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Abstract
This article studies a general joint model for longitudinal measurements and competing risks
survival data. The model consists of a linear mixed effects sub-model for the longitudinal
outcome, a proportional cause-specific hazards frailty sub-model for the competing risks survival
data, and a regression sub-model for the variance–covariance matrix of the multivariate latent
random effects based on a modified Cholesky decomposition. The model provides a useful
approach to adjust for non-ignorable missing data due to dropout for the longitudinal outcome,
enables analysis of the survival outcome with informative censoring and intermittently measured
time-dependent covariates, as well as joint analysis of the longitudinal and survival outcomes.
Unlike previously studied joint models, our model allows for heterogeneous random covariance
matrices. It also offers a framework to assess the homogeneous covariance assumption of existing
joint models. A Bayesian MCMC procedure is developed for parameter estimation and inference.
Its performances and frequentist properties are investigated using simulations. A real data example
is used to illustrate the usefulness of the approach.
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1 Introduction
Joint modeling of longitudinal and survival data has received a great deal of attention in the
past decades in many studies in which both a longitudinal outcome during follow-up and the
occurrence of some key events are recorded. In the statistical literature, joint models have
been proposed to adjust inferences on longitudinal measurements in the presence of non-
ignorable missing values due to dropout (Schluchter 1992; DeGruttola and Tu 1994; Little
1995; Hogan and Laird 1997; Henderson et al. 2000; Elashoff et al. 2007, 2008; Hu et al.
2009); to solve difficulties in Cox proportional hazards model arising from time-dependent
covariates which are possibly missing at some event times or subject to substantial
measurement error (Faucett and Thomas 1996; Wulfsohn and Tsiatis 1997; Faucett et al.
1998; Wang and Taylor 2001; Xu and Zeger 2001; Song et al. 2002; Brown and Ibrahim
2003; Tseng et al. 2005; Ye et al. 2008); and to assess covariates effects on both endpoints
simultaneously (Henderson et al. 2000; Zeng and Cai 2005; Elashoff et al. 2007, 2008; Liu
et al. 2008).

All the aforementioned joint models assume that the random effects covariance matrix is the
same for all subjects. However, examining whether this matrix is the same for all subjects
(homogeneous) or whether it differs depending on subject-specific characteristics
(heterogeneous) is often neglected in the modeling. Furthermore, ignoring the heterogeneity
can result in biased estimates of the fixed and random effects for the longitudinal outcome
(Heagerty and Kurland 2001; Daniels and Zhao 2003). Accounting for heterogeneity in
covariance matrices has been discussed by serval authors in the field of generalized linear
regression models (Chiu et al. 1996), non-linear mixed models (Davidian and Giltinan
1995), and linear mixed models (Pourahmadi and Daniels 2002; Lin et al. 1997; Zhang and
Weiss 2000; Daniels and Zhao 2003). Nonetheless, no work has been done on modeling the
entire random effects covariance matrix for the joint models.

In this paper, we propose an approach that allows heterogeneous random effects covariance
matrix within the framework of joint analysis of longitudinal measurements and competing
risks failure time data. In our joint model, a linear mixed effects sub-model is used to
characterize the longitudinal measurements, a cause-specific hazards frailty sub-model for
the competing risks survival data (Prentice and Breslow 1978), together with a regression
sub-model for the joint multivariate random effects covariance matrix which links the first
two sub-models. Specifically, we first use a modified Cholesky decomposition to
decompose the covariance matrix into a lower-triangular matrix and a diagonal matrix, and
then model these matrix entries using regression models (Pourahmadi 1999; Daniels and
Zhao 2003). By jointly modeling the random effects covariance matrices, our model is
distinct from previously studied joint models (e.g. Hu et al. 2009) that consist of only two
sub-models for the longitudinal and survival outcomes respectively. Our model has several
advantages. First of all, unlike existing joint models that assume a homogeneous covariance
matrix, our model allows for heterogeneous covariance matrices. Secondly, as discussed in
the remark of Sect. 2, our model includes homogeneous models as special cases. Thirdly, the
covariance model enables dimension reduction. With different choices of regression
covariates, it provides a flexible means to model the heterogeneity and reduce the number of
variance–covariance parameters to be estimated. Forthly, the resulting estimated covariance
matrices of the multivariate random effects are guaranteed to be positive definite, which is
not always the case for other existing joint models. Finally, our model provides a useful
framework to assess the homogeneous covariance assumption of existing joint models which
is otherwise untestable. Likelihood-based inference for our model is rather challenging with
high-dimensional random effects. We develop a Bayesian MCMC algorithm to fit the joint
model. Gibbs sampling technique, together with Metropolis-Hastings sampling and adaptive
rejection sampling (ARS) methods, is used to draw random samples from the full
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conditional distributions of parameters. With the Bayesian approach, prior information can
be incorporated in a natural way. If no prior information is available, we recommend
noninformative priors for parameters to allow data to dominate the determination of the
posterior distributions.

