), but only over a

restricted range of scale (Gorsky & Skrzat, 2006). Also, the

fractal dimension is a relatively coarse measurement of

sutural shape, as lines with widely different morphologies

can have similar fractal dimensions (Fig. 1a,b). Accordingly,

new morphometric methods are required to quantify

sutural morphology more accurately and comprehensively.

Aims and hypotheses

This paper combines modeling and morphometric analysis

to investigate how suture growth is related to structure and

function. First, we propose a new morphogenetic model of

strain-mediated suture morphogenesis. The model is

designed to be ‘minimal’ in the sense that it should gener-

ate the observed complexity and diversity of modern

human neurocranial sutural morphologies with a minimum

of model parameters. Computer simulations are then used

to generate synthetic sutures, to explore the morphoge-

netic space (morphospace) of the model system, and to

assess the diversity of morphologies that the model system

can produce.

Second, we propose a new morphometric method, which

combines FA with principal components analysis (PCA) to

quantify suture morphology. The method is used to assess

to what extent the model system reproduces key features

of natural sutures, and to determine which regions of the

theoretical morphospace are occupied by natural suture

morphologies. These comparative data are then used to test

hypotheses about the factors governing suture morpho-

genesis and variation in suture shape. Specifically, we test

two hypotheses: the first proposes that suture complexity is

correlated with developmental time (age) and with physio-

logical properties of the suture tissue (Miura et al. 2009).

The second proposes that variation in corrugatedness along

the suture line is correlated with variation in strain patterns

(Mann et al. 2009).

We focus on the formation and morphology of the inter-

parietal (sagittal) suture in modern human crania. This suture

line has been the subject of various morphogenetic and

morphometric studies, and it is used as a standard model in

clinical studies of cranial synostoses (Cohen, 2002; Rice,

2007b; Slater et al. 2008). From a modeling perspective, the

anatomical and biomechanical context of interparietal

suture formation is less complex than in other sutures.
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The interparietal suture is located in the cranial mid-

plane and formed between homologous bones, thus

representing bilateral (statistical) symmetry of growth

directions and mechanical loading. Moreover, due to the

large size and spheroid shape of the human cranial

vault, midsagittal suture formation occurs in the absence

of potentially confounding factors such as complex

cranial vault geometry and ⁄ or muscle attachment sites

in close proximity to the suture line. To further restrict

the complexity of the model approach, the morphomet-

ric methods and morphogenetic models proposed here

focus on the external (two-dimensional) morphology of

the suture.

The sutural growth model

Interface growth is an active research area in physics, engi-

neering sciences and biology. Various concepts and models

are currently available to describe how interfaces between

materials with different properties develop in time and

space (Family & Vicsek, 1991; Dünweg et al. 2003). The

growth model proposed by Garcia-Ruiz et al. (1990) estab-

lishes a link between ammonoid1 suture formation and a

type of interface growth known from physics as ‘Saffman–

Taylor growth’ or ‘viscous fingering’ (Saffman, 1986).

Saffman–Taylor fingers are formed at the phase boundary

between two liquid immiscible media with different viscosi-

ties (e.g. water and oil) when pressure is applied to inject

the less viscous fluid into the more viscous one. During this

process, local differences in pressure along the interface

lead to instabilities in the form of finger-like extrusions of

the expanding surface. The Saffman–Taylor model repre-

sents one specific case of a larger class of surface growth

processes known as Laplacian systems, where the term

‘Laplacian’ refers to the basic growth equations governing

these systems (see below). Laplacian models have been used

to demonstrate basic similarities of a wide spectrum of

surface growth phenomena in physical and biological

systems. In all these systems, surface growth velocities

depend on the local distribution of an external field, u. This

field may reflect quite diverse physical and ⁄ or chemical

properties, such as a pressure potential in the case of viscous

fingering, a temperature gradient during directional solidi-

fication, an electrostatic potential in dielectric breakdown

phenomena such as lightning, electrolyte concentration in

dendritic crystal growth, and a nutrient concentration in

bacterial colonies growing on a Petri dish (Sander, 1986;

Matsushita et al. 1993).

One key property of Laplacian growth systems is the spa-

tiotemporal interdependence of large-scale and small-scale

changes in the external field u and in the growing surface.

While local growth velocities at the interface depend on

the local spatial properties of the field, these properties are

determined by the overall geometry of the growing sur-

face. This feedback system gives rise to ramified, fractal-like

structures of the interface (Fig. 1c,d).
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Fig. 1 Fractals and fractal surface growth. (a, b) Diversity of structures with fractal dimension D = 1.5. Wiener process (Brownian motion) paths

(a) and Koch fractal (b). (c, d) Laplacian surface growth via DLA starting with a single cell (c) and a planar surface (d). The structure in (c) has

fractal dimension D � 1.71 (Mandelbrot et al. 1995).

