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W. Löscher, PhD
M.J. Koepp, PhD

ABSTRACT

Objectives: Experiments in animal models have identified specific subcortical anatomic circuits,
which are critically involved in the pathogenesis and control of seizure activity. However, whether
such anatomic substrates also exist in human epilepsy is not known.

Methods: We studied 2 separate groups of patients with focal epilepsies arising from any cortical
location using either simultaneous EEG-fMRI (n � 19 patients) or [11C]flumazenil PET (n � 18).

Results: Time-locked with the interictal epileptiform discharges, we found significant hemody-
namic increases common to all patients near the frontal piriform cortex ipsilateral to the pre-
sumed cortical focus. GABAA receptor binding in the same area was reduced in patients with
more frequent seizures.

Conclusions: Our findings of cerebral blood flow and GABAergic changes, irrespective of where
interictal or ictal activity occurs in the cortex, suggest that this area of the human primary olfac-
tory cortex may be an attractive new target for epilepsy therapy, including neurosurgery, electri-
cal stimulation, and focal drug delivery. Neurology® 2011;77:904–910

GLOSSARY
BOLD � blood oxygen level–dependent; FMZ � flumazenil; FMZ-VT � flumazenil volume of distribution; GABA �

�-aminobutyric acid; ICBM � International Consortium for Brain Mapping; IED � interictal epileptiform discharge; MNI �

Montreal Neurological Institute; SPM � statistical parametric mapping.

Experimental evidence from animal models indicates that, independent of seizure induction,
certain subcortical anatomic circuits act as critical modulators of seizure generation and propa-
gation.1–5 Although epileptic seizures may result from a broad array of brain insults involving
various brain areas, seizure activity does not spread diffusely throughout the brain but propa-
gates along specific anatomic pathways.1– 4 During focal cortical seizure activity, specific
cortical-subcortical circuits contribute to sustaining and propagating the seizure discharge.
Experiments in animal models have identified specific brain regions such as the substantia nigra
and the deep anterior piriform cortex as important for controlling the initiation or propagation
of both generalized and focal seizure activity.4,6–9 In rat and monkey, a discrete site within the
deep piriform (primary olfactory) cortex, termed area tempestas or ventrostriatal anterior
piriform cortex, is critical for modulating focal seizures.4,10 However, there is little experi-
mental evidence to translate these observations to the human situation.11 Recent observa-
tions with deep brain stimulation in a variety of subcortical structures in patients with
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epilepsy12 suggest that cortical-subcortical
circuits have the potential to be harnessed
for therapeutic benefit.

We performed EEG combined with simul-
taneous fMRI in a group of patients with fo-
cal epilepsies arising from a wide variety of
cortical locations to test whether specific interic-
tal epileptiform discharge (IED)–correlated he-
modynamic changes occur within the human
equivalent of the area tempestas. Furthermore,
in another group of patients with extratemporal
epilepsy syndromes, we used 11C-labeled fluma-
zenil (FMZ) PET to assess seizure-related meta-
bolic �-aminobutyric acid (GABA)–mediated
changes within this region.

METHODS Standard protocol approvals, registra-
tions, and patient consents. The study was approved by the
joint ethics committee of the National Hospital for Neurology
and Neurosurgery and University College London Institute
of Neurology, London, UK. Subjects gave informed, written
consent.

Patients. Sixty-three patients with focal epilepsy underwent
EEG-fMRI, after which IEDs were correlated with the fMRI
data in an event-related fashion.11 Because IEDs occur spontane-
ously and unpredictably, the number of events captured varied
widely across patients. To ensure the validity of the group analysis
described below, i.e., to avoid any violation of homoscedasticity im-
plicit in the loss of balance at the first level, it was mandatory only to
include patients with a similar number of IEDs during fMRI data
acquisition.12,13 Consequently, of the 63 patients with focal epilepsy,
those with a spiking rate in the midrange level of activity in the
group (between 1 and 20 IEDs/min) were selected, giving 19 pa-
tients (10 female; mean age 38 years, range 25–67 years) for the
group analysis (for patient demographics, see table e-1a on
the Neurology® Web site at www.neurology.org).

