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ABSTRACT

Selective 29-hydroxyl acylation analyzed by primer extension (SHAPE) is a facile technique for quantitative analysis of RNA
secondary structure. In general, low SHAPE signal values indicate Watson-Crick base-pairing, and high values indicate positions
that are single-stranded within the RNA structure. However, the relationship of SHAPE signals to structural properties such as
non-Watson-Crick base-pairing or stacking has thus far not been thoroughly investigated. Here, we present results of SHAPE
experiments performed on several RNAs with published three-dimensional structures. This strategy allows us to analyze the
results in terms of correlations between chemical reactivities and structural properties of the respective nucleotide, such as
different types of base-pairing, stacking, and phosphate–backbone interactions. We find that the RNA SHAPE signal is strongly
correlated with cis-Watson-Crick/Watson-Crick base-pairing and is to a remarkable degree not dependent on other structural
properties with the exception of stacking. We subsequently generated probabilistic models that estimate the likelihood that
a residue with a given SHAPE score participates in base-pairing. We show that several models that take SHAPE scores of
adjacent residues into account perform better in predicting base-pairing compared with individual SHAPE scores. This
underscores the context sensitivity of SHAPE and provides a framework for an improved interpretation of the response of RNA
to chemical modification.
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INTRODUCTION

The structure of RNA molecules is of profound significance
for the fundamental roles they play in cellular regulation
(Serganov and Patel 2007; Geissmann et al. 2009; Nowotny
and Yang 2009; Scott et al. 2009). There is a pressing need
for experimental techniques that allow rapid and accurate
determination of RNA structures. Chemical probing tech-
niques such as hydroxyl radical footprinting (Tullius and
Dombroski 1985; Tullius and Greenbaum 2005) or in-line
probing (Regulski and Breaker 2008; Wakeman and Winkler
2009a,b) are important approaches for RNA structure de-
termination. In recent years, the development of innovative
methods such as SHAPE (selective 29-hydroxyl acylation
analyzed by primer extension) (Merino et al. 2005; Wilkinson

et al. 2008), SHAMS (selective 29-hydroxyl acylation analyzed
by mass spectrometry) (Turner et al. 2009), and antisense
interfered aiSHAPE (Legiewicz et al. 2010) for probing
secondary and tertiary structure of RNA molecules has
opened new avenues for RNA research. Certain hydroxyl-
selective electrophiles, such as N-methylisatoic anhydride
(NMIA) (Merino et al. 2005) and 1-methyl-7-nitroisatoic
anhydride (1M7) (Mortimer and Weeks 2007), readily react
with 29-OH groups of ribose moieties at nucleotide positions
that are single-stranded and unconstrained. In contrast, the
29-OH group of base-paired or architecturally constrained
nucleotides shows reduced nucleophilic reactivity (Merino
et al. 2005). Covalently modified positions are identified by
stops in subsequent primer extension reactions, followed by
electrophoretic fragment separation. Quantitative SHAPE
reactivities at single nucleotide resolution can be used as
constraints in prediction algorithms to compute RNA
secondary structure (Deigan et al. 2009; Low and Weeks
2010), and high-throughput variants of this technique have
successfully been implemented (Vasa et al. 2008; Wilkinson
et al. 2008).
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While SHAPE signatures at each nucleotide position are
highly reproducible (Wilkinson et al. 2008), these can be
difficult to interpret. For example a low SHAPE signal
suggests that the nucleotide participates in base-pairing,
but it does not, however, give direct evidence about the
base-pairing partner or the type (Leontis and Westhof 2001)
of base pair. Also, a nucleotide can participate in several
base-pairing interactions simultaneously (up to three accord-
ing to the Leontis-Westhof classification) (Leontis and
Westhof 2001). Furthermore, currently available algorithms
that analyze nucleic acid reactivity, either from sequencing
gels or from capillary electropherograms, do not always
allow unambiguous assignment of reactivities. For com-
plex RNA molecules, SHAPE can support multiple struc-
tures (Wilkinson et al. 2008; Watts et al. 2009).

