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ABSTRACT

Over the past decade, a number of biocomputational tools have been developed to predict small RNA (sRNA) genes in bacterial
genomes. In this study, several of the leading biocomputational tools, which use different methodologies, were investigated. The
performance of the tools, both individually and in combination, was evaluated on ten sets of benchmark data, including data
from a novel RNA-seq experiment conducted in this study. The results of this study offer insight into the utility as well as the
limitations of the leading biocomputational tools for sRNA identification and provide practical guidance for users of the tools.
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INTRODUCTION

In recent years, the expression of small RNAs (sRNAs) has
been found to be widespread among bacteria. These regu-
latory RNAs belong to a broad range of classes, including but
not limited to protein binding sRNAs, cis-encoded antisense
sRNAs, trans-encoded base-pairing sRNAs, and sRNAs with
intrinsic activity (Waters and Storz 2009; Liu and Camilli
2010). Even in the best-studied bacterial transcriptomes, the
identities and functions of sRNAs are not fully understood.
While experimental methods are critical for functional
characterization of sRNAs (for review, see Sharma and Vogel
2009), computational methods for prediction of sRNAs,
owing to their efficiency, can be a useful complement to
experimental approaches.

A number of biocomputational tools have been developed
over the last decade for the purpose of predicting sRNAs in
bacterial genomes (for review, see Livny and Waldor 2007;
Backofen and Hess 2010). While sRNAs have been identified
within protein coding sequences, antisense to protein coding
sequences, and within the untranslated regions between
genes cotranscribed as part of an operon, many computa-
tional screens for sRNAs restrict their searches to intergenic
regions of a genome. The biocomputational tools typically
use one or more of four types of data to predict whether

a genomic sequence corresponds to a sRNA: (1) primary
sequence information such as transcription and regulatory
signals, mono- and di-nucleotide frequency, and position
of the sequence in relation to nearby genes; (2) secondary
structure information such as the thermodynamic stability
and minimum free energy of folding of a sequence; (3) pri-
mary sequence conservation, either in closely related ge-
nomes or in a pattern of conservation across a large number
of genomes; and (4) secondary structure conservation by
using pairwise or multiple sequence alignments to identify
consensus secondary structures and their properties, par-
ticularly patterns of covariance suggestive of compensatory
base pair mutations in conserved secondary structures.
Biocomputational tools have been used to identify sRNAs
in a range of bacteria, many of the computationally pre-
dicted sRNAs being subsequently validated through fo-
cused experiments. However, there has been a dearth of
systematic comparisons of computational tools, and many
of the approaches appear to suffer from low specificity
when used for genome-wide screens. Further, there is little
practical guidance for biologists who are deciding among
and employing these tools.

In this study, four of the leading biocomputational tools,
which use four different methodologies, were investigated:
eQRNA (Rivas and Eddy 2001); RNAz (Washietl et al. 2005;
Gruber et al. 2010); sRNAPredict3/SIPHT (Livny et al. 2006,
2008); and NAPP (Marchais et al. 2009). eQRNA identifies
structural RNAs by searching for patterns of compensatory
mutations consistent with a base-paired secondary structure
(Rivas and Eddy 2001). RNAz identifies structural RNAs
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based on a combination of structural conservation and
thermodynamic stability (Gruber et al. 2010). sRNAPredict3
identifies sRNAs based predominantly on regions of pri-
mary sequence conservation followed by transcription
termination signals (Livny et al. 2006). NAPP (nucleic acid
phylogenetic profiling) clusters noncoding sequences based
on their conservation profiles across a large number of
genomes and identifies novel noncoding RNAs by their
inclusion in clusters enriched for known noncoding RNAs
(Marchais et al. 2009). All four approaches use comparative
genomics. The specific tools were chosen for this study
based on the following criteria: the tool has been used in
multiple studies for genome-wide prediction of sRNA
genes, either a software implementation of the tool is
available, or the authors have made results from their tool
available for a variety of genomes, and the tools employ
different methodologies relative to each other.

One of the major challenges to systematic comparison of
various computational methods is that it is difficult to
identify benchmark sets of bacterial sequences, especially
intergenic regions, which are known not to contain sRNA
genes. In the absence of such sets, assessing the specificity of
a method is challenging since predictions that do not
correspond to known sRNAs cannot be classified reliably
as false positives or as yet to be verified sRNAs. To address
this issue in part and to mitigate biases from particular
sources of putative sRNA genes, the performance of the
tools, both individually and in combination, was evaluated
on ten sets of benchmark data drawn from a variety of
sources, including experimentally confirmed sRNA genes,
RNAs characterized in the Rfam database (Gardner et al.
2008), sRNAs suggested by previously published genome-
tiling microarray experiments, sRNAs suggested by pre-
viously published RNA-seq studies, and sRNAs suggested
by an RNA-seq experiment conducted in this study.

RESULTS

Benchmark data sets

Information on 776 putative small RNA transcripts was
compiled from 10 data sources (Supplemental Table 1).
Two of the data sources correspond to sets of experimen-
tally validated sRNAs (Sittka et al. 2008; Huang et al. 2009),
one is the Rfam database (Gardner et al. 2008), one is
derived from the results of genome-tiling microarray
experiments (Toledo-Arana et al. 2009), and six are derived
from the results of RNA-seq experiments (Sittka et al. 2008;
Liu et al. 2009; Yoder-Himes et al. 2009; Albrecht et al.
2010; Sharma et al. 2010). One of the data sets was
generated by RNA-seq experiments conducted in this study
using Xenorhabdus nematophila wild type and rpoS mutant
strains (Vivas and Goodrich-Blair 2001). To enrich X.
nematophila samples for small RNAs, samples were size-
selected for RNAs 18–200 nucleotides in length, and rRNAs

and tRNAs were targeted for depletion. Samples were
submitted for sequencing to the Illumina Genome Analyzer
II system, resulting in 2.6 gigabases of sequenced cDNA.
Analysis of the sequencing data identified 97% of the reads
mapping to the chromosome and 1% mapping to the
plasmid of X. nematophila. Sequenced reads were processed
into 57,447 discrete transcriptional units, 56% of which
corresponded to protein coding genes, 31% of which were
antisense to protein coding genes, 13% of which corre-
sponded to intergenic regions, and <1% of which corre-
sponded to rRNA or tRNA genes. Candidate small RNAs
were identified as 219 transcriptional units in intergenic
regions evincing sufficient expression, at least 100 sequenc-
ing reads on average across the entire extent of the tran-
scriptional unit, and in samples from both strains. Of these
219 transcriptional units, 16% overlap candidate protein-
coding ORFs identified by Glimmer3 (with length of at least
90 nucleotides and score at least 95) (Delcher et al. 2007),
compared to the other six expression data sets used in this
study, where, on average, 22% of putative sRNAs overlap
candidate protein-coding ORFs identified by Glimmer3
(ranging from 15% for the Vibrio data set to 41% for the
Helicobacter data set). These 219 transcriptional units com-
prised one of the 10 benchmark data sets.

