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Abstract
In the intensive care unit (ICU), prompt therapeutic intervention to hypotensive episodes (HEs) is
a critical task. Advance alerts that can prospectively identify patients at risk of developing an HE
in the next few hours would be of considerable clinical value. In this study, we developed an
automated, artificial neural network HE predictor based on heart rate and blood pressure time
series from the MIMIC II database. The gap between prediction time and the onset of the 30-
minute target window was varied from 1 to 4 hours. A 30-minute observation window preceding
the prediction time provided input information to the predictor. While individual gap sizes were
evaluated independently, weighted posterior probabilities based on different gap sizes were also
investigated. The results showed that prediction performance degraded as gap size increased and
the weighting scheme induced negligible performance improvement. Despite low positive
predictive values, the best mean area under ROC curve was 0.934.

1. Introduction
In the intensive care unit (ICU), persisting hypotension can result in end-organ damage. As a
result, ICU clinicians must be vigilant to detect and treat hypotensive episodes (HEs) in a
timely manner. However, this is challenging to achieve in a real ICU for several reasons.
First, the amount of time that clinical staff can allocate per patient is generally limited.
Second, ICU data is not only massive in size but also heterogeneous in nature due to their
vastly different sources and suboptimal organization. In the stressful context of busy ICUs it
clearly would be of considerable value to prospectively identify patients who are at
increased risk of developing HEs in the next few hours, since it would facilitate efficient
allocation of ICU resources and minimize the latency to appropriate therapy.

Continuous and quantitative analysis of complex medical data is a suitable task for a
computer in comparison with a human clinician. In particular, multi-parameter time series of
physiologic variables may contain subtle patterns that are a signature of impending frank
hemodynamic instability, and such patterns are best identified and characterized by machine
learning algorithms. Real-time pattern recognition may lead to advance alerts, and change
ICU monitoring from “reactive” to “predictive” [1]. The importance of automated or semi-
automated assistance in analyzing multimodal ICU data is increasingly recognized [2].

Following this rationale, the primary objective of this study was to develop and evaluate
performance of an automated HE predictor based on heart rate and blood pressure time
series.

Address for correspondence: Joon Lee, 77 Massachusetts Ave., E25-505, Cambridge, MA 02139, USA, joonlee@mit.edu.

NIH Public Access
Author Manuscript
Comput Cardiol (2010). Author manuscript; available in PMC 2011 August 26.

Published in final edited form as:
Comput Cardiol (2010). 2011 March 22; 2010(26-29 Sept. 2010): 81–84.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Methods
2.1. Data compilation

We analyzed the heart rate (HR) and systolic, diastolic, and mean arterial blood pressure
(ABP) time series from the adult patients in the Multi-parameter Intelligent Monitoring for
Intensive Care (MIMIC) II database [3]. These time series were either minute-by-minute or
second-by-second; the second-by-second time series were first made minute-by-minute by
taking the median every minute. A total of 1,357 records, each corresponding to an ICU
stay, were compiled for analysis. The median duration of the records was 90.9 hours with an
interquartile range of 100.5 hours (Q1=49.2, Q3=149.8).

From each record, as many examples as possible were compiled. Each example was a 5.5
hour segment that included a 30 minute target window (the subject of prediction), a gap
between prediction time and the onset of the target window, and a 30 minute observation
window that preceded the prediction time. Only the information in the observation window
was available to the predictor as input. Four gap sizes were investigated: 1, 2, 3, and 4 hours.
This setup is graphically illustrated in Figure 1.

To compile examples, a 5.5 hour sliding window traversed each record by advancing 30
minutes at a time. A simple filter was utilized to discard examples with unsatisfactory time
series quality. For both HR and ABP time series (in units of bpm and mmHg, respectively),
the quality of a given data point was deemed satisfactory only if the amplitude was between
10 and 250 AND the absolute value of the rate of change was less than 20 per minute. Only
the examples in which quality was satisfactory for at least 95% of the 5.5 hour window in
ALL of the 4 time series (HR and 3 ABP) were included in the study. The reader should be
aware that the rate of change threshold rejected paroxysmal arrhythmias.

Furthermore, the target window in each example was labeled either control or hypotensive.
An HE was defined as a 30-minute target window in which mean ABP (MAP) was less than
60 mmHg and greater than 10 mmHg for at least 90% of the window. The threshold of 60
mmHg has often been used in previous hypotension studies (e.g., [4,5]). Any 30-minute
target window that did not meet the HE definition was regarded as a control.

At the end of the data compilation step, 130,325 control and 3,953 hypotensive examples
were compiled for subsequent feature extraction.