1In ammonoids (a fossil group of cephalopod mollusks), sutures rep-

resent attachment sites of the septa that separate consecutive living

chambers of the shell (phragmocone).
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Suture formation as a bidirectional extension
of Laplacian interface growth

Various studies indicate that suture formation is a strain-

dependent process, in which bone growth and remodeling

are controlled by the dura mater underlying the cranial

vault bones, and in which the differential activity of osteo-

blasts and osteoclasts is relevant for the generation of the

characteristic undulating patterns of the suture line (Yu

et al. 1997; Levine et al. 1998; Henderson et al. 2004; Ogle

et al. 2004; Opperman & Rawlins, 2005; Byron, 2006). It is

thus sensible to model sutural growth as a process of bone

deposition ⁄ resorption mediated by a strain field.

The standard Laplacian model describes growth at the

surface of an incompressible phase S as a function of the

spatiotemporal distribution of a field variable u within the

adjacent phase B (Fig. 2a). The system is set to the following

boundary conditions:

uB;far ¼ 1 and us ¼ 0 ð1Þ

indicating that strain is constant at locations far away

from the interface (uB,far = 1; strain source), while strain

is dissipated within S (uS = 0). Under these far-from-

equilibrium conditions, the system obeys the steady-state

diffusion equation or ‘Laplace equation’

r2u ¼ du=dt ¼ 0 ð2Þ

The left two terms correspond to the standard diffusion

equation, in which the second spatial derivative of u (the

Laplacian term �2u) equals its first temporal derivative

(du ⁄ dt). Setting the diffusion equation to zero characterizes

a strain field with zero net flux within B, implying that the

strain gradient distribution does not change over time.

To account for the specific growth characteristics of sutural

tissue, the basic Laplacian growth model needs to be modi-

fied and extended in several ways. Sutures develop when two

expanding osteogenic fronts meet each other and form a

common interface, which then continues to grow in either

direction (Opperman & Rawlins, 2005). Before osteogenic

fronts meet, they typically exhibit a ‘spiky’ surface, which

arises from the outgrowth of bony spicules during intra-

membranous ossification. As soon as growth fronts have met,

the morphology of the suture interface starts to differ in

some key aspects from the growth fronts of isolated bones.

Initially, the interface is relatively smooth, but then develops

interdigitations with characteristic recurvations. Although

direct experimental evidence is not yet available, it is sensible

to assume that recurvations arise through a combination of

bone deposition and resorption on either side of the suture

line. This assumption is backed by the observation that the

complexity of neurocranial interosseous sutures increases

even after neurocranial expansion has been completed (see

Fig. 5 below).

Our model thus postulates two effects: first, during neur-

ocranial growth, deposition is more intense than resorption

and leads to expansion of the braincase; and second, after

completion of neurocranial growth, a balance is reached

between deposition and resorption. Because we are inter-

ested here in suture morphology rather than neurocranial

expansion, we focus on the net effects of deposition vs.

resorption and observe how the shape of the sutural inter-

face develops over time, assuming that the midsagittal

plane remains stationary.

These considerations are incorporated into the following

‘bidirectional Laplacian interface growth model’. We define

a thin strip of sutural tissue S that deposits and ⁄ or resorbs

extracellular bone matrix on either side (B1 and B2; see

Fig. 2b). Bone deposition ⁄ resorption is governed by the dis-

tribution of strain u at the boundary between suture S and

bone B. However, because bone matrix can be deposited

and ⁄ or resorbed on either side of S, the model system is

subdivided conceptually into two subsystems, [S1, B1] and

[S2, B2], as illustrated in Fig. 2b. Each subsystem obeys stan-

dard Laplacian growth conditions

r2uS1 ¼ 0;r2uS2 ¼ 0 ð3Þ

∇2j = δj/δτ = 0

BS

j = 1j = 0

vn

∇jSB

j = 0

S2 B2∇jS2B2B1 S1∇jS1B1

SB1 B2

a

b

vn1 vn2

Fig. 2 Laplacian models of interface growth. (a) Unidirectional model.

Phase S grows with velocity vn as a function of gradient �uSB at the

S–B interface. Field distribution of u within B obeys the Laplace

equation; u within S is zero. (b) Bidirectional model of bone growth

at suture interface. The system is subdivided into complementary

subsystems [S1, B1] and [S2, B2]. Bone deposition ⁄ resorption rates are

evaluated as functions of strain gradients (�uS1B1 and �uS2B2) on

opposite sides of the suture line.

ªª 2011 The Authors
Journal of Anatomy ªª 2011 Anatomical Society of Great Britain and Ireland

Suture morphogenesis, C. P. E. Zollikofer and J. D. Weissmann 103



A key feature of the bidirectional Laplacian model is that

the subsystems are coupled. Accordingly, deposition of B on

one side of S results in resorption of B on the opposite side,

such that the sutural interface S increases its intrinsic length

(path length along the interface) through corrugation, but

does not change its mean position, thickness and extrinsic

length (distance between endpoints).

While the Laplacian growth equation defines the overall

constraints of the sutural growth model, physiological

parameters of the sutural tissue define local constraints.