Significance of predictions

Both eQRNA and RNAz have the useful property that they
output a single value for each prediction that can be in-
terpreted as the significance of the prediction. eQRNA
scores alignments based on how well they fit a protein-
coding model, a structural RNA model, or a ‘‘something
else’’ model (Rivas and Eddy 2001). We use the bit score
output by eQRNA that is a log-odds score corresponding to
the probability that eQRNA’s structural RNA model is
favored over its two alternative models. For RNAz, its P score
is a classification probability estimated by RNAz’s support
vector machine (Washietl et al. 2005). As a result, the per-
formance of eQRNA and RNAz can be evaluated at dif-
ferent levels of significance.

With many predictive methods, a tension exists between
sensitivity and precision. Increasing the number of predictions
generally improves sensitivity at a cost to precision, whereas
decreasing the number of predictions generally improves
precision at a cost to sensitivity. The F-measure is a metric
that accounts for both sensitivity and precision (van Rijsbergen
1979). Specifically, the F1 measure equally weights sensi-
tivity and precision. The line graphs in Figure 1A illustrate
the performance eQRNA and RNAz, as assessed by the F1-
measure, at different levels of significance. Based on the 776
putative sRNAs from our 10 benchmark data sets, eQRNA’s
performance is optimal when a bit score cut-off of 3.5 is
used, and RNA’s performance is optimal when a class
probability cut-off of 0.995 is used (Fig. 1A). The receiver
operating characteristic (ROC) curves in Figure 1B illustrate
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FIGURE 1. The performance of eQRNA as a function of its bit score and of RNAz as a function of its class probability score are shown when
evaluated on 776 putative sRNAs. Each line represents 100 points, and each point represents the performance of a tool based on predictions at or
above a score threshold. For eQRNA, 100 bit score thresholds between 0.0 and 25.0 were used. For RNAz, 100 class probability, P, thresholds
between 0.5 and 1.0 were used. False positive rates were determined by rerunning each tool on shuffled alignments (see Materials and Methods). (A)
The line graphs indicate the performance of eQRNA and RNAz, as determined by the F1-measure, at 100 different score thresholds. For eQRNA, the
bit scores are shown on the lower x-axis, and for RNAz, the class probabilities are shown on the upper x-axis. eQRNA achieves maximum
performance when predictions are restricted to those with a bit score $3.5. RNAz achieves maximum performance when predictions are restricted to
those with a class probability $0.995. (B) The ROC curves illustrate the trade-offs between sensitivity and false positive rate at 100 different score
thresholds for each of eQRNA and RNAz. The circle on each curve represents the point at which the F1-measure in A achieves a maximum value.
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the trade-offs between sensitivity and false positive rate,
which is 1.0�specificity, at different levels of significance.
In order to assess the tools ‘‘at their best,’’ i.e., when their
performance is optimized on the benchmark data sets, we
use a bit score cut-off of 3.5 for eQRNA and a class prob-
ability cut-off of 0.995 for RNAz throughout the remainder
of this study.

Ability of tools to identify putative sRNA genes

Four biocomputational tools were evaluated for their
ability to identify putative sRNAs found in 10 benchmark
data sets. Figure 2A illustrates the sensitivity of each of the
tools, i.e., the percentage of putative sRNAs in each data set
that was predicted by a tool. The sensitivities ranged from
2% (candidate sRNAs from Helicobacter RNA-seq experi-
ments predicted by RNAz) to 71% (sRNAs from Escherichia
data set predicted by NAPP). The mean sensitivity of
eQRNA, RNAz, sRNAPredict3, and NAPP across the 10
data sets was 27%, 20%, 40%, and 49%, respectively, with
standard deviations of 17%, 15%, 14%, and 21%. For five
of the 10 data sets, NAPP achieved the highest sensitivity,
for four of the 10 data sets, sRNAPredict3 achieved the
highest sensitivity, and for one of the 10 data sets, RNAz
achieved the highest sensitivity.

The precisions of the tools were also investigated.
However, our ability to quantify false positive predictions
is limited by the quality and completeness of our data sets,
so that the precision scores reported here are useful primarily
for comparison of the relative precision among tools and
should be used only as a lower bound on the absolute pre-
cisions of the tools. As illustrated in Figure 2B, the precisions
ranged from 0% (candidate sRNAs from Burkholderia RNA-
seq experiments predicted by eQRNA and RNAz) to 24%
(candidate sRNAs from Vibrio RNA-seq experiments pre-
dicted by sRNAPredict3). The mean precision of eQRNA,
RNAz, sRNAPredict3, and NAPP across the 10 data sets was
6%, 6%, 12%, and 4%, respectively, with standard deviations
of 5%, 5%, 8%, and 4%. For nine of the 10 data sets,
sRNAPredict3 achieved the highest precision, and for the
Burkholderia data set, NAPP achieved the highest precision.

We then evaluated the ability of the tools to correctly
identify the strand of a sRNA. For those predictions that
correctly identified a sRNA from a data set, Figure 2C
shows the percentage of predictions that also identify the
correct strand of the sRNA. Results from NAPP are omitted
from the strand analysis since NAPP does not report strand
information for its predictions. sRNAPredict3 identifies the
correct strand of sRNAs 80% of the time on average, and
RNAz identifies the correct strand of sRNAs 76% of the
time on average. eQRNA did not predict the correct strand
of sRNAs at a rate significantly better than random.

The ability of the tools to predict the extent of a sRNA
was also considered. For sRNAs correctly predicted by
a tool, Figure 2D illustrates the percentage of nucleotides in

the sRNA that were predicted. For eight of the 10 data sets,
sRNAPredict3 outperformed the other methods, identify-
ing 83% of nucleotides in a sRNA on average, and for two
of the 10 data sets, eQRNA outperformed the other methods,
identifying 72% of nucleotides in a sRNA on average. How-
ever, the results in Figure 2D should be taken in context
since both sRNAPredict3 and eQRNA generally make sub-
stantially longer predictions, on average 174 nucleotides and
166 nucleotides, respectively, than RNAz and NAPP do, on
average 119 nucleotides and 86 nucleotides, respectively.