This paper is organized as follows: in Sect. 2 we describe the joint model formulation. In
Sect. 3 we develop the Bayesian estimation and inference methods. In Sect. 4, a real data
application is illustrated using the data from the Scleroderma clinical trial (Tashkin et al.
2006). In Sect. 5, the performance of our method is examined by simulation studies. Some
concluding remarks are provided in Sect. 6. Details of the MCMC algorithm are deferred to
the Appendix.

2 Joint model
Our joint model consists of three components: a linear mixed effect model for the
longitudinal measurements, a cause-specific hazards model for the competing risks survival
data, and a regression model for the variance–covariance matrix of the multivariate latent
random effects based on a modified Cholesky decomposition.

2.1 Longitudinal sub-model
Suppose there are m subjects in the study. For the ith subject at time t, the longitudinal
outcome Yi (t) follows a linear mixed effects model:

(1)

where  and Zi (t) are vectors of covariates associated with the fixed effects β (p × 1)
and the random effects Ui (q × 1) respectively. We assume that the measurement error εi (t),
which is distributed as N (0, σ2), is independent of Ui and εi (t1) ⊥ εi (t2) for any t1 ≠ t2.

2.2 Cause-specific hazards sub-model
During follow-up, each subject may experience one of g distinct competing causes of failure
or may be right censored. Let Ci = (Ti, Di) be the competing risks survival data on subject i,
where Ti is the failure or censoring time, and Di assumes a value from 0, 1, …, g, with Di =
0 indicating a noninformative censored event and Di = k indicating the kth failure type, k = 1,
…, g. Dependent (or informative) censoring is treated as one of the g types of failures. The
cause-specific hazards sub-model for the competing risks survival data is specified as
follows:

(2)

The function  is the instantaneous failure rate from cause k at time t given

the vector of covariates  and the latent unknown factor υi, in the presence of all other
failure types. The regression coefficient νk represents the effect of the latent variable υi with
ν1 set to 1 to ensure identifiability. The parameter γk represents the effects of the observed

covariates  on cause k. We further assume that the kth baseline hazard is a step

function, , for , where  is a partition of (0, ∞) and
Sk indicates the number of steps for the kth baseline hazard.
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2.3 Variance–covariance regression sub-model
We model the association between the longitudinal and survival sub-models by assuming
that Ui and vi jointly have a multivariate normal distribution:

(3)

Similar to Pourahmadi (1999), we model the covariance matrices Σi through a modified

Cholesky decomposition , where Hi is a diagonal matrix with positive entries
and Mi is the lower triangular matrix with −φi, jl as its (j, l)th entry. This decomposition has a
clear statistical interpretation: the below-diagonal entries of Mi are the negatives of
generalized autoregressive parameters (GARP), φi, jl, in the autoregressive model

(4)

The diagonal entries of Hi are the innovation variances (IV)  and we have
cov(ei j, ejk) = 0 if j ≠ k (1 ≤ j, k ≤ q + 1 and i = 1, …, m). The GARPs and the logarithms of
the IVs are modeled with linear and log link functions:

(5)

where ai, jl and bi j are covariates, and η1 and η2 are low-dimensional parameter vectors. For
example, ai, jl and bi j may contain group indicators, implying that the random effects
covariances are heterogeneous. The homogeneous random effects assumption in existing
joint models becomes a testable assumption within our model framework. Furthermore, the
resulting estimated covariance matrix is guaranteed to be positive definite. The latent
association between the longitudinal measurements and survival outcomes can be assessed
by testing the hypothesis ΣUυi = 0. Finally, we assume that conditional on all the covariates
and random effects, the longitudinal measurements and the competing risks survival data are
independent.