Extracellular bone deposition ⁄ resorption rate is modeled as

a function f of the local gradient of u at the interface

between S and B

vn ¼ fðruSBÞ ð4Þ

This function specifies how suture cells sense strain gradi-

ent �uSB and transform this information into bone deposi-

tion ⁄ resorption velocity vn (velocity is a vector denoting

rate and direction of deposition ⁄ resorption). The precise

response function of strain receptors is not known; in a

heuristic approach, we assume a non-linear relationship

between the local strain gradient and bone deposition rates

(the length of the velocity vector vn). Specifically, we use

the function

vnj j ¼ c � rug
SB ð5Þ

where c is a constant, and g is used to model non-linear

dependence of bone deposition rates on strain. For

g = 0, surface growth occurs independent of strain u,

which corresponds to a ‘Brownian’ growth model (also

known as ‘Eden growth’; Eden, 1961). For a linear rela-

tionship between strain gradient and bone deposition ⁄
resorption rates (g = 1), the surface grows according to a

process known as ‘diffusion-limited aggregation’ (DLA).

Here, DLA can be thought of as ‘strain particles’ (or

alternatively as morphogen molecules) diffusing from a

source at infinity and triggering growth where they hit

the suture line (Witten & Sander, 1981; Bogoyavlenskiy,

2001). For values of g „ 1, surface growth is a non-lin-

ear function of the local strain gradient. The postulated

local strain gradient �u can be thought of as transient

microstrain caused by masticatory forces, and ⁄ or inertial

forces during head movement. This corresponds to the

Laplacian assumption of a diffusion-limited process,

which essentially implies a non-saturated system with

low levels of u.

The physical properties of the growing surface are speci-

fied with additional parameters (Vicsek, 1991). One is

surface tension, which tends to suppress formation of fea-

tures exhibiting high surface curvature, such as spines and

small-scale branching patterns. In the present model, sur-

face tension is used to model the viscosity of the osteogenic

front, i.e. the strength with which cells adhere to each

other. Furthermore, noise reduction techniques are used to

control the smoothness of the resulting surface. An addi-

tional parameter is anisotropy, which implies a directional

bias in surface growth probabilities. Because computer sim-

ulations are run on a square grid, some degree of growth

anisotropy along grid lines can be expected. Implementa-

tion details are given below.

Generalization of the Laplacian model:
Poisson growth

In the Laplacian growth model, the source of field u is far

away from the expanding phase S, and constant. As a

generalization of Laplacian growth, Poisson growth models

assume that the source of field u is a general function of

the location (x, y) outside phase S:

uB ¼ fðx; yÞ; uS ¼ 0 ð6Þ

Here, we simulate the following condition:

uB ¼ k ¼ const:;uS ¼ 0 ð7Þ

In this model, strain source distribution is spatially homo-

geneous in B (uB = k), and S acts as a strain dissipator. Meta-

phorically, uB can be thought of as a homogeneous source

of diffusing particles, which trigger growth where they hit

the surface of S, and are then removed from the system (La

Roche et al. 1991). Note that this modeling approach is simi-

lar to RD models of sutural growth, as proposed by Miura

et al. (2009). The relevant aspect of the Poisson model is

that the metaphorical ‘diffusing particles’ can be thought

of as actual morphogen molecules, as an alternative to a

strain field.

Computer simulations

Suture morphogenesis is simulated on a lattice with dimen-

sions 512 · 128; x-coordinates range from 0 to 511 (along

the suture’s principal axis) and h-coordinates range from

)63 to +64 (across the suture). The lattice has periodic

boundary conditions in the x-direction. System [S1, B1] is

initialized with half the pixels (h < 0) labeled as bone B1, the

other half (h ‡ 0) labeled as suture S1. System [S2, B2] is ini-

tialized as a mirror system (h < 0: suture S2; h ‡ 0: bone B2).

Suture growth is then modeled by solving the steady-

state diffusion equation (see Eqs 1 and 2) for each subsys-

tem. In practical terms, the equation is solved for each

‘bone’ pixel at position (x = i, h = j) via the lattice form of

the Laplace operator �2u

uij;tþ1 ¼
1

4
ui�1;j;t þuiþ1;j;t þui;j�1;t þui;jþ1;t

� �
ð8Þ

with boundary conditions u = 0 within S, and u = 1 far

from the suture (i.e. at h = 64 for B1, and h = )63 for
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B2). Iteration is performed until a convergence criterion

e is reached,

X
i;j

uij;tþ1 �
X

i;j

uij;t

�����

�����<e ð8aÞ

To achieve faster convergence, a multigrid approach is

used, in which the above iteration is calculated on increas-

ingly fine-grained grids, where the results of calculation for

one grid are used for the initial values at the next level of

grid scale. These calculations yield the distribution of uij

along the suture line (i.e. the S–B interface).