In order to understand better the complex nature of
SHAPE, we performed a thorough investigation of SHAPE
signatures of seven RNAs (see Table 1) that have a corre-
sponding three-dimensional (3D) structure available in the
Protein Data Bank (PDB), examining the correlation
between NMIA reactivity and structural features such as
base-pairing, stacking, base-pair type, and base-pairing
status of adjacent residues. A normalization procedure was
subsequently applied to the quantified SHAPE signals, and
then correlated SHAPE reactivities were compared with
RNA secondary and tertiary structure properties to better
understand the underlying properties that a SHAPE exper-
iment measures. We find that the SHAPE signal strongly
depends on the base-pairing state of a residue, with cis-
Watson-Crick/Watson-Crick interactions showing the stron-
gest correlation. We also find significant correlations with

base-pair stacking. Finally, we used these properties to build
seven different models that convert a SHAPE score into a
posterior probability of base-pairing. By taking into account
the SHAPE score of several (two or three) adjacent residues,
we can improve (compared to the direct use of SHAPE
scores) the correlation between the predicted base-pairing
and the base-pairing pattern of the known reference struc-
tures. The method is made available as a web server that
facilitates conversion of raw SHAPE signal values (as
processed by the SAFA software) into posterior probabilities
of base-pairing (http://knetfold.abcc.ncifcrf.gov/rnashape/).

MATERIALS AND METHODS

Generation of RNA SHAPE data

SHAPE experimental data were generated for the RNA sequences
listed in Table 1. RNAs were generated by in vitro transcription,
purified by electrophoresis, and folded into the native structure (see
Fig. 1; Wilkinson et al. 2006). SHAPE experiments were performed
with NMIA as the electrophile. 29-O-adducts were detected as stops
in subsequent primer extension reactions using a 59-radiolabeled
DNA primer annealed to a structural cassette introduced into each
RNA. After reverse transcription, the RNA of the resulting RNA–
DNA hybrid was hydrolyzed under alkaline conditions, and cDNA
fragments were resolved by denaturing polyacrylamide gel electro-
phoresis. Since the RNA constructs under evaluation did not contain
any extension at their 59 termini, the first few 59 nucleotides could
not be quantified due to the very intense band of the full-length
extension product. Modification reactions were performed at three
different NMIA concentrations (9 mM, 13.5 mM, and 18 mM).
Absolute NMIA reactivities were derived by subtracting the in-

tensities of a control experiment performed
without NMIA. In order to unambiguously
assign correct positions to all bands, four
dideoxy sequencing reactions were performed
for each RNA. Experiments were performed
in triplicate for all RNAs.

Oligonucleotides were designed such that an
RNA structure cassette was fused to the 39-end
of the respective RNA (Wilkinson et al. 2006).
This 43-nucleotide (nt) extension contains two
UUCG tetraloops which promote folding into
stable hairpin structures that do not interfere
with folding (Badorrek and Weeks 2005;
Merino et al. 2005). Oligonucleotides (listed
in the Supplemental Material) were ordered
from IDT (Coralville, Iowa) and purified by
electrophoresis on an 8% polyacrylamide/TBE/
7 M urea gel, followed by ethanol precipitation.
DNA transcription cassettes were prepared by
PCR using Platinum Taq DNA polymerase
(Invitrogen): The reaction contained in a total
volume of 100 mL 200 pmol of each primer, 10
U (2 mL) Taq polymerase, 2 mM MgCl2, and
0.2 mM dNTPs. The DNA product was pre-
cipitated with ethanol, dried, and resuspended
in 20 mL TE buffer.

TABLE 1. Data set of RNA structures for which SHAPE experiments were performed

PDB Description
Minimum

PDB
Maximum

PDB
Minimum

SHP
Maximum

SHP

1CX0 Hepatitis delta virus ribozyme 101 172 104 170
1KXK Domains 5 and 6 of the

yeast ai5g group II
self-splicing intron

1 70 3 70

1P5O Internal ribosome entry
site (IRES) domain II from
hepatitis C virus

1 77 7 75

1XJR Stem–loop II motif (s2m) RNA
element of the SARS
virus genome

3 47 3 47

1Z43 S-domain of the signal
recognition particle RNA from
Methanococcus jannaschii