Remark: Choice of design vectors for GARP/IV parameters—As we mentioned
earlier, the choice of covariate vectors ai, jl and bi, j are flexible. For example, a 3-
dimensional random effects variance–covariance matrix has six parameters. We can model
the homogeneous unstructured covariance matrix by setting ai, jl = bi j = 1 for all j = 1, …, 3,
l = 1, …, j − 1. If we assume the design vectors contain subject-dependent covariate, say, a
group indicator (G), the unstructured heterogeneous covariance matrix can be modeled with
ai, jl = bi j = (1, Gi) for all j = 1, …, 3, l = 1, …, j − 1; that is,

(6)
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When there are high-dimensional random effects with limited data, one can impose a
restricted covariance structure and assume some of the GARP are the same to reduce the
number of parameters.

3 Estimation and inference
The standard maximum likelihood method involves integrating out latent variables from the
log-likelihood function which is difficult when dealing with high-dimensional variables. We
develop a Bayesian estimation procedure and a Markov chain Monte Carlo (MCMC)
method for estimation and inference.

3.1 Likelihood
Suppose the longitudinal outcome Yi (t) is observed at time points ti j for j = 1, …, ni, and
denote Yi = (Yi1, …, Yini). Let Ω = {β, σ2, γ, ν, λ0, η1, η2}, where γ = (γ1, γ2, …, γg), ν = (ν2,

…, νg) and . It is convenient to work directly with the joint
distribution of the observed data (Y, C) and the unobservable random effects W, conditional
on Ω, which facilitates the MCMC implementation. The conditional joint density of (Y, C)
and W is:

(7)

where

(8)

and

(9)

Under the piecewise constant hazard assumption,

(10)

3.2 Priors and MCMC sampling procedure
We assume independent priors for Ω. We use Normal priors for the parameters β, γ, ν, η1
and η2, leading to conjugate posteriors for β and some components of the η1. We use an
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inverse Gamma prior for the measurement error variance σ2 and a gamma prior for each step
of the kth baseline hazard function λ0k by which conjugate posterior distributions are easy to
obtain.

Markov Chain Monte Carlo (MCMC) methods are used for posterior sampling. It involves
sampling directly from the full conditional distribution, Metropolis–Hastings (MH)
sampling (Hastings 1970; Chib and Greenberg 1995) and adaptive rejection sampling (ARS)
(Gilks and Wild 1992). Since the full conditional distributions of the parameters β, σ2, and

, (s =1, …, Sg, k = 1, …, g) are standard distributions, drawing random variates from their
full conditional distributions is straightforward. For the rest of the parameters and random
effects (Ui, υi), we either use a Metropolis–Hastings step with the normal approximation to
the full conditional distribution as the candidate distribution or apply the ARS technique.
The technical details on the sampling distributions are given in the Appendix.

The initial values of the parameters for sampling are obtained by modeling the longitudinal
data and survival data separately by a linear mixed model and a Cox proportional hazards

model. The initial value for  (s = 1, …, Sk, k = 1, …, g) can be obtained by drawing a
random variate from the gamma full conditional distribution described in the Appendix. We
estimate the parameters by their posterior medians. Approximate 95% probability intervals
are based on 2.5th percentile and 97.5th percentile. Standard errors are obtained from the
standard deviations of the posterior samples. The convergence of the Gibbs sampler is
monitored by examining time series plots of the parameters over iteration and the Gelman
and Rubin (1992) approach of using multiple chains.