Growth velocity vi,j fi i’,j’ at a suture site (i, j) towards a

neighboring bone site (i’, j’) is a function of the gradient of

u between these two sites (Eq. 5). By definition, ui,j = 0 at

the suture site, such that

Dui;j!i0 ;j0 ¼ ui0 ;j0 � ui;j ¼ ui0 ;j0 ð9Þ

Using Eq. 5, we thus write

vi;j!i0 ;j0 ¼ c Dui;j!i0 ;j0

� �g
¼ c Dui0 ;j0

� �g
ð10Þ

Actual growth velocities are evaluated by further modifi-

cation of the growth velocity vector through a linear

surface tension function of the form

r ¼ aKi;j þ b ð11Þ

where K is the number of neighboring suture sites of

suture site (i, j) in a 3 · 3 neighborhood, and a and b

denote the coefficients of a linear regression equation.

We then obtain

vi;j!i0 ;j0 ¼ rc Dui0 ;j0

� �g
ð12Þ

The v-values are normalized over the entire suture line,

yielding a growth probability Pij for each suture site (note

that upon normalization the constant c in Eq. 10 becomes

c = 1). One site is then chosen probabilistically, its position

is updated, and the u-field is re-evaluated according to Eq.

8. These calculations are performed alternately (in random

order) for [S1, B1] and [S2, B2], such that bidirectional

growth of the suture line occurs. Note that [S1, B1] and [S2,

B2] are coupled via their common interface; any growth-

mediated modification of the S1–B1 interface entails a

corresponding modification of the S2–B2 interface.

Noise reduction is simulated by means of annealing, i.e.

the position (i, j) of a recently added interface pixel is

optionally changed to that of its nearest neighbor sur-

rounded by the highest number of interface pixels. This

procedure tends to smooth out surface peaks and indenta-

tions. The source code is available on request from the

authors.

Data acquisition and analysis

Data on natural shape variation of human midsagittal

sutures were collected from a sample of N = 17 immature

(fetal to subadult) and N = 30 adult crania (a subsample of

10 adult suture lines is shown in Fig. 3). Each exocranial

suture line was replicated with high-resolution dental cast-

ing material (President Putty, Coltene). Replicas were

scanned with a conventional flatbed scanner, such that the

spatial resolution of the digital image (1024 dpi, corre-

sponding to � 25 microns per pixel) was higher than the

finest excursions of the suture line. Suture lines were then

directly traced on the digital images using Photoshop

(Adobe). Synthetic suture lines resulting from model simula-

tions were extracted with the marching-squares algorithm

(Hansen & Johnson, 2005).

Current methods used to quantify suture shape typically

extract global (statistical) properties of the suture line, such

as fractal dimension, and excursion from the midline

(Gorsky & Skrzat, 2006; Wu et al. 2007). The method pro-

posed here considers the actual shape (geometry) of the

suture line. To this end, the suture line s is expressed in

parametric form

s tð Þ ¼ f x tð Þ; y tð Þ½ �

with t ranging from t = 0 (start) to t = 1 (end). This can

be thought of as moving along the suture line with a

given step length Dt, while recording positions (x, y).

This permits definition of surface curvature as

c tð Þ ¼ dx=dt � d2y=dt2 � dy=dt � d2x=dt2

dx=dtð Þ2þ dy=dtð Þ2
h i3=2

:

Curvature functions ci(t) are computed for all specimens i

of a sample (i = 1 … N). Because suture lines vary consider-

ably in individual shape, direct (point-to-point) comparisons

of curvature characteristics are not possible. We thus use FA

to calculate the Fourier-transforms F(ci) of all functions ci(t),

and submit the transformed data to PCA. PCA is a dimen-

sion reduction technique, which serves as a means to extract

the statistically most significant patterns of shape variation

in the sample (Jolliffe, 1986).

Results

The properties of the suture growth models were explored

by systematic variation of parameter values (Table 1). Com-

puter simulations were run for up to 1000 time steps, and

snapshots of the developing morphologies were taken at

intervals of 100 time steps. Figure 4 illustrates the develop-

ment of model sutures for various parameter settings. A

comparison of model sutures with real sutures (Fig. 3 vs.

Fig. 4) shows that a relatively restricted range of model

parameters generates forms that are visually similar to
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biological morphologies. Figure 5a–c represents form varia-

tion of computer-generated and real sutures in morpho-

space. The first three principal components (PCs) shown in

these graphs account for 19.4, 4.8 and 1.8% of the total

shape variation in the sample (each point in morphospace

corresponds to the morphology of one specific suture line).

Computer-generated sutures develop along trajectories

through morphospace, which track the transformation of

initially straight lines into highly convoluted forms. All simu-

lated developmental trajectories largely overlap in PC1–3

graphs and exhibit a horseshoe-shaped course characteristic

of serial data (Kendall, 1970), irrespective of the particular

parameter settings used to grow individual model sutures

(Table 1). Considering that PCs are statistically independent

factors of shape variation that account for the largest, sec-

ond largest and successively smaller proportions of the total

sample variance, the following picture emerges: 26% (PCs

1–3) of the shape variation of model sutures is due to devel-

opmental shape change (along developmental trajectories),

while 74% (PCs 4 onward) is due to variation between indi-

vidual suture lines (across developmental trajectories). The

latter portion of variability does not exhibit significant cor-

relations with specific model parameters.