In order to gauge whether the tools showed differential
performance on Gram-positive bacteria and Gram-negative
bacteria, we considered the tools’ abilities to identify RNAs
from these two classes of organisms. Since our 10 data sets
are enriched for examples from Gram-negative bacteria, we
restricted our focus to the data set corresponding to Rfam
RNAs exclusive of rRNAs and tRNAs. The Rfam RNA data
set consisted of 70 RNAs from Gram-positive bacteria and
62 RNAs from Gram-negative bacteria. eQRNA correctly
identified 53% of RNAs from Gram-positive bacteria and
60% of RNAs from Gram-negative bacteria. RNAz correctly
identified 16% of RNAs from Gram-positive bacteria and
32% of RNAs from Gram-negative bacteria. sRNAPredict3
correctly identified 56% of RNAs from Gram-positive
bacteria and 56% of RNAs from Gram-negative bacteria.
NAPP correctly identified 60% of RNAs from Gram-
positive bacteria and 77% of RNAs from Gram-negative
bacteria.

As an indication as to whether some tools are more likely
than others to include short ORFs among their sRNA
predictions, results from each program were compared to
candidate protein-coding ORFs identified by the program
Glimmer3 (Delcher et al. 2007). Glimmer3 was used to
predict likely coding ORFs throughout the 14 genomes
used in this study. In order to include possible short ORFs
that may not yet be annotated, coding ORF predictions
from Glimmer3 were considered if they were at least 90
nucleotides in length and had a score of at least 95. sRNA
predictions from each program that overlap with a predicted
ORF were then identified. For eQRNA, 14% of all sRNA
predictions overlap with an ORF. For RNAz, 8% of all
sRNA predictions overlap with an ORF. For sRNAPredict3,
15% of all sRNA predictions overlap with an ORF. For
NAPP, 14% of all sRNA predictions overlap with an ORF.
Since longer sRNA predictions are more likely to intersect
ORFs than shorter sRNA predictions, these results should
be taken in the context of the lengths of sRNA predic-
tions, which on average are 166 nucleotides, 119 nucleo-
tides, 174 nucleotides, and 86 nucleotides for eQRNA,
RNAz, sRNAPredict3, and NAPP, respectively.

Assessment of tools in combination with each other

To assess the tools, we used both the F1 measure, which
equally weights sensitivity and precision, and the F0.25
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FIGURE 2. (Legend on next page)
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measure, which weights precision four times more than
sensitivity. The motivation for including a measure that
weights precision substantially more than sensitivity is that
the biocomputational tools under consideration are often
used for genome-wide screens. In some contexts, minimizing
false positive predictions is more important than maximizing
the number of sRNAs identified, particularly when compu-
tational predictions are followed up by more costly wet-lab
experimentation.

Figure 3 illustrates the performance of each tool individ-
ually, as well as each pair of tools in combination, as assessed
with the F1 measure (Fig. 3A) and the F0.25 measure (Fig. 3B).
Based on the F1 measure, sRNAPredict3 outperforms the
other tools individually for nine of the 10 data sets, whereas
NAPP outperforms the other tools individually for the
Burkholderia data set (Fig. 3A). Based on the F0.25 measure,
sRNAPredict3 outperforms the other tools individually for
nine of the 10 data sets, whereas NAPP outperforms the other
tools individually for the Burkholderia data set (Fig. 3B).

Using the F1 measure, sRNAPredict3’s performance is
generally comparable to or better than that of any pair of
tools in combination, with few exceptions (Fig. 3A).
sRNAPredict3 achieves a higher average F1 measure, 0.15,
than any pair of tools in combination. Based on the F0.25

measure, however, the best performance is achieved by
using a pair of tools in combination (Fig. 3B). The pair
eQRNA and sRNAPredict3 in combination achieve the
highest average F0.25 measure, 0.13, among all tools in-
dividually or in combination, but while using a combina-
tion of tools may lead to more precise results than an
individual tool, there is no obvious set of tools whose
combination consistently results in the best performance
across the 10 data sets (Fig. 3B).

For the nine data sets that correspond to individual
genomes, i.e., excluding the Rfam data set that is derived
from many genomes, the tools showed the poorest perfor-
mance on the Burkholderia data set, and the Burkholderia
genome has the highest GC content (67% in the entire
genome—63% in intergenic regions) among these ge-
nomes. To investigate if there is a relationship between
the GC content of a genome and a tool’s performance, the
correlation was determined between each tool’s F1 measure
and the GC content of intergenic regions. Each tool’s per-
formance is negatively correlated with GC content. How-
ever, for eQRNA, RNAz, and NAPP, the correlation is
statistically insignificant. sRNAPredict3’s F1 measures have
a correlation coefficient of �0.69 (one-tailed P-value of
0.02) with the GC content of intergenic regions.

Conservation of sRNAs

Each of the tools assessed in this study can only identify
sRNAs whose sequences are conserved in other genomes.
NAPP and SIPHT both consider conservation of a candidate
noncoding RNA sequence in hundreds of other genomes.
NAPP uses the profile of conservation across other genomes,
while SIPHT uses the existence and significance of con-
servation in other genomes. In contrast, applications of
eQRNA, RNAz, and sRNAPredict3 typically consider
sequence conservation in only a handful of closely re-
lated genomes. Since the abilities of eQRNA, RNAz, and
sRNAPredict3 to predict a sRNA gene may depend on the
extent that the sRNA is conserved, we investigated the
performance of each of these three tools when the tool
identified sRNAs in different numbers of comparative ge-
nomes. We restricted our analysis to comparative genomes
of organisms in the same genus as the reference genome’s
organism. For each of the three tools, we classified sRNA
predictions into six groups: sRNAs predicted by the tool to
occur in one, two, three, four, five, or more than five other
genomes beyond the reference genome but corresponding
to organisms from the same genus as the reference or-
ganism. The final group was not considered further because
of an insufficient amount of data, i.e., many of the ref-
erence organisms used in the study did not have a sufficient
number of close relatives whose genome sequences were
publicly available. Figure 4A shows the performance of each
of the three tools on the Rfam data set, as evaluated by the
F1 measure, when the tool predicts sRNAs in various
numbers of comparative genomes. As indicated in Figure
4A, the performance of each tool generally increases with
the number of genomes predicted to contain sRNAs. This
performance improvement stems from an increase in pre-
cision at a milder cost in sensitivity.