4 Application
We analyze the data from a scleroderma lung study (SLS) (Tashkin et al. 2006) with our
proposed joint model. The study enrolled 158 patients with scleroderma-related interstitial
lung disease, randomized to receive either CYC (79 patients) or identical appearing placebo
(79 patients) for 12 months. An additional year of follow-up was performed to determine if
CYC effects persisted after treatment. The primary outcome is forced vital capacity (FVC,
% predicted), measured at 3-month intervals from the baseline. We are interested in
evaluating if oral cyclophosphamide (CYC) can either improve the %FVC level of a patient
or decrease the risk of treatment failure or death.

Since the full dose of CYC is not reached until month 6, our analysis is based on 6–24
months %FVC scores which includes 140 subjects. We observe 14 treatment failures or
deaths, 32 informative and 5 noninformative dropouts. A dropout is non-informative if there
is no evidence showing that the dropout is related to the disease or the treatment, and
informative otherwise. Since the informative dropout is related to the patient’s disease
condition, it not only causes non-ignorable missing data in %FVC, but also is an
informatively censored event for treatment failure or death.

We consider two baseline factors in our joint model when assessing the CYC treatment
effects: baseline %FVC (FVC0), and lung fibrosis (FIB0). It is suggested by clinicians that
the beneficial effects of CYC on pulmonary function continue to increase after stopping
treatment at 12 months and eventually begin to wane after 18 months. Therefore, we fit the
following linear spline mixed effects model with change point at month 18 for longitudinal
measurements %FVC:
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(11)

where Ui is the subject-specific random effect and the εi j is the mutually independent
measurement error.

We consider multiple choices for random effects covariates Zi and select the model based on
the Deviance Information Criterion (DIC) (Spiegelhalter et al. 2002). The DIC has the
advantage of being easy to compute using output from a Gibbs sampler and has a similar
form as the Akaika Information Criterion (AIC): a goodness-of-fit term measured by
deviance evaluated at the posterior mean of the parameters, and a penalty term defined by
twice of the effective number of parameters. The effective number of parameters is
computed as the mean deviance minus the deviance evaluated at the posterior mean. That is,

(12)

where Ω ̄ is the posterior mean of parameter Ω,  and  is the posterior
mean of the deviance (the average of the deviances calculated using the estimated
parameters at each step of the MCMC sampler). Based on the form of the DIC, it is obvious
that the smaller the DIC value, the better the model proposed. We note that there are several
versions of DIC for missing data models (Celeux et al. 2006; Chen 2006). Here we use the
DIC constructed from the conditional distribution while treating both Ω and W as parameters
because it is easy to compute. We conduct a small simulation to evaluate the DIC which
selects 147 times out of 200 datasets and the effective dimension is always positive.

A cause-specific competing risks sub-model is applied to model disease-related dropout
(risk 1) and treatment failure or death (risk 2):

(13)

and

(14)

The latent variables from both sub-models are assumed to have a multivariate normal
distribution with mean zero and variance–covariance matrices

We test the homogeneous random effects covariance matrix assumption by considering
subject-dependent covariates for ai jl and bi j. Specifically, we choose ai jl = bi j = (1, CYCi),
which allows heterogeneous covariance matrices for different treatment groups, and test the
null hypothesis by examining if the 95% credible interval of CYC effects contains zero for
all the GARP and IV parameters.
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A 3-step baseline hazard function, with the time points defining the steps being equally split
percentiles of the observed event times, is utilized for the informatively censored events and
the event of treatment failure or death. Sensitivity analyses with 4- and 5-step baseline
hazard functions are conducted and show no significant difference. We apply independent
noninformative prior distributions for all the parameters which all assumed to have
relatively large variances. The corresponding priors for the parameters are β0 ~ N (70, 103)
and βl ~ N (0, 103) for l = 1, …, 9; σ2 ~ IG(10−3, 10−3); γkr ~ N (0, 103) for k = 1, 2 and r =

1, …, 5;  for s = 1, …, Sk and S1 = S2 = 3; ν2~ N (0, 105); and each
element of η1 and η2 ~ N (0, 105).