138 238 142 229

2TRA Yeast aspartic acid tRNA 1 73 6 73
437D Pseudoknot from beet western

yellow virus involved in
ribosomal frameshifting

1 28 4 28

PDB indicates Protein Data bank identification; description, description of structure;
minimum PDB, minimum residue index in PDB coordinate file; maximum PDB, maximum
residue index in PDB coordinate file; minimum SHP, minimum residue index of SHAPE
data; and maximum SHP, maximum residue index of SHAPE data.
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RNAs were prepared by in vitro transcription using the
Megashort Script kit from Ambion, purified on 8% acrylamide/
TBE/7 M urea gels, and recovered by passive elution and ethanol
precipitation. RNA was folded by heating in 10 mM Tris (pH 8),
100 mM KCl, and 0.1 mM EDTA for 3 min at 95°C, followed by
snap cooling on ice. Folding buffer was then added to a final
concentration of 40 mM Tris (pH 8), 5 mM MgCl2 (unless
indicated otherwise), 0.2 mM EDTA, and 133 mM KCl, and the
RNA was incubated at 37°C for 10 min. In the case of the group II
self-splicing intron (PDB: 1KXK), experiments corresponding to
MgCl2 concentrations of 0.3 mM, 0.6 mM, 1.3 mM, 2.5mM,
5mM, 7.5 mM, 10 mM, and 20 mM have been performed (see
Supplemental Fig. S5). Proper folding was confirmed by native
polyacrylamide gel electrophoresis (see Fig. 1). RNA was then
separated into control (�) NMIA and (+) NMIA reactions.
Samples were incubated with NMIA at concentrations indicated
earlier at 37°C for 50 min, followed by ethanol precipitation.
Modified RNA was analyzed by primer extension with SuperScript
III (Invitrogen), using a 59-[32P]-labeled DNA primer hybridized to
the structure cassette at the 39 terminus. Four sequencing reactions
were performed in parallel using unmodified RNA and adding the
respective dideoxynucleotides to the reaction mixture. To hydrolyze
the RNA, each 20 mL reaction mixture was supplemented with 1 mL
of 4 M NaOH and incubated at 95°C for 5 min. The reaction was
then placed on ice, and 2 mL of 2 M Tris-HCl and 23 mL of
formamide gel loading buffer were added. cDNA fragments were
resolved on 5%–10% denaturing polyacrylamide sequencing gels.
To obtain unequivocal assignment of bands, electrophoretic sepa-
ration for each reaction mixture was performed with polyacryl-
amide gels of different concentration. Gels were dried and scanned
by phosphorimaging (Typhoon Trio; GE Healthcare). The quanti-
tative analysis of gels was performed with the software program
SAFA (Das et al. 2005; Laederach et al. 2008).

Analysis of 3D structures

The base-pairing pattern of the RNA 3D structures obtained from
the PDB were analyzed with the program FR3D (Sarver et al.
2008), which can detect and classify RNA base pairs, backbone

conformations, base-phosphate interactions. and stacking interac-
tions. Base pairs are classified according to the Leontis-Westhof
scheme (Leontis and Westhof 2001). Base-phosphate interactions
are based on a recently developed nomenclature (Zirbel et al. 2009).
The FR3D analysis results of the seven RNA structures were
downloaded from the FR3D web page (http://rna.bgsu.edu/FR3D/).

Data processing

The objective of the data processing was ultimately to convert the
unprocessed SHAPE signals into per-residue probabilities that the
respective RNA residues are single-stranded. Briefly, the main
steps of the normalization method (implemented in R) are as
follows: (1) subtraction of the control experiment data (the
SHAPE experiment performed without NMIA) from the unnor-
malized data; (2) detection of outliers; (3) baseline correction; and
(4) normalization of the data by dividing the signal values by the
average of the data corresponding to the top 10% of signal values.
This is analogous to a previously described data normalization
procedure (Deigan et al. 2009) with the exception of a different
baseline correction. Due to the relatively short length of the RNAs,
no exponential decay correction was performed. We utilized existing
software for baseline correction in the form of the R package
PROcess (Li et al. 2005). The baseline correction determines what
unprocessed SHAPE signals should correspond to ‘‘zero.’’ Simply
taking the smallest signal value might lead to a biased normalization
due to outlier signal values. Instead, the baseline correction method
employed divides the number of signal values into regions of equal
size. The minimum signal value is determined for each region. Next,
a smoothed curve that interpolates between the different found
minima is computed. This smoothed curve is the new zero-line and
is subtracted from the data curve. We introduced this additional
normalization step in order to automate all steps of SHAPE score
normalization.