Since each of the tools uses comparative genomics
information in order to generate predictions, we investi-
gated how the performance of a tool changes as more
distantly related genomes are used for comparative analysis.
To approximate evolutionary distance between two ge-
nomes, we used the dissimilarity of the genomes’ 16S rRNA
sequences as determined by BLAST’s E-value. Two ge-
nomes whose 16S rRNA sequences have an E-value less
than 10�300 when compared via BLAST normally corre-
spond to organisms from the same genus. For each of the
14 genomes for which we make sRNA predictions through-
out, we compared its 16S rRNA sequence to that from 1350
other bacterial genomes from RefSeq (Pruitt et al. 2005)

FIGURE 2. The performance of four tools on the 10 benchmark data sets is illustrated. NAPP was not assessed on the Xenorhabdus data set since
predictions from NAPP were unavailable for this genome. (A) The sensitivity of each tool is shown. Here, a sRNA in the data set is designated as
correctly predicted by a tool if a prediction overlaps any part of the sRNA. (B) The precision of each tool is shown. (C) For those predictions that
overlap a sRNA from a data set, the percentage that identify the correct strand of the sRNA is shown. Predictions from NAPP are omitted since no
strand information is provided by the tool. (D) For sRNAs from the data sets that are correctly predicted, the percentage of their nucleotides that
is correctly identified is shown.
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FIGURE 4. (Legend on next page)
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and randomly chose five genomes at a given evolutionary
distance to use as comparative genomes in making sRNA
predictions. This process was repeated 11 times at different
evolutionary distances. Figure 4B shows how the perfor-
mance of a program changes as more distantly related
genomes are used by the program to make sRNA pre-
dictions. eQRNA, RNAz, and sRNAPredict3 generally show
poorer performance as more distantly related genomes are
used for comparative analyses (Fig. 4B). All three programs
achieve their best performance when genomes from the
same genus are used (16S rRNA E-value less than 10�300).
NAPP was not used because it requires a large number of
comparative genomes across a broad range of evolutionary
distances.

Runtime

The runtime of each of the tools was also evaluated. For
eQRNA, assuming a pairwise alignment of length n is
given, the computational complexity of the algorithm is
dominated by the Inside algorithm (Baker 1979) used by
eQRNA’s RNA model and requires O(n3) time. For RNAz,
assuming a multiple sequence alignment of length n is
given, the computational complexity of the algorithm is
O(n3). For sRNAPredict3, assuming coordinates of pairwise
alignments and other genomic features such as termina-
tors are given for a sequence of length n, the computa-
tional complexity of the algorithm is O(n). NAPP requires
calculation and clustering of profiles for a large number of
candidate sequences, so its computational complexity for
an individual candidate can be viewed as the algorithm’s
complexity in generating predictions for all candidates,
amortized over the number of candidates. For NAPP, as-
suming a conservation profile across y genomes is given for
x candidate sequences (conserved noncoding elements), a
distance matrix is computed in O(y�x2) time, and k-means
clustering is performed in O(x�k�i) time, where k = 35 is the
number of clusters (Marchais et al. 2009), and i is the
number of iterations of the k-means algorithm. While
k-means can be exponentially slow to converge in theory,
in practice it converges quickly. Thus, assuming conserva-
tion profiles are given, the computational complexity of
NAPP amortized over all candidates can be expressed as
O(y�x). Actual wall-clock times for executing NAPP were
unavailable. When screening 14 genomes, the average wall-
clock time taken per genome by eQRNA, RNAz, and
sRNAPredict3 when executed on a 4-node Intel Xeon

2.8GHz machine with 2GB memory was 696 min, 74
min, and 1 min, respectively.

Usability

eQRNA, RNAz, and sRNAPredict3 can be downloaded and
run on a local machine. Each requires the use of auxiliary
programs. eQRNA requires pairwise sequence alignments
as input, RNAz requires multiple sequence alignments, and
sRNAPredict3 requires pairwise sequence alignment in-
formation as well as transcription signal information such
as terminator sites.

RNAz, SIPHT, and NAPP have web servers that enable
access to the programs and/or their pre-computed predictions.
The RNAz web server requires multiple sequence alignments
as input (http://rna.tbi.univie.ac.at/cgi-bin/RNAz.cgi). SIPHT
provides a web-interface to the sRNAPredict3 program
(http://newbio.cs.wisc.edu/sRNA/). Currently, SIPHT en-
ables predictions for 1912 replicons corresponding to 1022
genomes. NAPP has a web interface that enables access to
a database of predictions currently corresponding to 1008
genomes (http://rna.igmors.u-psud.fr/NAPP/index.php).

DISCUSSION

Numerous biocomputational methods have been devel-
oped in recent years for predicting RNA genes in genome
sequences. While these methods have proven useful for
illuminating bacterial sRNA machinery in many applica-
tions, the methods also have a number of limitations. The
ability of the methods to predict sRNAs is difficult to quan-
tify, in part because our knowledge of sRNAs is incomplete,
and characterizing with confidence a set of predictions as
false positives is challenging. Different methods that predict
sRNAs often give disjointed results. Further, many of the
biocomputational tools either are not publicly available or
have an inaccessible user interface. There is little guidance
for biologists interested in choosing among and using these
tools.

In this study, we assessed four biocomputational tools
that have been used widely for sRNA prediction in bacteria.
We restricted our investigation to tools whose results are
publicly available and that have been used in multiple ap-
plications. The tools under consideration also employ dif-
ferent methodologies, which enable us to gain insight into
the relative effectiveness of the different methods. The tools
were assessed on 10 sets of data derived from experimentally

FIGURE 4. (A) The performance of eQRNA, RNAz, and sRNAPredict3 on the Rfam data set is shown as a function of the number of
comparative genomes predicted to contain sRNAs by the tool. (B) The average performance across all 10 data sets is shown for eQRNA, RNAz,
and sRNAPredict3 as a function of the approximate evolutionary distance of the genomes used by the program for comparative analysis.
Evolutionary distance between genomes is approximated by the dissimilarity of 16S rRNA sequences as measured by BLAST E-value. Each line in
the figure corresponds to 11 data points, where each data point is the average performance of a program across all 10 data sets. For each genome
in the 10 data sets, five out of 1350 bacterial genomes were randomly selected at the given evolutionary distance and used by a program as
comparative genomes to make sRNA predictions.
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verified sRNAs, noncoding RNAs reported in Rfam, puta-
tive small RNA transcripts identified by genome-tiling
microarray experiments, and putative small RNA tran-
scripts identified by RNA-seq experiments. We used data
sets from disparate sources in order to minimize the biases
that individual sources might have from overrepresentation
of certain classes of noncoding RNAs.