Table 1 summarizes the covariance matrix parameters of different models, each was based
on 30,000 iterations of MCMC sampling chains following a 15,000-iteration “burn-in”
period. Since we include baseline %FVC as a fixed effect covariate, we do not consider
random intercept to avoid possible confounding effects. We consider a one-random-slope
(before 18 months) model, a structured two-random-slope model assuming the entries of last
row in matrix Mi from the decomposition are the same, and an unstructured two-random-
slope model. The structured random effects covariance matrix model might be useful when
dealing with high-dimensional random effects model but with limited data. For the last
element of the innovation variance parameter, we do not include the CYC effects due to the
convergence issue. It is clear that none of the 95% credible intervals for CYC exclude zero.
Therefore, we don’t have sufficient evidence to reject the homogeneous random effects
covariances assumption. All the effective numbers of parameters (pD) are positive which is
not an indication of possibly poor fit between the models and the data (Spiegelhalter et al.
2002). The conditional DIC we use tends to produce increasing pDs for increasing model
complexity as suggested by Celeux et al. (2006). The two-random-slope model with
unstructured covariance matrix has the smallest DIC, indicating that it might provide the
best fit for the SLS data. Combining the earlier results, we chose the homogenous two-
random-slope model with unstructured covariance matrix as our final model and its
covariance parameters and DIC values are listed in the last column of Table 1.

The results of the selected two-random-slope model are summarized in Table 2. For
comparison purposes, we perform separate analysis of the two endpoints, which is done by
fitting a linear mixed model with two random slopes (11) for %FVC and a cause-specific
hazards frailty model for the competing risks failure time data (13), (14), respectively. The
two methods produce similar point estimates and credible intervals for baseline %FVC, lung
fibrosis and their interactions with CYC, but give different results on the interactions of
CYC and time trends. With the joint model, the significance of the interactions between
CYC and time trends indicates that the developing trends of %FVC in the two groups are
different. The %FVC declines for the placebo group (β4 = −0.12) but increases for the CYC
group (β4 + β8 = 0.14) in the first 18 months. After 18 months the %FVC declines for the
CYC group (β4 + β5 + β8 + β9 = −0.45) since the CYC effects decrease gradually after the
treatment stops, while a positive slope is found for the placebo group (β4 + β5 = 0.15).
However, none of the time trends is significantly different from zero. The difference might
be explained by the significant covariances ΣU1υ and ΣU2υ between the random slopes in the
longitudinal model and the latent variable of the survival model, which indicates dependence
between the longitudinal measurement %FVC and the survival process. We also observe
significantly positive coefficient ν2 which shows that there is a latent association between
the two competing risks. The negative sign of ΣU1υ and positive sign of ΣU2υ together with
positive ν2 indicate that in the first 18 months, there tends to be a lower risk for both
treatment failure or death and informatively censored events due to dropout for patients with
higher than average increasing rate of %FVC over time; after 18 months, the trend is
reversed due to the negative association between the two slopes. The consequence of such
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informative dropout process results in biased estimates in time trends and attenuated slope
changes comparing the CYC group with the placebo group for the separate analysis. The
results are confirmed by the simulation study in the later section. The overall effects of
treatment CYC on %FVC scores are evaluated by testing the null hypothesis H0: β3 = β6 =
β7 = β8 = β9 = 0 which yields a p-value 0.01 for the joint model and 0.03 for the separate
model.

When modeling the competing risks survival data, the two methods produce similar point
estimates and CIs for most parameters and identify the same set of significant effects. The
joint model is able to identify the relationship (ν2) between the two competing risks much
better than the separate model since the separate model does not rely on the additional
information from the longitudinal endpoints. We note that, in our second simulation study in
the next section, the estimate for ν2 is not reliable under the current sample size and event
rates even for the joint model. Hence we would not overinterpret the quantity in this
application. However, the simulation also suggests that the bias of ν2 does not seem to affect
the estimation of other parameters in the joint model. No significant overall effects of CYC
are identified for the time to treatment failure or death by testing the null hypothesis H02: γ23
= γ24 = γ25 = 0 because of the relatively short follow-up period.

