Table 1.
Dataset | Dataset name | Type | P/D | #t | #n | #V | M |
---|---|---|---|---|---|---|---|
1 | Alon et al. | T | D | 2 | 61 | 6,584 | 0.651 |
2 | Armstrong et al. | T | D | 3 | 72 | 12,582 | 0.387 |
3 | Beer et al. | T | P | 2 | 86 | 5,372 | 0.795 |
4 | Bhattacharjee et al. | T | D | 7 | 203 | 12,600 | 0.657 |
5 | Bhattacharjee et al. | T | P | 2 | 69 | 5,372 | 0.746 |
6 | Golub et al. | T | D | 2 | 72 | 7,129 | 0.653 |
7 | Hedenfalk et al. | T | D | 2 | 36 | 7,464 | 0.500 |
8 | Iizuka et al. | T | P | 2 | 60 | 7,129 | 0.661 |
9 | Khan et al. | T | D | 4 | 83 | 2,308 | 0.345 |
10 | Nutt et al. | T | D | 4 | 50 | 12,625 | 0.296 |
11 | Pomeroy et al. | T | D | 5 | 90 | 7,129 | 0.642 |
12 | Pomeroy et al. | T | P | 2 | 60 | 7,129 | 0.645 |
13 | Ramaswamy et al. | T | D | 29 | 280 | 16,063 | 0.100 |
14 | Rosenwald et al. | T | P | 2 | 240 | 7,399 | 0.574 |
15 | Staunton et al. | T | D | 9 | 60 | 7,129 | 0.145 |
16 | Shipp et al. | T | D | 2 | 77 | 7,129 | 0.747 |
17 | Su et al. | T | D | 13 | 174 | 12,533 | 0.150 |
18 | Singh et al. | T | D | 2 | 102 | 10,510 | 0.510 |
19 | Veer et al. | T | P | 2 | 78 | 24,481 | 0.562 |
20 | Welsch et al. | T | D | 2 | 39 | 7,039 | 0.878 |
21 | Yeoh et al. | T | P | 2 | 249 | 12,625 | 0.805 |
22 | Petricoin et al. | P | D | 2 | 322 | 11,003 | 0.784 |
23 | Pusztai et al. | P | D | 3 | 159 | 11,170 | 0.364 |
24 | Ranganathan et al. | P | D | 2 | 52 | 36,778 | 0.556 |
In the Type column, T denotes transcriptomic and P denotes proteomic. In the P/D column, P denotes prognostic and D denotes diagnostic. #t is the number of values of the target variable and #n is the number of instances in the dataset. #V is the number of predictor variables. M is the proportion of the data that has the majority target value.