2.2. Feature extraction and dimensionality reduction
Features were extracted from the following 3 time series: HR, MAP, and pulse pressure (PP)
(PP = SBP − DBP, where SBP and DBP are systolic and diastolic ABP, respectively). From
each time series, the following features were extracted in the observation window: mean,
median, standard deviation, variance, interquartile range, skewness, kurtosis, linear
regression slope, and relative energies in different spectral bands determined by a 5-level
discrete wavelet decomposition with the Meyer wavelet. In addition, the cross-correlations
at zero lag of all 3 possible time series pairs were computed. These features were selected to
quantify different aspects of hemodynamics such as the amplitude and variability of a
particular physiologic variable. Each feature was subsequently normalized to be zero-mean
and unit-variance. A total of 45 features comprised the feature space.

Feature space dimensionality was reduced via principal component analysis (PCA). In this
study, PCA was conducted on training data and retained the principal components with the
largest eigenvalues that captured approximately 90% of the total variance. Both training and
test data were projected onto the same feature space defined by the selected principal
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components. Across different training data sets in cross-validation (to be discussed in the
ensuing section), the reduced dimensionality ranged from 15 to 16.

2.3. Classification
According to the label assigned to each example (control or hypotensive), feed-forward, 3-
layer artificial neural networks (ANNs) with one hidden layer of 20 hidden units were
trained to perform binary classification. The log-sigmoid activation function was utilized in
both the hidden and output layers. ANNs of this architecture are powerful nonlinear
classifiers that can capture any continuous input-output mapping [6]. A 5-fold cross-
validation was conducted to evaluate classification performance, and a random 20%
partition of the training data was designated as the validation data for early stopping.
Separate ANNs were trained for different gap sizes and cross-validation folds.

In order to balance the two groups in training data so that the classifier is prevented from
favoring the majority group, a subset of the majority group (which was always the control
group) was randomly sampled without replacement to match the size of the minority
(hypotensive) group. This randomized sub-sampling was repeated 10 times. On the other
hand, test data were left unbalanced to reflect the true prevalence of HEs. Further, the
partition between training and test data was conducted with respect to records rather than
individual examples. In other words, examples from the same record belonged exclusively
to either training or test data.

The threshold on the posterior probability produced by the ANN was determined from the
receiver operating characteristic (ROC) curve based on training data. The selection criterion
for the threshold was the following:

(1)

where TS is the selected threshold and T is the threshold variable ranging from 0 to 1.

For performance evaluation, the area under ROC curve (AUC), accuracy, sensitivity,
specificity, positive predictive value (PPV), and negative predictive value (NPV) were
calculated. All these measures except AUC were dependent on Equation 1.

2.4. Weighted prediction
In addition to independent predictions from different gap sizes, posterior probabilities
arising from different gap sizes for the same target window were combined in a weighted
fashion as follows:

(2)

where PW is the weighted posterior probability, PI = [p1 p2 p3 p4] is a row vector containing
independent posterior probabilities from different gap sizes (subscript equals gap size in
hours), and W = [w1 w2 w3 w4]T is a column weight vector, the elements of which add up to
unity. The following 3 weight vectors were investigated:
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Above weight vectors were designed to investigate weighting smaller gap sizes more (W1),
equal weights (W2), and ignoring 3 and 4 hour gaps (W3). For each weight vector, the
threshold on the weighted posterior probability was again selected via Equation 1 based on
training data.

3. Results
Tables 1 and 2 tabulate classification performance from independent gap sizes and weighted
prediction, respectively. Table 1 clearly shows the general trend that overall performance
degrades as gap size increases. Also, comparing Table 1 with Table 2, weighted prediction
resulted in negligible improvement over the performance associated with 1 hour gap
reported in Table 1 but outperformed predictions based on the larger gap sizes. However, the
reader should note that a fair comparison between Tables 1 and 2 can only be made with
respect to 1 hour gap, since the prediction time in the weighted scheme was 1 hour prior to
target window onset.

In Table 2, there is no meaningful difference in performance among the three weight
vectors. It is also noticeable that W3 completely ignored predictions made at 3 and 4 hour
gaps but still resulted in similar performance to W1 and W2.

In both Tables 1 and 2, sensitivity and specificity are roughly balanced. This shows the
effect of the sub-sampling during ANN training, given that only approximately 3% of the
data were hypotensive examples. However, there is a large discrepancy between PPV and
NPV in both Tables 1 and 2, highlighted by very low PPVs.

4. Discussion and conclusions
We have demonstrated promising prediction performance with 1 hour gap. The fact that the
reported results were based on such a large-scale, real-ICU data as the MIMIC II database
assigns credibility to the results. Also, the data compilation and cross-validation in this study
simulated continuous hemodynamic monitoring (every 30 minutes), which is a necessity for
a real-time clinical decision support system (e.g., [7, 8]). Hence, similar prediction
performance is expected from a clinical trial of the HE predictor developed in this study.

Intuitively, it is expected that prediction performance would decrease with increasing gap
size, since predicting further into the future should be more challenging. In other words, the
diminishing performance with increasing gap size suggests that the autocorrelations of the
HR and ABP time series decay with increasing lag.