We used the FR3D software (Zirbel et al. 2009) to determine
the reference base-pairing for each 3D structure, which allowed us
to calculate quantities such as the Matthews correlation coefficient
(MCC) of the SHAPE signal with respect to its reference base-
pairing pattern. The MCC is defined as

MCC =
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þ

p

with TP, TN, FP, and FN being the number of true positives, true
negatives, false positives, and false negatives, respectively. True
positives are defined as all residue positions that have a normalized
SHAPE score below a threshold and also participate in a base-pair
interaction that involves a Watson-Crick edge on both base-pairing
residues. The MCC depends on the chosen threshold; for each of
the eight compared methods (see Table 3), the maximal achievable
MCC values are reported. While ‘‘score’’ stands for the normalized
SHAPE score, the probabilistic models developed in this study
involve ‘‘training’’ (labeled Prob1, Prob2D, Prob2S, Prob25,
Prob23, Prob3DS, and Prob353); the training set consists of six
RNA structures such that the current RNA structure used for
evaluating the prediction performance is not part of the training set
(leave-one-out strategy, jackknifing).

The seven different probabilistic models utilize the normalized
SHAPE score of the current residue and of zero, one, or two

FIGURE 1. Examination of RNAs by nondenaturing polyacrylamide
gel electrophoresis. They are (1) musD transport element mutant 6
(external control); (2) HDV ribozyme (PDB: 1CX0); (3) signal
recognition particle (PDB: 1Z43); (4) HCV IRES (PDB: 1P5O); (5)
self-splicing intron (PDB: 1KXK); (6) BWYV pseudoknot (PDB: 437D);
(7) tRNA (PDB: 2TRA); and (8) SARS stem–loop II motif (PDB:
1XJR). RNAs were resolved for z6 h at 190 V on a 10% nondenaturing
polyacrylamide gel in a running buffer containing 5 mM Mg2+. The gel
was stained with Fast RNA stain.
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adjacent residues in order to provide a posterior probability of
base-pairing for the current residue:

d Prob1, one-dimensional Bayesian probability model using the
SHAPE score of the current residue;

d Prob2D, two-dimensional Bayesian probability model (use of
a SHAPE score and the SHAPE score of the adjacent residue
with the most different SHAPE score);

d Prob2S, two-dimensional Bayesian probability model (use of
a SHAPE score and the SHAPE score of an adjacent residue
with the most similar SHAPE score);

d Prob25, two-dimensional Bayesian probability model (use of
a SHAPE score and the SHAPE score of the upstream adjacent
residue);

d Prob23, two-dimensional Bayesian probability model (use of
a SHAPE score and the SHAPE score of the downstream
adjacent residue);

d Prob3DS, combination of Prob2D and Prob2S models (imple-
mented as the product of the results obtained by the Prob2D
and Prob2S models); and

d Prob353, combination of Prob25 and Prob23 models (imple-
mented as the product of the results obtained by the Prob25 and
Prob23 models).

Probabilistic models corresponding to NMIA concentrations from
9–18 mM were generated in this fashion. For the BWYV frame-
shifting pseudoknot (PDB: 437D); SHAPE data for NMIA concen-
trations of 9 mM and 18 mM were used and interpolated to ap-
proximate the SHAPE experiment results corresponding to 13.5 mM
NMIA. For all other RNAs, SHAPE data for three concentrations
(9 mM, 13.5mM, 18 mM NMIA) were analyzed.