While Fig. 5a–c shows that model sutures develop along

largely similar trajectories through morphospace, Fig. 5d

shows that individual model sutures differ in rates of devel-

opment (rates are measured here as the increase in intrinsic

suture length per unit time). Rates of development are posi-

tively correlated with exponent g, and negatively correlated

with surface tension (Fig. 5g,h). In other words, high expo-

nents g and ⁄ or low surface tension result in fast corrugation

of the suture line. This results in more rapid advancement

along developmental trajectories through morphospace

(Fig. 5d), as well as in increased total suture length at any

given time t.

Natural suture lines were analyzed with identical mor-

phometric methods, such that their position in morpho-

space can be directly compared with the outcome of model

simulations (Fig. 5a–c). The distribution pattern of natural

sutures in morphospace largely coincides with the distribu-

tion of computer-generated sutures. Sutures of immature

individuals group with early developmental stages of syn-

thetic sutures, while highly convoluted natural sutures tend

to group with late developmental stages in computer simu-

lations. The natural sutures in our sample thus correspond

to different morphogenetic states of corrugation of the

model system. In Fig. 6 natural sutural complexity is

graphed as a function of individual age and extrinsic suture

length (i.e. parietal arc length). Complexity tends to

increase during ontogeny, and continues to increase after

cessation of neurocranial expansion. Because our data come

from a cross-sectional ontogenetic sample, Fig. 6 also

indicates that the range of complexity increases during

ontogeny. In other words, all perinatal individuals exhibit

1 2 3 4 5 6 7 8 9 10

Fig. 3 A set of 10 human interparietal sutures (bregma is on top, lambda on bottom; black dots indicate parietal foramina; scale bar is 1 cm).

Table 1 Parameter settings used for computer simulations.

Parameter Range

See

equation no.

Exponent g 0.0, 0.5, 1.0, 1.5, 2.0 5

Surface tension r 11

Slope a 1, 2, 3, 4 11

Intercept b 1, 2, 3, 4 11

Poisson strain constant k 0, 1, 2 7
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sutures with a low degree of complexity, while adult individ-

uals exhibit a wide spectrum from low to high complexity.

In morphospace, natural suture shapes exhibit some offset

relative to model trajectories (Fig. 5a). This indicates that

while our model system captures the essential modes of

sutural shape variation, natural sutures exhibit spatial charac-

teristics not reproduced by the model system. Overall, mor-

phometric comparison of model and real sutures supports

the hypothesis that suture formation appears as a strain-

mediated process. According to this hypothesis, variation in

complexity between individual sutural shapes is due to: first,

differences in ontogenetic stage; and second, differences in

physiological properties of the suture tissue, such as strain

response function (exponent g) and surface tension.

To further validate the model, we consider Eq. 5, which

predicts that variation in convolutedness along the suture

line should be correlated with variation in strain patterns.

Natural sutures provide an ideal case to test this hypothesis.

As evinced in Fig. 3, suture lines exhibit the lowest degree

of convolution in the region between the parietal (obelic)

foramina (Mann et al. 2009). We hypothesize that these

foramina act as strain dissipators (u = 0), which generate

high local strain gradients and disturb the strain field in

their immediate neighborhood. We performed computer

simulations incorporating foramina-like ‘strain sinks’ repre-

senting locations where u = 0. The resulting model shapes

(Fig. 7) exhibit a substantial decrease in sutural complexity

around foramina, similar to natural sutures.

As an additional validation of the model system, we simu-

lated the morphogenesis of sutures under classical Laplacian

growth conditions, i.e. suture interfaces that grow in only

one direction. Unidirectional suture growth can occasionally

be observed in the human parieto-occipital (lambdoid)

suture, when the occipital squama overgrows the parietal

bones. Overgrowth is relatively rare in modern humans, but

it seems to be the rule in the Neanderthals. Figure 8 shows

the lambdoid suture of the type specimen of Homo nean-

derthalensis, and two simulations of unidirectional suture

growth. The model sutures develop cauliflower-shaped out-

growths, which are similar to those observed in the natural

suture. Unidirectional suture growth could indicate that the

osteogenic fronts of the two adjacent bones forming the

suture exhibit different gradient response characteristics.

Discussion

The cranium is typically perceived as a highly constrained

structure, which is composed of modules exhibiting consis-

tent morphologies. However, it also comprises elements

exhibiting ‘stochastic’ macroscopic morphologies, such as

the paranasal sinuses and air cells (Zollikofer & Weissmann,

2008), and the interosseous sutures discussed here. The

analysis of these structures is challenging and comprises

three different tasks: first, understanding and modeling the

basic mechanisms governing their development; second,

devising morphometric methods to quantify their highly

variable form; and third testing hypotheses about possible

form-function relationships.