We found that the biocomputational tools predicted
20%–49% of sRNAs in each data set on average, with
precisions of 6%–12%. The modest fraction of sRNAs
predicted by the tools with potentially substantial false
positive rates highlights the challenge associated with com-
putational identification of sRNAs and suggests that there is
room for improvement of such tools. Though the number of
sRNAs predicted by the tools is moderate, when the tools did
identify a sRNA, they tended to perform well at also iden-
tifying the strand of the sRNA and the extent of the sRNA.
Our results were generally consistent across the disparate
data sets indicating that the results are not likely to be an
artifact of the particular data sets used.

Among the tools assessed, NAPP identified the largest
number of sRNAs from our benchmark data sets. However,
the higher sensitivity of NAPP comes at the cost of a large
number of predictions with potentially low precision. When
considering multiple factors such as low false positive rates,
ability to identify the correct strand of sRNAs, ability to
identify the extent of nucleotides associated within each
sRNA, and speed of execution, sRNAPredict3 generally had
the best all around performance on our benchmark data sets.
However, each of the tools has limitations. All four rely on
comparative genomics information and are not effective at
identifying orphan sRNAs. sRNAPredict3 uses information
about rho-independent terminators, and, while its perfor-
mance did not differ significantly when assessed on sRNAs
from Gram-positive and Gram-negative organisms, its per-
formance specifically on organisms that have a dearth of
rho-independent terminators was not assessed. eQRNA and
RNAz are based on structural properties of RNAs, and they
will not predict genes that have little conserved structure.
Also, sRNAPredict3 is designed specifically to identify sRNAs,
whereas eQRNA and RNAz are designed to identify RNA
structures more broadly, though we are assessing them here
only on their ability to predict sRNAs. Finally, an impor-
tant limitation is that the tools were executed in this study
only with genomic sequences that do not contain protein-
coding sequences, either sense or antisense. So our assess-
ment of the tools included cis-encoded and trans-encoded
sRNAs that do not overlap protein-coding sequences, but
not other major classes of sRNAs such as cis-encoded
sRNAs antisense to protein-coding genes.

For applications where low false positive rates are
especially important, our results provide evidence that pre-
cision of the tools can be increased significantly by restrict-
ing them to sRNA predictions found in multiple related
genomes. Further, combining predictions from different

tools has potential to increase the precision of the generated
predictions. The observation that combining different
methods may boost performance is intriguing. It suggests
that further studies on combining methodologies, either
through meta-analyses of the results from existing tools or
through new approaches that appropriately integrate com-
ponents of the different methodologies, would be useful. In
particular, there is a ripe opportunity for development of
new biocomputational tools that incorporate data from
RNA-seq experiments for the purpose of identifying sRNAs.
Altogether, the results underscore that systematic detection
of sRNA genes in bacterial genomes remains a rich and
challenging problem.

MATERIALS AND METHODS

Genomic data

All genomes as well as genomic coordinates of annotated protein-
coding genes, ribosomal RNA genes, and transfer RNA genes were
downloaded from the NCBI (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/,
27 October 2010). All sequences not corresponding to annotated
protein coding genes, ribosomal RNAs, or transfer RNAs were
extracted from each reference genome and are denoted as inter-
genic regions (IGRs). When performing comparative genomics
analyses on a reference genome, all available (ftp://ftp.ncbi.nih.
gov/genomes/Bacteria/, 27 October 2010) genomic sequences
from the same genus as the reference genome but not from the
same species were used. For each reference genome, a list of all
RNAs in the genome was downloaded from the Rfam database
version 10.0 (Gardner et al. 2008). RNAs annotated as ribosomal
RNA or transfer RNA were removed from the lists of Rfam RNAs.

Biocomputational tools

To generate predictions with eQRNA (Rivas and Eddy 2001), first
each IGR from the reference genome was aligned to each related
genome using WU-BLASTN 2.0 (Gish, W. http://blast.wustl.edu).
Only alignments at least 50 nucleotides in length with at least 65%
identity and no more than 85% identity were retained. Longer
sequences were analyzed in sliding windows 150 nucleotides in
length, sliding by 50 nucleotides. Possible RNAs on both strands
were scored using eQRNA, version 2.0.3c (ftp://selab.janelia.org/
pub/software/qrna/). RNAs predicted in overlapping windows
were merged into a single RNA prediction. When overlapping
windows predicted RNAs on different strands, the strand identified
by the most overlapping windows was designated as the strand for
the predicted RNA. In the rare cases when a merged RNA prediction
resulted from overlapping windows, half of which predicted one
strand for the RNA and half of which predicted the opposite strand
for the RNA, the strand for the predicted RNA was designated
arbitrarily. When more than one comparative genome was available
for generating eQRNA predictions, the union of sets of eQRNA
predictions from different comparative genomes was reported.
While eQRNA is designed to identify conserved RNA structures
more broadly, it is assessed here only on its ability to predict sRNAs.

To generate predictions with RNAz (Gruber et al. 2010), first
each IGR from the reference genome was aligned to each related

Lu et al.

1644 RNA, Vol. 17, No. 9

http://blast.wustl.edu


genome using WU-BLASTN 2.0 (Gish, W. http://blast.wustl.edu).
Only alignments at least 50 nucleotides in length were retained.
Longer sequences were analyzed in sliding windows 150 nucleo-
tides in length, sliding by 50 nucleotides, as was the case for
eQRNA. Following the default parameters of RNAz, sequences
from alignments with >25% gaps or >75% GC content were
discarded. Similarly, consistent with the default parameters, if
more than six sequences align with the reference IGR, a subset
of six sequences was chosen with mean pairwise identity opti-
mized to a target value of 80%. Multiple sequence alignments
were then performed with ClustalW version 2.0.12 (Larkin et al.
2007). Possible RNAs were scored using RNAz, version 2.0pre
(http://www.tbi.univie.ac.at/zwash/RNAz/) (Gruber et al. 2010).
While RNAz is designed to identify conserved RNA structures
more broadly, it is assessed here only on its ability to predict
sRNAs.