A different patient group was studied with [11C]FMZ PET:
18 patients (7 female; mean age 27 years, range 18–47 years)
with MRI reported as normal by an experienced neuroradiolo-
gist were recruited (table e-1b). All of these subjects had focal or
secondarily generalized seizures. Patients were excluded from the
study if they were taking benzodiazepines. A group of 24 healthy
subjects (3 female) of similar age (mean age 31 years, range
20–51 years), who had no evidence of a neurologic disorder and
were taking no medication, were studied. Consumption of alco-
hol was not allowed during 48 hours preceding the scan. Written
informed consent was obtained from all subjects, and approvals
from local ethical committees and the UK Administration of
Radioactive Substances Advisory Committee were obtained.

EEG and fMRI acquisition. Methods and results pertaining
to single-subject analyses have been reported elsewhere.13 In
summary, using magnetic resonance–compatible equipment, 10
EEG channels were recorded using the International 10–20 Sys-
tem and bipolar EKGs. Over 35 minutes, 704 T2*-weighted
single-shot gradient-echo echoplanar images (echo time � 40,
repetition time � 3,000, 21 slices, voxel size 3.75 � 3.75 � 5
mm3) were acquired continuously on a 1.5-T Horizon
EchoSpeed MRI scanner (General Electric, Milwaukee, WI).
Patients were asked to rest with their eyes shut and to keep their

head still. After removal of artifact on the in-scanner EEG, IEDs
were marked by 2 trained observers. fMRI data were prepro-
cessed and analyzed using statistical parametric mapping
(SPM).14 After the first 4 image volumes were discarded, the
echoplanar image time series was realigned and normalized
(Montreal Neurological Institute [MNI] template brain), and
images were spatially smoothed with a cubic Gaussian kernel
of 8 mm full-width at half-maximum. The 3 datasets of pa-
tients in whom the presumed electroclinical location of the
epileptic focus was right-sided were flipped along the x-axis
before normalization.

Spike-correlated EEG-fMRI group analysis. Onsets of
IEDs were used to build a linear model of effects of interest by
convolution with a canonical hemodynamic response function
(event-related design) and its temporal derivative to account for
variations in the blood oxygen level–dependent (BOLD) re-
sponse delay. Motion realignment parameters were modeled as a
confound.15 A single T-contrast image was generated per subject
from the first (single-subject) level, and the images were used in a
second-level analysis, to test for any common patterns across the
group of patients. A random-effects model was used to identify
any typical responses consistent across patients.16 We used this
approach to test the hypothesis of activation in the region of the
presumed area tempestas. Bilateral 0.7 � 1.4 � 1.4 cm search
volumes (totaling 2,744 mm3) were each centered between the
tip of the temporal pole and the orbitofrontal gyrus based on the
aneurysm case report of Mizobuchi et al.,17 and, in these regions,
fMRI signal changes were considered significant at p � 0.05
(family-wise error–corrected for multiple comparisons within
the search volume). In addition, positive responses were explored
across the whole brain at a significance threshold of p � 0.001
(uncorrected at the voxel level) to assess the presence of unspe-
cific effects, e.g., subthreshold bilateral, or covering the entire
region of interest or even beyond.

PET acquisition. The method has been described in detail
previously.18 In brief, scans were performed using an ECAT-
953B PET scanner (CTI/Siemens, Knoxville, TN) in
3-dimensional mode, with the septa retracted to improve sensi-
tivity. Scatter correction and attenuation correction were used in
reconstruction to produce images with a resolution of 4.8 �

4.8 � 5.2 mm. Images containing 31 contiguous slices were pro-
duced with voxel dimensions of 2.09 � 2.09 � 3.43 mm. High
specific activity [11C]FMZ tracer was injected IV. A dynamic
image sequence of 20 frames was acquired over 90 minutes.