5 Simulation studies
We carry out two simulation studies to assess the performance of our method. In the first
simulation, the data are generated with heterogeneous covariance matrices and we want to
show how the parameter estimates and standard errors would be affected if we ignore the
heterogeneity. The longitudinal measurements are simulated from the following model:

(15)

where ti j = 0, 0.15, 0.3, …, 3, is the scheduled visit time and X2i ~ Bernoulli(0.5) is a group
indicator. The measurement error εi j ~ N (0, 5). We simulate two competing risks failure
times with the following cause-specific hazards:

(16)

where X1 ~ N (2, 1.0), and X2 are shared with the longitudinal model. We use constant
baseline hazards of 0.12 and 0.25 for risk 1 and risk 2 respectively to generate the event time
data. The random effects are generated from the multivariate normal distribution with
covariance matrices Σi which are decomposed into the GARPs and IVs modeled with
covariates ai jl = bi j = (1, X2i). In other words, the covariance matrices are different in the
two groups: strong positive correlation in one group and strong negative correlation in the
other. The parameters are given in Table 3. With this setup, the rate of risk 1 is
approximately 0.40, the rate of risk 2 is 0.38 and censoring rate is 0.22. Longitudinal
responses are missing after the observed or censored event times. The average number of
total longitudinal observations is 11.6 per subject. We use N (0, 105) priors for each
component of β, γ, ν, η1 and η2, I G(10−3, 10−3) for σ2, and Γ (10−3, 10−3) for λ0. The
simulation is based on 200 Monte Carlo samples with sample size of 200 and 500. The
MCMC sampling in all simulation studies is run using 5, 000 iterations, and the estimation
results are based on the last 2, 500 iterations.

We analyze the simulated data with a joint model that models the covariance matrices with
subject-specific covariates (heterogeneous) and a joint model with subject-independent
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covariates (homogeneous). We also compare the results with the homogeneous model
proposed by Hu et al. (2009). Tables 3 and 4 report the biases, estimated standard errors (the
median of estimated standard error), and coverage rates of the 95% credible intervals. The
parameters η1 and η2 are transformed back to variance–covariance parameters in the table. It
is seen that the heterogeneous joint model gives almost unbiased estimates for all the
parameters. Our method for the homogeneous model performed similarly to Hu et al.
(2009). Both homogeneous joint analyses lead to large bias in some of the parameter
estimates including γ12, γ22 and ν2, which indicates that we may obtain biased parameter
estimates for the survival endpoint when combining the information of the longitudinal
outcome if the correlation of the two endpoints is incorrectly modeled. Therefore, ignoring
the heterogeneity can result in biased estimates and invalid inference.

We conduct the second simulation by generating data with structures similar to the SLS. The
longitudinal measurements and the competing risks event times are simulated from model
(11–14) with Zi j = ([Timei j, Time18i j]), where the covariates are generated from
distributions close to what we observe in the real data. All the parameters for the joint model
are set to the estimated values from the joint analysis for SLS in Table 2. Weibull
distributions are used as the true baseline hazard function which produce similar risk rates
and censoring rate to those in SLS. The results of the joint model and the separate analysis
are compared in Table 5 using 200 simulated datasets with a sample size m = 140. MCMC
sampling is run in 10,000 iterations, and the estimation results were based on the last 5,000
iterations. It is shown that the joint model produces good point estimates and coverage rates
for most of the parameters in the longitudinal sub-model except for the time trend after 18
months (β5) and the corresponding variance (ΣU22). The separate analysis gives biased
estimates for both time trends and their corresponding variances. These biases do not
decrease even for a large sample size of 500 (simulation results are not reported here) since
the biases are the consequences of the informative dropout process, which cannot be
accounted for by the linear mixed effects alone. In contrast, the biases in the joint model are
much improved with increased sample size. The random effects coefficient ν2 and frailty 
and their standard errors are poorly estimated by the separate competing risks models. The
joint model gives biased estimate for ν2 as well, which suggests that with a small sample
size of 140 and low event rates (10% for risk 1 and 23% for risk 2), even the joint analysis
may not provide good estimates for the frailty at the survival endpoint.