RESULTS

SHAPE experimental data were obtained for seven RNAs
prepared by in vitro transcription, purified, and folded into the
native structure as confirmed by nondenaturing PAGE (Fig.
1). Using the normalized SHAPE score for each nucleotide as
an input parameter, we utilized both the VARNA (Darty et al.
2009) and RNAMLVIEW programs (Waugh et al. 2002) to
generate the secondary structure diagrams shown in Figures 2
and 3. The color-coding illustrates posterior probabilities of
cis-Watson-Crick/Watson-Crick base-pairing (cWW) as pro-
duced by the Prob23 model (Materials and Methods), where
blue corresponds to high probabilities of base-pairing
(low SHAPE scores) and red to low probabilities (high
SHAPE scores). White corresponds to residues for which
no SHAPE signal values were measured.

Probabilities of structural properties as a function
of SHAPE signal

The FR3D software provides a set of per-residue structural
properties such as base-pairing (12 cases according to the
Leontis-Westhof nomenclature), stacking, and base-phos-
phate interactions. Each of these properties can be viewed
as a structural feature that is either absent or present for a
particular residue. For each of these features, we performed

a statistical test (Wilcoxon rank sum test) to determine if the
SHAPE scores of residues possessing this feature are unlikely
to be from the same distribution compared to residues that
do not possess this feature. Table 2 indicates that only a small
number of structural features remain, the most significant
being the cWW.

To find additional features other than Watson-Crick
base-pairing that independently influence NMIA reactivity,
the data set is then divided into two subsets depending on
whether the residues participate in Watson-Crick base-pairing
or not. A Wilcoxon rank sum test is performed for SHAPE
scores of each structural feature for both subsets individ-
ually. Table 2 suggests that very few structural properties
influence the SHAPE scores if Watson-Crick base-pairing is
taken into account. The only structural feature that remains
significant for the set of residues that are not part of a cWW
interaction is the s53 stacking interaction (P = 0.0036,
Wilcoxon rank sum test) (see Table 2 row s53 [not cWW]).
Nucleotide stacking interactions make an important con-
tribution to the stability of an RNA structure. We follow
the nomenclature of the FR3D software, and distinguish
s35, s53, s33, and s55 interactions. This nomenclature is
based on the convention of naming the two ‘‘flat’’ sides of

FIGURE 2. Secondary structure of the (A) yeast group II self-splicing
intron (PDB 1KXK), (B) BWYV frame shifting pseudoknot (PDB
437D), and (C) SARS stem–loop II motif (PDB 1XJR), color-coded
according to SHAPE data. The color-coding is showing the posterior
probabilities of cis-Watson-Crick/Watson-Crick base-pairing derived
from SHAPE signal values, where blue values correspond to high
probabilities (low SHAPE signals) and red values to low probabilities
(high SHAPE signals). The probabilistic model was not applied to
residues (shown in white) that correspond to the first and last residues
for which SHAPE data are available. Residues for which no SHAPE
signal values were measured are also shown in white.
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the actual bases as either the ‘‘3’’ or the ‘‘5’’ side, depending
on whether they are pointing toward the 59 direction or the
39 direction of the backbone part of that particular base. An
s53 interaction, for example, indicates that the 59 side of the
base has a stacking interaction with the 39 side of another
base. The SHAPE scores of residues that do participate in
cWW are on average slightly lower if they participate in one
type of base-phosphate interaction designated H_9BPh
(Table 2). This interaction corresponds to an H5 atom
that is part of a C or U base interacting with a phosphate
group (Zirbel et al. 2009). There are, however, only six
cases with this type of base-phosphate interaction in our
data set; it would be interesting to analyze larger data sets
with respect to base-phosphate interactions and SHAPE
scores.

It is straightforward, to generate for each structural
property a (smoothed) histogram of SHAPE scores that
were found for residues that exhibit these features. The case
of cis-WW is shown in Figure 4. Also interesting is, however,
the converse: Given a residue with an experimental SHAPE
score, what is the likelihood that this residue possesses
a structural feature? This is achieved using a Bayesian
formalism (the equations are detailed in section 1 of the

Supplemental Material). Briefly, the histograms of observed
SHAPE scores are used for probability density estimations.
Given the probability density of the SHAPE scores corre-
sponding to residues that possess a feature and another
probability density of SHAPE scores of residues that do not
possess that feature, one can compute the probability (more
precisely the Bayesian posterior probability) for a residue to
possess that feature for a given SHAPE score. The results are
shown for cWW in Figure 5 and for all examined structural
features in the Supplemental Material. Only structural fea-
tures that occur at least five times in the data set are
examined. As expected, the probability of cWW is higher
for SHAPE scores around 0.0 compared with SHAPE scores
around 1.0. It should be noted, however, that the maximal
obtained probability of cWW is z84% (at a nonprobabilistic
SHAPE score of �0.2).