The morphogenetic model of suture formation proposed

in this study is based on a standard approach typically used

in physics to describe gradient-dependent growth of the

interface in a two-phase system (Family & Vicsek, 1991).

Compared with RD models, which emphasize the role of

local interactions between two or more classes of reactants,

Laplace ⁄ Poisson (LP) growth models emphasize the role of

global ‘signals’ in the form of gradient fields mediating

interface development. RD and LP models are not mutually

exclusive, and have been combined to simulate interface

growth under various conditions (Nagatani, 1990; De Wit &

Homsy, 1999a,b; Lega & Passot, 2003; Gerard & De Wit,

2009). In the case of suture formation, applications of local

and global growth models can be expected to optimally

recreate sutural features at different levels of scale. A visual

comparison of natural and model sutures (Figs 3 and 4)

η = 0.0

η = 0.5

η = 1.0

η = 1.5 

ST on

ST off

ST on

ST off

ST on

ST off

ST on

ST off

PL

T = 500T = 1000T = 500 T = 1000

Fig. 4 Morphological diversity of computer-generated suture lines.

Morphologies are shown for a variety of parameter settings [L,

Laplacian growth; P, Poisson growth; ST, surface tension (off:

a = b = 0; on: a = b = 4); g: exponent of Eq. 5], and at time steps

500 and 1000. Note that morphologies similar to natural sutures are

generated within a restricted parameter subspace.

ªª 2011 The Authors
Journal of Anatomy ªª 2011 Anatomical Society of Great Britain and Ireland

Suture morphogenesis, C. P. E. Zollikofer and J. D. Weissmann 107



shows that LP models produce morphologies with consider-

able spatial inhomogeneity along and across the suture

line, which is a typical feature of natural sutures. RD

models, on the other hand, produce comparatively homo-

geneous patterns with characteristic ‘space-filling’ proper-

ties (largely equidistant spacing of neighboring loops of

the interface). Natural sutures do exhibit space-filling fea-

tures, but they are typically restricted to subregions of the

entire suture line (fig. 8 in Miura et al. 2009). Furthermore,

LP models recreate the formation of ‘island’ contours, i.e.
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sutural loops that are isolated from the main interface

(Fig. 9). These features, which result from the fusion of

neighboring meanders (loops) of the suture line, are often

seen in natural sutures, but they do not seem to emerge

from RD models. On the other hand, RD models recreate

sutural sprouting, i.e. the formation of spike-like offshoots
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Fig. 6 Development of complexity in natural sutures. (a) Graph of principal component (PC)2 vs. PC1 (data and color code as in Fig. 5a); (b)

Extrinsic suture length (bregma–lambda arc length) vs. age class (fet, fetal; i ⁄ m1 ⁄ m2, deciduous incisors ⁄ molars1 ⁄ 2 erupted; M1 ⁄ M2 ⁄ M3,

permanent molars 1 ⁄ 2 ⁄ 3 erupted; neo, neonate). (c, d) PC1 and PC2 vs. bregma–lambda arc length. The range of suture complexity increases

with dental age class and suture length.

a b

0.2 0.4 0.6 0.80.8 0.6 0.4 0.2 0.2 0.4 0.6 0.80.8 0.6 0.4 0.2

Fig. 7 Simulation of normal suture development (a), and development in the vicinity of parietal foramina that act as ‘strain sinks’ (b). Both graphs

show strain distribution around suture lines (strain isolines are drawn at intervals of Du = 0.1). Note decrease of suture complexity in the region of

the foramina (black circles; strain u = 0).

Fig. 5 Principal components analysis (PCA) of synthetic and natural suture morphologies. (a–c) Distribution of morphologies in shape subspace

defined by the first three PCs. Each gray ⁄ light blue dot represents the morphology of a synthetic suture grown according to L ⁄ P equations,

respectively. Red diamonds represent adult natural sutures (numbering as in Fig. 3); color-filled circles represent immature natural sutures. (d)

Growth trajectories of selected synthetic sutures (PC1–PC2 plot, as in a; morphometric data were acquired at time steps T = 100, 200, …, 1000).

Note that morphogenesis occurs along largely similar curved trajectories, but at different developmental rates. (e) Suture length increases along

PC1. (f) Time course of suture development (colors correspond to trajectories in d; L ⁄ P, Laplace ⁄ Poisson growth; g = 0.3, 0.9, 1.5; surface tension

low, middle, high). (g, h) Sutural corrugation rate (measured as D suture length per D time) increases with exponent g (g), and decreases with

surface tension (h) (colors as in d and f).
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perpendicular to the main direction of the sutural interface

(fig. 4 in Miura et al. 2009), a feature not seen in LP

models.