6 Discussion
For simplicity, we assume in our model that the measurement errors are mutually
independent and normally distributed with constant variance. This assumption can be
weakened and our method can be modified to handle correlated normal random errors. Our
model also assumes that the longitudinal sub-model and survival sub-model are independent
conditional on the observed data and latent variables. This may not be satisfied in a real
study such as the SLS, in which one of the risks in the survival endpoint, treatment failure or
death, is partly determined by the longitudinal outcome %FVC. We did some sensitivity
analyses and found that our model is robust for mild violation of the independence
assumption.

Our model can be extended to clustered data. Frequently, clustered data arises from multi-
site clinical trials or from studies across families, in which each site or family can be viewed
as a cluster. The cluster effect can be conveniently incorporated as a random effect or as
design vectors for the GARP/IV parameters to take into account the heterogeneity across the
cluster. Similarly, our method can be extended to recurrent event data where each subject
may repeatedly experience a certain phenomenon. In addition, within our joint model
framework, the linear mixed sub-model can be extended to the generalized linear mixed
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effects model (Diggle et al. 2002) to handle non-normally distributed data, such as binomial
or Poisson outcomes. Due to the complexity of the likelihood function in both GLMMs and
joint models, only a few papers discussed such a generalized joint model framework
(Molenberghs et al. 1997; Faucett et al. 1998; Larsen 2005; Yao 2008). Although in our
joint model the posterior sampling distributions for the fixed and random effects in the
longitudinal sub-model need to be changed, the parameters in the survival sub-model and
the joint variance–covariances parameters can be sampled with our described algorithm.
One of the possible approaches to sample the parameters in the GLMM sub-model is to
update the fixed and random effects by constructing a normal proposal distribution with
mean and variance from a single iteration of weighted least squares based on the previous
value (Gamerman 1997).

We finally note that the modified Cholesky decomposition can provide an unconstrained and
statistically meaningful reparameterization of a covariance matrix, but at the expense of
imposing an order among the underlying random variables. Despite of this shortcoming, it
has been used effectively in various applications including multivariate quality control,
multivariate time series, finance and random effects models (Pourahmadi 2007).
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Appendix
This section provides details for the full conditional distributions of the parameters used in
the Gibbs sampling algorithm. We use p(.) and p(.|.) to denote marginal and conditional
densities, respectively. We denote the prior distribution by p0(.). Based on the modified

Cholesky decomposition, the random effects υi can be written as 

where . Instead of sampling υi directly, we sample ei, q+1, leading
to a faster convergence rate.

1. Sample β from

2. Sample σ2 from

3. Sample the random effects Ui from

where  and  is
a q × q matrix consisting of the first q columns and rows of Mi,  is a q × q matrix
consisting of the first q columns and rows of Hi. We use the one-step Metropolis–
Hastings algorithm to obtain the update in the sampling sequence with the normal
density from the longitudinal data as the proposal density. The random effects Ui is
obtained by first sampling a random variable form the conditional density based on
the longitudinal data and then using the conditional likelihood contribution from
the survival data to determine the acceptance of the new draw.

4. Sample η1 from

where Qi is a q×q1 matrix with first row Qi1 = 0 and jth row  for j =
2, …, q. We sample η1 in two steps: sample the entries only involves Ui from the
normal conditional density, sample the entries involves Ui and υi with ARS.

5. Sample η2 from
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We use a Metropolis–Hastings step with a normal approximation to the full
conditional as the candidate distribution. For details, see Daniels and Pourahmadi
(2002).

6. Sample γkr, k = 1, …, g, r = 1, …, R from

We use a Metropolis–Hastings step within the single component sampler to update
the values of these parameters. For each of these parameters, we propose a normal
density as the proposal density, which has the current value of the parameter as its
mean and its standard deviation is set equal to four times the standard error of a
maximum partial likelihood estimate from a standard Cox model (Wang and Taylor
2001).