SIPHT is a computational tool built on the sRNAPredict ap-
proach (Livny et al. 2008). For available genomes, SIPHT sRNA
predictions were downloaded from the SIPHT web interface (http://
newbio.cs.wisc.edu/sRNA/). Independently, predictions were gener-
ated using the sRNAPredict3 tool (Livny et al. 2006). When we used
similar parameters for sRNAPredict3 as were used for SIPHT, we
obtained comparable results. Since the SIPHT web interface did
not support predictions for all genomes corresponding to our
benchmark data sets, specifically for Xenorhabdus nematophila, all
results reported in our assessment correspond to predictions from
sRNAPredict3 rather than SIPHT.

To generate predictions with sRNAPredict3 (Livny et al. 2006),
first each IGR from the reference genome was aligned to each
related genome using WU-BLASTN 2.0 (Gish, W. http://blast.
wustl.edu) with parameters B and V set to 10,000. Alignments with
an E-value less than or equal to 10�5 were retained. Transcriptional
terminators were identified using the program TransTermHP
(Kingsford et al. 2007), retaining candidate terminators predicted
with at least 96% confidence, and using the program RNAMotif ver-
sion 3.0.7 (03 April 2010) (Macke et al. 2001). Possible RNAs were
scored using sRNAPredict3 (http://www.tufts.edu/sackler/waldorlab/
sRNAPredict.html). The default parameters of sRNAPredict3 were
used except that a minimum length of 50 nucleotides was used for
sRNA predictions so as to be consistent with the other tools. It
should be noted that predictions from eQRNA can be incorporated
into the results output by sRNAPredict3. However, since eQRNA
predictions do not affect predictions generated by sRNAPredict3,
this feature of sRNAPredict3 was not utilized in our assessment.

Conserved noncoding elements identified by NAPP (Marchais
et al. 2009) were supplied by the authors of the tool. Conserved
noncoding elements were retained if they resided in clusters of
conservation profiles that are enriched (P-value < 10�2) for known
noncoding RNAs, as reported by Rfam (Gardner et al. 2008).
Overlapping conserved noncoding elements were then merged into
noncoding RNA predictions. Conserved noncoding elements from
NAPP for Xenorhabdus nematophila were unavailable.

Bacterial strains and growth conditions

For sRNA isolation, X. nematophila wild-type strain HGB007
(ATCC 19061; wild type) and its rpoSTkan mutant derivative,
HGB151 (Vivas and Goodrich-Blair 2001) were inoculated from
�80°C frozen glycerol stocks into Luria–Bertani (LB) broth
(Miller 1972) supplemented with 0.1% sodium pyruvate, 50 mg/mL

ampicillin, and 50 mg/mL kanamycin. Cultures were grown over-
night at 30°C on a tube roller, then subcultured 1:100 into flasks
containing 30 mL LB with pyruvate and ampicillin and incubated at
30°C with shaking at 150 rpm.

sRNA isolation, tRNA depletion, and sRNA
library construction

For each strain, cells from 1 mL of late exponential phase
(OD600z2.0) culture were collected by centrifugation at 10,000 3 g.
The mirVan miRNA Isolation Kit (Ambion) was used to isolate
and enrich sRNAs, 3 mg of which were used for sRNA library
construction. Libraries for sRNAs ranging from 18–200 bp were
constructed by using the Small RNA Sample Prep Kit (Illumina)
following the standard manufacturer’s protocol (Illumina Small
RNA Sample Preparation Guide). To reduce potential interference
from tRNAs and 5S rRNAs, a stable RNA depletion protocol (Liu
et al. 2009) was included. Briefly, 39 and 59 single strand RNA
adapters were ligated to the sRNAs with TBE-urea gel purification
after each ligation step. The gel-purified ligation product was
mixed with 1 ml of Oligo Mix (5 pmol/ml of each oligonucleotide
complementary to each X. nematophila tRNA and rRNA) (Sup-
plemental Table 2) in 30 mL depletion buffer (50 mM Tris-HCl,
pH 7.8; 300 mM KCl; 10 mM MgCl2; 10 mM DTT). The mixture
was heated to 65°C for 5 min and slowly cooled to 37°C. Five
units of RNase H (NEB) were added to the cooled mixture, and
the reaction was kept at 37°C for 30 min. The depletion reaction
was repeated once, followed by TBE-urea gel purification. cDNAs
were synthesized from the tRNA- and 5S rRNA-depleted sRNA
pool using the SRA RT primer (Illumina) that is specific to the 39

adapter and SuperScript II reverse transcriptase (Invitrogen), and
then PCR-amplified using Phusion Polymerase (Finnzymes) and
primers GX1 and GX2 (Illumina) that are specific to 39 and 59

adapters, respectively. The amplification products were PAGE gel-
purified and submitted to the Illumina Genome Analyzer II
system for single read sequencing at the Tufts University Core
Facility (Boston, MA).

Xenorhabdus nematophila RNA-seq analysis

The X. nematophila samples resulted in 65,584,055 sequence reads,
each 40 nucleotides in length. Of these, 306,806 reads (0.5%)
contained one or more ambiguous nucleotides and were discarded
before further analysis. Using the program SSAHA2 (Ning et al.
2001), 65,277,249 reads (96.6%) mapped to the Xenorhabdus
nematophila ATCC 19061 chromosome and 775,737 reads (1.2%)
mapped to the Xenorhabdus nematophila ATCC 19061 XNC1_p
plasmid with at least 95% identity. Of the reads mapping to the X.
nematophila genome, 31,258,653 mapped uniquely to one region
of the genome and were retained for further analysis. Sets of
overlapping reads were merged into discrete transcriptional units.
There were 57,447 transcriptional units that were identified from
samples from both strains. To enable comparison of transcript
expression levels from different samples, expression levels were
normalized based on the total sequence reads for the sample.