Laplace ⁄ Poisson models of suture formation permit estab-

lishment of hypothetical links between suture morphogene-

sis, the resulting form of the suture line, and its function as

a strain absorber. According to our hypothesis, strain gradi-

ent sensitivity of the growing suture tissue implies higher

probability of bone deposition at sites exhibiting higher

strain gradients. As a consequence, bony peaks (where

strain gradients are high) tend to grow more rapidly than

valleys tend to fill up, and this process is reinforced by the

symmetric organization of the system (peaks on one side

are valleys on the other). Because growth at peak sites can

occur into a wider range of directions than at other sites,

peaks tend to ramify, resulting in a hierarchical (fractal)

organization of sutural convolutions. The resulting increase

in local complexity of the interface results in a high degree

of sutural interdigitation. Also, total interface length

(intrinsic length) increases (Fig. 5f). Together, these postu-

lated mechanisms would thus lower local strain magnitudes

while increasing the mechanical stability of the interface

between the two bones involved in suture formation.

While Laplace and Poisson models capture essential prop-

erties of natural suture formation, it has to be kept in mind

that model systems do not provide explanations of the

actual molecular and mechanical processes governing

suture formation. As mentioned, the field variable u, which

we hypothesize here to represent strain, could also be

thought of as the concentration of a morphogen, which is

released by sutural or adjacent tissue. Which of the two rep-

resentations is closer to the actual morphogenetic process

remains to be verified with experimental studies (for ease

of argument, we will use ‘strain’ in the following discus-

sion). Nevertheless, exploring the system’s behavior, and

comparing model with natural morphologies permits test-

ing of several hypotheses about how general mechanisms

of suture formation influence sutural complexity.

According to our model, sutural growth occurs via feed-

back between the geometry of the suture line and the

geometry of the strain field: small (random) excursions of

the sutural interface generate local maxima of the strain

gradient, which in turn reinforce local surface growth. How

this inherent dynamic instability of growing LP systems (the

so-called ‘Saffman–Taylor instability’; Saffman, 1986) is

transformed into suture convolutions depends on the

model parameters specifying various properties of the

suture tissue. One such property is surface tension, which

effectively suppresses growth at surface peaks (Fig. 4).

Another property is the response function of suture tissue

to strain gradients. Values of exponent g < 1 result in pro-

portionally lower responses to high strain gradients, while

g > 1 results in proportionally higher responses. As can be

seen from Fig. 4, interfaces generated with g £ 1 corre-

spond to the range of natural suture variation, while expo-

nents g > 1 yield interfaces that are clearly different from

natural sutures; these interfaces develop few but highly

ramified, tree-like structures, which are reminiscent of

axonal growth in neurons.

The hypothesis that sutural complexity is a function of

mechanical loading and resultant strain has been studied

experimentally, both at macroscopic and molecular levels

(Moss, 1961; Jaslow, 1990; Jaslow & Biewener, 1995; Raffer-

ty & Herring, 1999; Herring & Teng, 2000; Mao, 2002; Byron

et al. 2004; Henderson et al. 2004; Sun et al. 2004; Sarasa-

Renedo & Chiquet, 2005; Wang et al. 2006, 2010; Tholpady

et al. 2007; Byron, 2009). These studies indicate that osteo-

blast activity is strain-mediated, and that sutural interdigita-

tion is highest in animals experiencing high peak strain. Our

model, which simulates osteoblast activity (bone deposi-

tion ⁄ resorption rate) as a function of local strain gradients

a

b

Fig. 8 Unidirectional suture growth. (a) Lambdoid (parieto-occipital)

suture of the type specimen of Homo neanderthalensis. (b) Two

simulated unidirectional sutures.

Fig. 9 Simulation of sutural ‘islands’ (isolated loops of the sutural

interface). Laplacian growth with g = 0.5 (left), 1.0 (middle), 1.5

(right); time T = 1000; low surface tension.
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(Eq. 5), is in good agreement with empirical data. The mor-

phological complexity of model sutures clearly correlates

with strain sensitivity (as measured by exponent g; Eqs 5

and 12). Also, simulation of ‘strain sinks’ results in reduced

suture complexity (Fig. 7), which is in good agreement with

the decrease of natural sutural complexity in the vicinity of

parietal foramina (Fig. 3).

The role of strain as a hypothetical agent of suture forma-

tion has also been considered in the RD model proposed by

Miura et al. (2009). Interestingly, simulation of RD-based

suture morphogenesis under high mechanical loading con-

ditions resulted in reduced interdigitation of the suture

line, which stands in contrast with the basic tenet that stress

increases bone growth. The LP growth models used here

help to resolve this paradox: under LP conditions, the strain

field (or morphogen concentration field) is modeled as a

‘diffusion-limited’ quantity, which implies that the system is

not saturated and the field is inhomogeneous. High

mechanical loads correspond to saturation, which implies

equal distribution of strain. In the LP model, a spatially

homogeneous strain field is equivalent to a situation where

g = 0 (strain gradient insensitivity), which implies reduced

suture interdigitation (see Fig. 4).