The analogous approach can be performed using the
SHAPE scores of two adjacent residues. This leads to two-
dimensional histograms, density estimations, and proba-
bility ‘‘landscapes.’’ For a given residue and its SHAPE
score, which of the two adjacent neighboring residues
should be chosen? We generated four different probabilistic
models that depend on SHAPE scores of two adjacent
residues (the models are called Prob2D, Prob2S, Prob25,
and Prob23; see Materials and Methods). Figure 6 shows
the posterior probability of cWW as a function of the
SHAPE score of a residue and the SHAPE score of (1) its 59

adjacent residue (Fig. 6, top, model Prob25) and (2) its 39

adjacent residue (Fig. 6, bottom, model name Prob23).
Given the SHAPE score of a residue and its 39 adjacent

neighbor, one can use, for example, the data in Figure 6 to
determine the posterior probability of cWW. As apparent
from the plot, the posterior probability of cWW is
influenced not only by the SHAPE score of the current
residue but also by the SHAPE score of its 39 neighbor.
Note that the dependence of the SHAPE score on the
adjacent residue appears to be greater for the 39 adjacent
residue (Fig. 6, bottom) compared with the 59 adjacent
residue (Fig. 6, top).

Correlation of the SHAPE signal with base-pairing

Ultimately one wants to use the SHAPE signal as a classifier
that determines if a particular nucleotide participates in
base-pairing. Table 3 shows the MCCs for the individual
RNA structures using nonprobabilistic SHAPE scores
(column Score) as well as the probabilistic models (col-
umns labeled with names starting with Prob). These results
were obtained at an NMIA concentration of 18 mM. Data
corresponding to NMIA concentrations of 9 mM and 13.5
mM are shown in the Supplemental Material (Supplemen-
tal Table S1).

The mean MCC is similar for the one-dimensional
probabilistic model labeled Prob1 (0.55) (see Table 3).
The two-dimensional models Prob23 (it utilizes the SHAPE

FIGURE 3. Secondary structure of (A) hepatitis delta virus ribozyme
(PDB 1CX0), (B) hepatitis C virus IRES domain II (PDB 1P5O), (C)
7S.S SRP RNA (PDB 1Z43), and (D) of yeast tRNAASP (PDB 2TRA)
colored according to SHAPE data. Color-coding is as described in the
legend of Figure 2.
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score of a residue and the SHAPE score of its 39 adjacent
residue) has a mean MCC of 0.58. This represents an
improvement compared to the direct use of normalized
SHAPE scores, the P-value, however, is greater than a 0.05
significance level (P = 0.15, Wilcoxon signed rank test) (see
Table 3, row labeled ‘‘P-value’’). The probabilistic models
Prob3DS and Prob353 utilize the SHAPE scores of the
current residue and both adjacent neighbors in order to
predict the base-pairing of the current residue (Materials
and Methods). For those two models, one achieves a mean
maximum MCC of 0.62 and a median of 0.68 and 0.67,
respectively. This is a statistically significant improvement
compared to the performance of the direct use of normal-
ized SHAPE scores (P # 0.04, Wilcoxon signed rank test)
(see Table 3).

The maximal MCC uses information from the experimen-
tally determined structure (leading to the optimal choice of
a score cutoff). In the right half of Table 3, we show MCCs in
which the cutoffs were chosen such that the amount of
predicted base-pairing reaches a fixed fraction (chosen to be
61% base-pairing). The achieved correlations are significantly
lower compared to the maximal achievable MCC values
reported. The two-dimensional and 3D probabilistic models,
however, still outperform the direct use of normalized
SHAPE scores.