Data sets

To evaluate the biocomputational tools, 10 sets of putative sRNA
genes were collected from a variety of sources (see Supplemental
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Table 1 for the complete list). Altogether, the 10 data sets are
comprised of 776 small RNA transcripts. For Escherichia coli,
information on 79 experimentally confirmed sRNAs was down-
loaded from sRNAMap (Huang et al. 2009). For Salmonella, 64
validated sRNAs were used (Table 2 from Sittka et al. 2008). From
genome-tiling microarray experiments in Listeria monocytogenes,
24 transcripts were used (Supplemental Table S2 from Toledo-
Arana et al. 2009). From Rfam 10.0 (Gardner et al. 2008), infor-
mation for 132 RNAs exclusive of ribosomal RNAs and trans-
fer RNAs was obtained for Burkholderia cenocepacia AU 1054,
Bacillus subtilis subsp. subtilis str. 168, Caulobacter crescentus CB15,
Chlamydia trachomatis L2b/UCH-1/proctitis, Helicobacter pylori
26695, Listeria monocytogenes EGD-e, Pseudomonas aeruginosa
PA01, Shewanella oneidensis MR-1, Staphylococcus aureus subsp.
aureus N315, Streptomyces coelicolor A3(2), and Vibrio cholerae O1
biovar El Tor str. N16961. Candidate RNAs identified by a variety
of RNA-seq experiments were also used: 119 candidate RNAs
from Vibrio cholerae (transcripts denoted as ‘‘IGR’’ or ‘‘sRNA’’ in
Supplemental Table 3 in Liu et al. 2009 merged into nonoverlap-
ping transcripts and filtered to exclude transcripts within 30 nu-
cleotides of an annotated protein-coding gene), 52 candidate
RNAs from Salmonella (from Supplemental Table 3 in Sittka et al.
2008), 20 candidate RNAs from Chlamydia trachomatis (Supple-
mental Table 2 in Albrecht et al. 2010), 13 candidate RNAs from
Burkholderia cenocepacia (Supplemental Table 5 in Yoder-Himes
et al. 2009), 54 candidate RNAs from Helicobacter pylori (tran-
scripts denoted as ‘‘sRNA’’ in Supplemental Table 13 in Sharma
et al. 2010), and 219 candidate RNAs from Xenorhabdus nem-
atophila, as identified in this study.

Evaluation metrics

The confusion matrix (Table 1) shows how, with complete
knowledge about sRNA genes, computationally predicted RNAs
would be identified as true positive or false positive predictions,
and regions not computationally predicted to be RNAs would be
identified as false negative or true negative predictions.

Of course, knowledge about sRNA genes is incomplete. The 10
benchmark data sets are used as surrogates for sets of actual sRNA
genes—the left column in the confusion matrix (Table 1). Using
the benchmark data sets as surrogates for sets of actual sRNA
genes, we compute the sensitivity (also known as recall) of a
biocomputational tool as its number of true positive predictions
divided by the sum of its true positive and false negative predictions.

Unfortunately, estimating the false positive rate of a tool is
more challenging since there are no large reliable sets of genomic
sequences that are known not to contain sRNAs but have

comparable properties to sequences containing sRNAs, i.e., there
are no obvious surrogates for the final column in the confusion

matrix (Table 1). To estimate false positive predictions generated

by a tool, two imperfect approaches are used.
First, for eQRNA and RNAz, control sequences are generated

that do not contain sRNAs. Since control sequences, by definition,

contain no sRNAs, any RNA prediction made on a control se-

quence can reasonably be deemed spurious (a false positive). The

challenge in generating control sequences is ensuring that they

have properties similar to sRNA-containing sequences, but with-

out actually containing sRNAs. Since eQRNA and RNAz rely on

pairwise and multiple sequence alignments, respectively, control

sequences are generated by shuffling columns of the sequence

alignments. The control sequences have the same GC content and

same alignment scores as actual sRNA containing sequences.

However, any evidence of compensatory base changes in con-

served RNA structures will be destroyed, and such covarying bases

are a primary feature used by both eQRNA and RNAz for

identifying RNA genes. To shuffle the pairwise sequence align-

ments for input to eQRNA, columns of the alignments were

shuffled randomly with the criteria that the conservation and indel

structures of the alignment be conserved, i.e., columns with a

given level of conservation or with a given gap pattern are shuffled

only with other columns that have the same level of conservation

or the same gap pattern. Similarly, to shuffle the multiple

sequence alignments for input to RNAz, a randomization ap-

proach was used that preserves the GC content of the aligned

sequences as well as the indel and conservation patterns (Washietl

and Hofacker 2004). After shuffling the alignments as described

above, eQRNA and RNAz were rerun on all reference genomes,

and any RNA predictions made by the programs were deemed

false positives.
While shuffling alignments enables estimation of false positive

rates, the approach has some limitations that should be noted. In

addition to disrupting conserved RNA structures as it is intended

to do, the shuffling also disrupts other motifs, such as regulatory

sites, so that the control sequences are imperfect representations

of actual non-sRNA containing sequences. Further, the approach

used by tools like eQRNA and RNAz supports prediction of

a broad range of conserved RNA structures, including noncoding

RNA genes, rho-independent transcription terminators, certain

transcriptional attenuators, and other cis-regulatory RNA struc-

tures. Many of the predictions from eQRNA and RNAz may

correspond to conserved RNA structures, yet we designate them as

false positives if they do not correspond to sRNA genes. Finally,

the shuffling approach described above is not applicable to

sRNAPredict3 and NAPP, which use primary sequence conserva-

tion rather than RNA structure conservation as a criterion for

predicting sRNA genes.
As a second means to illuminate false positive predictions from

the various tools, a measure of precision is used. Using the

benchmark data sets as surrogates for sets of actual sRNA genes,

we compute the precision (also known as positive predictive value)

of a biocomputational tool as its number of true positive

predictions divided by the sum of its true positive and false

positive predictions. Here, predictions that do not correspond to

sRNAs from the benchmark data are designated as false positives.

These false positive designations are flawed in that benchmark

data sets of sRNAs are certainly incomplete, so many predictions

TABLE 1. Confusion matrix

Actual
sRNA genes

Actual
non-sRNAs

Regions predicted by
biocomputational tool to
correspond to an RNA gene

True positives False positives

Regions not predicted by
biocomputational tool to
correspond to an RNA gene

False negatives True negatives
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that do not correspond to sRNAs from the benchmark data may
indeed correspond to previously uncharacterized sRNAs. Thus,
the precision measure should be considered a lower bound on the
actual precision of the tool. However, to the extent that the
benchmark sRNAs are representative samples of all sRNAs in
a genome, the measure is a meaningful metric for the relative
precision of tools in comparison to one another.

Finally, F-measures are used to assess the biocomputational
tools (van Rijsbergen 1979). The F-measure of a tool is a function
of both its recall (sensitivity) and precision,

Fb =
b2 + 1
� �

� precision � recall

b2 � precision + recall

where b $ 0 is a parameter that designates the relative weight of
recall relative to precision. When b = 1, recall and precision are
equally weighted, and F1 is the harmonic mean of recall and
precision. Both F1 and F0.25, which weights precision four times as
much as recall, are used in this study.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.