The fact that the weighted prediction scheme failed to meaningfully outperform the 1-hour
gap predictor suggests that there is no advantage in consulting previous predictions.
Although this study investigated only 3 specific weight vectors, this argument is
corroborated by the observation that ignoring predictions at 3 and 4 hour gaps (W3) did not
adversely affect performance. It is concluded that the voting mechanism based on serial
predictions for the same target window does not increase predictive certainty.

The low PPVs are attributable to the prominent imbalance between the numbers of control
and hypotensive examples, which reveals the true prevalence of HEs in the ICU. However,
as mentioned in the Introduction section, this HE prediction algorithm was designed to serve
as an HE risk stratifier that would simply identify patients who require more careful
attention in the near future. In comparison with other clinical decision support systems that
ask for immediate clinical attention by generating an alarm and suffer from the delay in
human response associated with a low PPV [9], this risk management approach ensures
minimal disruption to clinical staff even with such low PPVs.
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One limitation of the binary classification approach in this study is the hard distinction
between control and hypotensive examples according to an arbitrary (but reasonable) HE
threshold of 60 mmHg. Classification results on borderline cases, such as near-hypotensive
control examples in which the target windows contain MAP values consistently between 60
and 65 mmHg, could be debatable. This implies that certain misclassifications could be
more tolerable than others from a clinical perspective.

A real-time implementation of the HE predictor described in this paper would be ready for a
clinical trial, perhaps in silent mode. The clinical trial would give ICU clinicians an
opportunity to evaluate the predictor and elucidate its clinical utility from their perspective.

Acknowledgments
This research work was funded by the US National Institute of Biomedical Imaging and Bioengineering (NIBIB)
under grant number R01-EB001659. The content of this article is solely the responsibility of the authors and does
not necessarily represent the official views of the NIBIB or the National Institutes of Health (NIH).

References
1. Morris AH. Decision support and safety of clinical environments. Quality and Safety in Health

Care. 2002; 11:69–75. [PubMed: 12078374]
2. Clifford GD, Long WJ, Moody GB, Szolovits P. Robust parameter extraction for decision support

using multimodal intensive care data. Philosophical Transactions of the Royal Society A. 2009;
367:411–429.

3. Saeed M, Lieu C, Raber G, Mark RG. MIMIC II: a massive temporal ICU patient database to
support research in intelligent patient monitoring. Computers in Cardiology. 2002; 29:641–644.
[PubMed: 14686455]

4. Redl-Wenzl EM, Armbruster C, Edelmann G, Fischl E, Kolacny M, Wechsler-Fordos A, Sporn P.
The effects of norepinephrine on hemodynamics and renal function in severe septic shock states.
Intensive Care Medicine. 1993; 19:151–154. [PubMed: 8315122]

5. Bernard J, Hommeril J, Passuti N, Pinaud M. Postoperative analgesia by intravenous clonidine.
Anesthesiology. 1991; 75:577–582. [PubMed: 1928767]

6. Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural
Networks. 1989; 2:183–192.

7. McLachlan K, Jenkins A, O’Neal D. The role of continuous glucose monitoring in clinical decision
making in diabetes in pregnancy. Obstetrical Gynecological Survey. 2007; 62(10):643–644.

8. Vespa PM, Nenov V, Nuwer MR. Continuous EEG monitoring in the intensive care unit: early
findings and clinical efficacy. Journal of Clinical Neurophysiology. 1999; 16(1):1–13. [PubMed:
10082088]

9. Getty DJ, Swets JA, Pickett RM, Gonthier D. System operator response to warnings of danger: a
laboratory investigation of the effects of the predictive value of a warning on human response time.
Journal of Experimental Psychology. 1995; 1(1):19–33.

Lee and Mark Page 5

Comput Cardiol (2010). Author manuscript; available in PMC 2011 August 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A graphical illustration of the gap, observation, and target windows with respect to
prediction time.
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Table 1

Classification performance from individual gap sizes (mean±SD)

Gap (h) 1 2 3 4

AUC 0.921±0.008 0.901±0.010 0.887±0.015 0.872±0.019

Accuracy 0.873±0.008 0.842±0.014 0.835±0.017 0.810±0.019

Sensitivity 0.826±0.033 0.806±0.041 0.782±0.048 0.776±0.053

Specificity 0.875±0.009 0.844±0.015 0.837±0.018 0.811±0.021

PPV 0.159±0.014 0.129±0.013 0.121±0.014 0.105±0.012

NPV 0.994±0.001 0.994±0.001 0.993±0.001 0.992±0.002
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Table 2

Classification performance from weighted prediction (mean±SD)

Weight Vector W1 W2 W3

AUC 0.934±0.007 0.930±0.008 0.930±0.007

Accuracy 0.861±0.018 0.852±0.013 0.869±0.012

Sensitivity 0.851±0.038 0.851±0.036 0.839±0.033

Specificity 0.862±0.020 0.852±0.014 0.870±0.013

PPV 0.151±0.018 0.142±0.013 0.156±0.015

NPV 0.995±0.001 0.995±0.001 0.995±0.001
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