The possible influence of altered strain patterns on

sutural morphologies has been discussed in the context of

culturally mediated cranial vault deformation. It has been

hypothesized that deformation alters cranial loading and

associated strain patterns, which might entail changes in

sutural complexity and favor the formation of interstitial os-

sicles (Anton et al. 1992; Wilczak & Ousley, 2009). None of

these studies, however, found significant correlations

between suture morphology and cranial deformation, and

this was taken as evidence that deformation leads to only

minor modification of cranial strain distribution patterns.

LP models provide an alternative explanation: while Laplace

models simulate directional (anisotropic) strain sources,

Poisson models simulate isotropic strain sources. Interfaces

grown according to Laplace and Poisson models, however,

exhibit only minor morphological differences (Fig. 4), indi-

cating that global differences in strain patterns (reflecting

differences in loading patterns) have only little influence on

the resulting sutural morphology. Also, the formation of

sutural islands (Fig. 9), and probably of interstitial ossicles,

seems to be independent of the overall loading regime.

Fractal dimensions D have been widely used to measure

suture complexity, and to correlate complexity with age (Sa-

ito et al. 2002; Lynnerup & Jacobsen, 2003; Skrzat & Walo-

cha, 2003; Yu et al. 2003; Byron, 2006; Wu et al. 2007;

Miura et al. 2009). As mentioned, D is an adequate measure

of overall complexity, but it does not contain specific shape

information. The morphometric methods proposed here

permit to quantify both complexity and shape of suture

lines. FA provides a multidimensional measure of sutural

convolutedness, and PCA represents a convenient means to

reduce the high dimensionality of Fourier space. Together,

these methods permit one to visualize and compare the dis-

tribution of model and natural sutures in morphospace:

specific suture morphologies correspond to specific loca-

tions in morphospace, and shape change during suture

development can be traced along well-defined trajectories

through morphospace.

Because all model sutures follow a common basic trajec-

tory, it is possible to discriminate between shape variation

along and across the common developmental trajectory.

Our data show that 26% of variation (represented by PC1–

3) corresponds to the former type of variation. As shown in

Fig. 5d–h, developmental rates along the trajectory vary

considerably between simulations. Differences in develop-

mental rates result from differences between simulated

physiological and biomechanical properties of the model

suture tissue. Specifically, a high exponent g of the strain

response function (Eqs 5 and 12) and low surface tension r

(Eqs 11 and 12) yield high developmental rates and rapid

corrugation. On the other hand, 74% of the total shape

variation (represented by PC4 onwards) must be attributed

to other mechanisms. Shape variation comprised in these

higher-order PCs does not exhibit correlation with specific

model parameters. Most likely, it reflects random variation

caused by the inherently stochastic nature of Laplace and

Poisson growth processes. In fact, replication of simulations

with identical parameter settings yields considerable data

scatter in higher-order PCs.

Our model also provides a tentative answer to the ques-

tion why suture complexity is a poor indicator of individual

age (Lynnerup & Jacobsen, 2003; Yu et al. 2003; Wu et al.

2007). Figure 6 shows that suture complexity does not

increase linearly with increasing age; rather, it is the range

of complexity that increases. During growth some sutures

reach high levels of complexity, while others remain at a

low level. Neurocranial growth is almost completed after

the eruption of the first permanent molar (M1 in Fig. 6),

such that any sample of individuals with age classes ‡ M1

tends to exhibit a wide spectrum of suture morphologies,

ranging from low to high complexity. This effect is also seen

in the analyses of Wu et al. (2007).

Insights gained from computer simulations can be used

to interpret patterns of morphological variation in natural

sutures in terms of morphogenetic processes. In morpho-

space, the distribution of natural suture morphologies lar-

gely coincides with the developmental trajectories of

computer-generated sutures. This indicates that our model

system replicates some fundamental properties of natural

suture morphogenesis. Following the logic of the morpho-

genetic model system, we hypothesize that the growth-

related increase in suture complexity reflects strain and ⁄ or

morphogen gradient-dependent morphogenesis. We fur-

ther hypothesize that adult variation in complexity reflects

interindividual differences in suture tissue properties, such

as sensitivity to the strain field (exponent g) and surface ten-

sion (expressed by r), while in vivo loading history and
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actual duration of suture growth are less important factors.

Similar arguments can be used to interpret within-suture

variation in complexity: compared with synthetic sutures

(Fig. 4), natural sutures exhibit conspicuous fluctuations in

complexity, comprising relatively straight stretches as well

as highly convoluted regions (Fig. 3). We hypothesize that

these fluctuations reflect variation in tissue properties (g, r)

along the suture.

The morphogenetic model of suture formation proposed

here used a minimum number of parameters to generate a

wide spectrum of suture morphologies. Morphological vari-

ation in model sutures closely mimics the basic pattern of

morphological variation in natural sutures. Which combina-

tion of morphogenetic parameters actually generates diver-

sity in cranial interosseous sutures remains a question for

further research. Also, it needs to be clarified to what

extent these parameters are under genetic vs. environmen-

tal control. Overall, however, our study indicates that suture

morphology largely depends on how suture tissue responds

to local signals, which could come in the form of strain gra-

dients and ⁄ or morphogen gradients.
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