ACKNOWLEDGMENTS

We thank Daniel Gautheret and Antonin Marchais for providing
results from NAPP, and Daniel Gautheret for offering helpful
comments on the manuscript. This work was supported by the
National Science Foundation (MCB-0919808 to B.T.).

Received February 22, 2011; accepted June 10, 2011.

REFERENCES

Albrecht M, Sharma CM, Reinhardt R, Vogel J, Rudel T. 2010. Deep
sequencing-based discovery of the Chlamydia trachomatis tran-
scriptome. Nucleic Acids Res 38: 868–877.

Backofen R, Hess WR. 2010. Computational prediction of sRNAs and
their targets in bacteria. RNA Biol 7: 33–42.

Baker JK. 1979. Trainable grammars for speech recognition. J Acoust
Soc Am 65: S132. doi: 10.1121/1.2017061.

Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying
bacterial genes and endosymbiont DNA with Glimmer. Bioinfor-
matics 23: 673–679.

Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S,
Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, et al. 2008.
Rfam: Updates to the RNA families database. Nucleic Acids Res 37:
D136–D140.

Gruber AR, Findeiss S, Washietl S, Hofacker IL, Stadler PF. 2010.
RNAZ 2.0: Improved noncoding RNA detection. Pac Symp
Biocomput 15: 69–79.

Huang HY, Chang HY, Chou CH, Tseng CP, Ho SY, Yang CD, Ju
YW, Huang HD. 2009. sRNAMap: Genomic maps for small non-
coding RNAs, their regulators, and their targets in microbial
genomes. Nucleic Acids Res 37: D150–D154.

Kingsford CL, Ayanbule K, Salzberg SL. 2007. Rapid, accurate,
computational discovery of Rho-independent transcription termi-
nators illuminates their relationship to DNA uptake. Genome Biol
8: R22. doi: 10.1186/gb-2007-8-2-r22.

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA,
McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.
2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:
2947–2948.

Liu JM, Camilli A. 2010. A broadening world of bacterial small RNAs.
Curr Opin Microbiol 13: 18–23.

Liu JM, Livny J, Lawrence MS, Kimball MD, Waldor MK, Camilli A.
2009. Experimental discovery of sRNAs in Vibrio cholerae by direct
cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids
Res 37: e46. doi: 10.1093/nar/gkp080.

Livny J, Waldor MK. 2007. Identification of small RNAs in diverse
bacterial species. Curr Opin Microbiol 10: 96–101.

Livny J, Brencic A, Lory S, Waldor MK. 2006. Identification of 17
Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding
genes in 10 diverse pathogens using the bioinformatics tool
sRNAPredict2. Nucleic Acids Res 34: 3484–3493.

Livny J, Teonadi H, Livny M, Waldor MK. 2008. High-throughput,
kingdom-wide prediction and annotation of bacterial non-coding
RNAs. PLoS ONE 3: e3197. doi: 10.1371/journal.pone.0003197.

Macke T, Ecker D, Gutell R, Gautheret D, Case DA, Sampath R. 2001.
RNAMotif—a new RNA secondary structure definition and
discovery algorithm. Nucleic Acids Res 29: 4724–4735.

Marchais A, Naville M, Bohn C, Bouloc P, Gautheret D. 2009.
Single-pass classification of all noncoding sequences in a bacte-
rial genome using phylogenetic profiles. Genome Res 19: 1084–
1092.

Miller JH. 1972. Experiments in molecular genetics. Cold Spring
Harbor Laboratory, Cold Spring Harbor, NY.

Ning Z, Cox AJ, Mullikin JC. 2001. SSAHA: A fast search method for
large DNA databases. Genome Res 11: 1725–1729.

Pruitt KD, Tatusova T, Maglott DR. 2005. NCBI Reference Sequence
(RefSeq): A curated nonredundant sequence database of genomics,
transcripts, and proteins. Nucleic Acids Res 33: D501–D504.

Rivas E, Eddy SR. 2001. Noncoding RNA gene detection using com-
parative sequence analysis. BMC Bioinformatics 2: 8. doi: 10.1186/
1471-2105-2-8.

Sharma CM, Vogel J. 2009. Experimental approaches for the discovery
and characterization of regulatory small RNAs. Curr Opin Micro-
biol 12: 536–546.

Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A,
Chabas S, Reiche K, Hackermuller J, Reinhardt R, et al. 2010. The
primary transcriptome of the major human pathogen Helicobacter
pylori. Nature 464: 250–255.

Sittka A, Lucchini S, Papenfort K, Charma CM, Rolle K, Binnewies
TT, Hinton JCD, Vogel J. 2008. Deep sequencing analysis of small
noncoding RNA and mRNA targets of the global post-transcrip-
tional regulator, Hfq. PLoS Genet 4: e1000163. doi: 10.1371/
journal.pgen.1000163.

Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H,
Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, et al.
2009. The Listeria transcriptional landscape from saprophytism to
virulence. Nature 459: 950–956.

van Rijsbergen CJ. 1979. Information Retrieval. http://www.dcs.gla.ac.
uk/Keith/Preface.html.

Vivas EI, Goodrich-Blair H. 2001. Xenorhabdus nematophila as a
model for host-bacterium interactions: rpoS is necessary for
mutualism with nematodes. J Bacteriol 183: 4687–4693.

Washietl S, Hofacker IL. 2004. Consensus folding of aligned sequences
as a new measure for the detection of functional RNAs by com-
parative genomics. J Mol Biol 342: 19–30.

Washietl S, Hofacker IL, Stadler PF. 2005. Fast and reliable prediction
of noncoding RNAs. Proc Natl Acad Sci 102: 2454–2459.

Waters LS, Storz G. 2009. Regulatory RNAs in bacteria. Cell 136: 615–
628.

Yoder-Himes DR, Chain PSG, Zhu Y, Wurtzel O, Rubin EM, Tiedje
JM, Sorek R. 2009. Mapping the Burkholderia cenocepacia niche
response via high-throughput sequencing. Proc Natl Acad Sci 106:
3976–3981.

Discovery of small RNA genes in bacteria

www.rnajournal.org 1647

http://www.dcs.gla.ac.uk/Keith/Preface.html
http://www.dcs.gla.ac.uk/Keith/Preface.html