We analyzed to what extent the baseline correction method
influenced the correlation of the normalized SHAPE signals
with base-pairing. This was accomplished by generating

results that did not rely on baseline cor-
rection (shown in Supplemental Table
S2; they can be compared to the results
that include base line correction [Supple-
mental Table S1, top]). We found that for
none of the eight normalization methods
is the difference in prediction accuracy
statistically significant (Wilcoxon signed
rank test).

We also looked at how an error in the
initial SHAPE signal leads to a reduced
correlation between the normalized
SHAPE signal and cWW-type base-pair-
ing. We found that a relative error of
10% in the original SHAPE signal leads
to a mean maximal MCC of 0.55 when
using the Prob23 model (compared to a
mean MCC of 0.58 for the unperturbed
SHAPE signal) (see Table 3).

In order to ascertain to what degree
normalized SHAPE reactivities depend
on the magnesium concentration, we
performed SHAPE experiments on the
group II self-splicing intron under mag-
nesium concentrations from 0.3–20 mM.
Supplemental Figure S5 shows a slight
increase in NMIA reactivity with respect

to magnesium concentration. The gel bands corresponding to
positions 35–37 (thus corresponding to the apical GAAA
tetraloop region), however, do not show a pronounced

TABLE 2. List of structural properties that show a correlation with SHAPE scores

Interaction P N1 N2 Median1 Median2 Mean1 Mean2

cWW <2.22 3 10�16 267 163 0.06 0.23 0.10 0.33
s33 0.00529 35 395 0.17 0.09 0.27 0.18
s35 7.647 3 10�8 317 114 0.08 0.20 0.15 0.30
s53 1.023 3 10�8 321 109 0.08 0.22 0.14 0.33
s55 0.0240 219 211 0.09 0.13 0.15 0.22
s53 (not cWW) 0.0036 77 86 0.17 0.30 0.26 0.39
H_9BPH (cWW) 0.0216 6 216 0.01 0.07 0.00 0.11

Interaction indicates the name of examined structural property using the nomenclature from
FR3D; P, result of Wilcoxon rank sum test, comparing SHAPE scores of residues that possess
a certain structural property versus residues that do not possess that property. N1 indicates
number of residues with that structural property; N2, number of residues without that
structural property; Median1, median of SHAPE scores of residues with that structural
property; Median2, median of SHAPE scores of residues without that structural property;
Mean1, mean of SHAPE scores of residues with that structural property; and Mean2, mean
of SHAPE scores of residues without that structural property. Only structural properties that
correspond to a P-value of <0.05 are listed. Note that for the interactions listed in the top
five rows, all residues were compared; the interactions ‘‘H_9BPh (cWW)’’ and ‘‘s53 (not
cWW)’’ correspond to interactions that were analyzed using the subset of residues that do or
do not participate in cis-Watson-Crick/Watson-Crick base-pairing (cWW)–type base-pair-
ing, respectively. The identified structural properties are cWW, s53 (stacking interaction
between the 59 side of the base with the 39 side of another base), s35 (interaction between
the 39 side of the base with the 59 side of another base), and s33 (interaction between the 39
side of the base and the 39 side of another base). s53 (not cWW) indicates the s53 stacking
property is correlated with SHAPE scores (Wilcoxon rank sum test, P < 0.05) of residues that
do not participate in cWW. H_9BPH (cWW) indicates a certain base-phosphate interaction
(Zirbel et al. 2009) is correlated with SHAPE scores (Wilcoxon rank sum test, P < 0.05) of
residues that do participate in cWW base-pairing.

FIGURE 4. Density estimation of SHAPE scores that do or do not
participate in cis-Watson-Crick/Watson-Crick base-pairing. Narrow
distribution indicates base-paired residues; broad distribution, non-
base-paired residues.
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variation. The crystal structure contains a magnesium ion that
binds the phosphate oxygen of G38 (Zhang and Doudna
2002). This suggests, that a high local structural stability
implies a reduced dependency of the SHAPE experimental
results on magnesium concentration. A plot showing the
base-pair scores for different probabilistic models and for
different magnesium concentrations is shown in Supplemen-
tal Figure S6. One can see, that the context-sensitive model
(Supplemental Fig. S6b for model Prob23) exhibits a smaller
dependency on the base-pair probabilities with respect to the
magnesium concentrations compared to the noncontext
sensitive model (Prob1). Also, the context-sensitive model
shows less variability with respect to sequence position within
both single-stranded and double-stranded regions.