7. Sample νk with ARS from

8. Sample ei, q+1 (i = 1, …, m) from

The sample is obtained by first sampling a candidate from the normal densities as
its assumption and then using the conditional likelihood contribution from the
survival data to determine the acceptance of the new draw.

9. Sample each piece of λ0k (k = 1, …, g) from

where  indicates the number of events occurring

in the time interval ( ], and

, for s = 1, …, Sk.
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Table 2

Analysis of SLS data using the unstructured homogeneous two-random-slope model

Joint analysis Estimate (95% CI) Separate analysis Estimate (95% CI)

Longitudinal outcome %FVC

Int (β0) 65.33 (64.72, 67.87) 65.94 (64.41, 67.47)

FVC0 (β1) 0.89 (0.80, 0.99)† 0.89 (0.79, 0.99)†

FIB0 (β2) −1.85 (−2.94, −0.79)† −1.86 (−2.94, −0.78)†

CYC (β3) −0.98 (−3.18, 1.26) −0.76 (−2.94, 1.42)

Time (β4) −0.12 (−0.29, 0.06) −0.05 (−0.23, 0.13)

Time18 (β5) 0.27 (−0.17, 0.72) 0.11 (−0.34, 0.56)

FVC0 × CYC (β6) 0.14 (0.00, 0.28)† 0.14 (0.00, 0.28)†

FIB0 × CYC (β7) 1.74 (0.13, 3.27)† 1.78 (0.23, 3.33)†

Time × CYC (β8) 0.26 (0.01, 0.50)† 0.21 (−0.04, 0.46)

Time18 × CYC (β9) −0.72 (−1.33, −0.08)† −0.64 (−1.29, 0.00)

σ2 21.55 (19.23, 24.25) 21.28 (18.80, 23.76)

ΣU11 0.27 (0.20, 0.36) 0.25 (0.18, 0.32)

ΣU12 −0.31 (−0.53, −0.14) −0.31 (−0.49, −0.12)

ΣU22 1.29 (0.70, 2.14) 1.34 (0.67, 2.00)

p-value for H0: β3 = β6 = β7 = β8 = β9 = 0 0.01 0.03

Cause-specific hazards (time to informative dropout)

FVC0 (γ11) −0.06 (−0.12, −0.01)† −0.06 (−0.12,−0.00)†

FIB0 (γ12) 0.22 (−0.27, 0.78) 0.20 (−0.35, 0.75)

CYC (γ13) 0.23 (−0.60, 1.12) 0.40 (−0.46, 1.26)

FVC0 × CYC (γ14) 0.10(0.03, 0.18)† 0.09(0.03, 0.15)†

FIB0 × CYC (γ15) 0.13 (−0.60, 0.83) 0.07 (−0.64, 0.76)

p-value for H01: γ13 = γ14 = γ15 = 0 0.08 0.07

Cause-specific hazards (time to treatment failure or death)

FVC0 (γ21) 0.02 (−0.07, 0.09) 0.03 (−0.07, 0.13)

FIB0 (γ22) 0.29 (−0.62, 1.19) 0.28 (−0.80, 1.36)

CYC (γ23) −1.33 (−3.44, 0.21) −1.14 (−3.26, 0.98)

FVC0 × CYC (γ24) −0.07 (−0.21, 0.06) −0.08 (−0.24, 0.08)

FIB0 × CYC (γ25) −0.58 (−2.31, 0.91) −0.88 (−2.78, 1.02)

p-value for H02: γ23 = γ24 = γ25 = 0 0.39 0.48

Random effects for survival endpoint

ν2 3.04 (1.27, 7.65) −0.31 (−79.80, 81.16)

0.38 (0.07, 1.42) 0.04 (0.00, 0.40)

Covariance of Ui and υi

ΣU1υ −0.25 (−0.51, −0.09) –
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Joint analysis Estimate (95% CI) Separate analysis Estimate (95% CI)

ΣU2υ 0.60 (0.21, 1.33) –

†
p-Value < 0.05
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