DISCUSSION

The goal of this study was to identify structural features that
ultimately determine the SHAPE experimental signal and to
attempt to correlate its range with particular types of RNA
interactions. We found that the median SHAPE signal is
lowest for residues involved in base-pairing using the Watson-
Crick edges of both interacting residues.

We find a statistical significance between s53 stacking
interactions and SHAPE scores, even if the examined residues
do not participate in cWW (Table 2, row s53 [not cWW]).
Visual inspection of the 3D structures identified several cases
in which the non-base-paired nucleotides that participate in
a s53 stacking interaction are located adjacent (one residue
downstream) to a regular RNA A-type double-helix. The
observed s53 stacking interaction is then an interaction with
the last terminal base pair of the adjacent helix. The median
SHAPE scores of non-base-paired residues with such s53
stacking interactions are lower compared with the control set
(cf. columns Median1 and Median2 in Table 3). Thus, s53
stacking interactions have a tendency to ‘‘extend’’ helices and
‘‘mimic’’ base-pairing. Constructing context-sensitive proba-
bilistic models improves the prediction accuracy compared to
individual SHAPE scores (Table 3), suggesting that consid-
ering the SHAPE score of a residue in combination with the

SHAPE scores of the adjacent residues is a simple and
efficient way to improve interpretation of SHAPE reactivities.

The advantage of context-sensitive probabilistic models
becomes evident by comparing base-pair scores generated
for different magnesium concentrations (Supplemental Fig.
S6). It appears that the probabilistic models that take the
SHAPE scores of residues into account are more ‘‘resilient’’
toward changes in experimental conditions such as changes
in magnesium concentration. Base-pair scores generated by
the context-sensitive model Prob23 also appear to be less
‘‘noisy’’ when comparing SHAPE scores of adjacent residues
that are part of the same double helix. Lastly, the use of
context-sensitive probabilistic models results in higher base-
pair prediction accuracy (see Table 3). The success of this ap-
proach is likely to be in part due to an inherent quality of RNA
structure: Base pairs within folded RNA structures usually do
not occur in isolation, but are often part of A-type helices.

This underscores the context-sensitivity of SHAPE reac-
tivities and provides a paradigm for future improved algo-
rithms for SHAPE score normalization. Over time, a significant

FIGURE 5. Bayesian posterior probability of cis-Watson-Crick/Watson-
Crick base-pairing as a function of SHAPE score. Indicated in gray is
a 95% confidence interval. The method for estimating the posterior
probability as well as the confidence interval is described in the
Supplemental Material (sections 1 and 2).

FIGURE 6. Bayesian posterior probability of cis-Watson-Crick/Watson-
Crick base-pairing of a residue as a function of its SHAPE score and
the SHAPE score of one adjacent residue. (Top) The upstream
adjacent residue is chosen; (bottom) the downstream adjacent residue
is chosen.
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accumulation of SHAPE data (in conjunction with known
RNA 3D structures) can be predicted. This should make it
possible to generate higher-dimensional probabilistic models
that consider larger sequence contexts of RNA nucleotides. It
should also be emphasized that similar probabilistic models
could be generated for similar RNA structure determination
techniques, such as in-line probing (Regulski and Breaker
2008; Wakeman and Winkler 2009b). Such probabilistic
models will aid the interpretation of RNA structure probing
experiments and will ultimately lead to a deeper under-
standing of RNA structure.

We provide a user-friendly web server that aids in
normalization of SHAPE data values. In the web form,
the user can enter the SAFA-processed SHAPE signal values
and choose between three different NMIA concentrations.
After job submission, the web server returns a table with
normalized SHAPE data values. The web server is available
at the URL http://knetfold.abcc.ncifcrf.gov/rnashape/.
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