FMZ PET data analysis. The derivation of an arterial plasma
input function was performed as described previously.19 Voxel-
by-voxel parametric images of FMZ volume of distribution
(FMZ-VT) were produced using spectral analysis.20 For group
analysis, 8 datasets were flipped about the anteroposterior axis to
ensure that the epileptogenic focus was on the same (left) side in
all patients. SPM was used for spatial transformations and statis-
tical analysis. First, all images were transformed into a standard
space. An in-house created FMZ-VT template that occupies the
standard stereotaxic space defined by the MNI/International
Consortium for Brain Mapping (ICBM) 152 templates as sup-
plied with SPM was right-left reversed (flipped), rigid-body
coregistered onto itself, and averaged using a soft mean, thus
creating a symmetric template approximating MNI/ICBM 152
space. Second, the images were smoothed using a (10 � 10 � 6
mm full-width at half-maximum) Gaussian kernel to reduce
high spatial frequency noise. Third, effects were estimated ac-
cording to the general linear model at every voxel. Global activity
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was included as a confounding covariate. Patients and normal
subjects were compared using a voxel-wise t test. To test hypoth-
eses about regionally specific effects, the estimates were com-
pared using linear contrasts. The resulting set of voxel values for
each contrast constituted a statistical parametric map of the t
statistic (SPM{t}). For the comparison of the patient and normal
groups, the SPM{t} was transformed to the unit normal distribu-
tion (SPM{Z}), and, because we had no a priori hypotheses with
regard to the regions to be examined, an uncorrected threshold
of p � 0.01 was subjected to a correction for multiple noninde-
pendent comparisons in terms of peak height (�), taking into
account the shape of the thresholded volume (spatial extent [�]
at p � 0.05), to allow the entire brain volume to be interro-
gated.14 For the analysis of correlation between FMZ-VT and
seizure frequency, the total number of seizures that occurred
during the month before the PET scan (as determined from
patients’ prospectively compiled diaries) was included in the
model in a voxel-wise linear regression. Effects were significant at
p � 0.05 corrected for multiple comparisons using both � and �

across the whole brain.14

RESULTS EEG-fMRI. We identified 19 patients
who had well-defined focal epilepsy syndromes (table
e-1a). We found a p � 0.05 (corrected for multiple
comparisons) correlation between IED occurrence
and BOLD increase common to all 19 patients (i.e.,
typical for the group studied with 1–20 IED/min) in
an area near the frontal piriform cortex (X, Y, Z �
�30, 6, �2, coordinates in Talairach space), on the
same side as the presumed cortical epileptic focus
(figure 1, table e-2).

[11C]FMZ PET. The 18 patients had significant in-
creases in FMZ-VT compared with that of the 24
control subjects in the ipsilateral putamen (z � 5.21)
and the contralateral putamen (z � 4.4) (figure 2).
These increases were apparent on a single-subject
level in 13 of 18 patients. No regions of decreased
FMZ-VT were found. For comparison with the
fMRI data, we analyzed the data to look for regions

in which FMZ-VT correlated significantly with sei-
zure frequency, confining our attention only to those
regions identified in the first analysis. The lower the
FMZ-VT in the same area near the frontal piriform
cortex, the higher was the seizure frequency over the
preceding month (z � 3.97) (figure 3). This correla-
tion remained significant, even when the subject
with very frequent seizures (�70/month) was re-
moved. There were no significant correlations be-
tween increasing FMZ-VT and seizure frequency.

DISCUSSION Our study is unique for the following
2 reasons. 1) By averaging the imaging data across a
group of patients with different sites of seizure onset,
we were able to eliminate signal changes associated
with sites of seizure onset (which varied across the
patients) and selectively detect signal changes com-
mon to all patients. 2) In 2 independent datasets us-
ing 2 different imaging modalities, we identified an
area in the human piriform (primary olfactory) cor-
tex that was active in association with interictal EEG
spikes and where benzodiazepine-GABAA receptor
complex expression was reduced as seizure frequency
increased (figure 4). This region is located in close
proximity to the physiologically defined deep piri-
form cortex (area tempestas) from which convulsants
are known to initiate temporal lobe seizures,20,21 and
blockade of glutamate4,20 –22 or application of a
GABA agonist in this area22 reduces limbic motor
seizures in rodents and nonhuman primates.1

The piriform/primary olfactory cortex, because of its
unique intrinsic associative fiber system and its various
connections to and from other limbic nuclei,23–25 might
be part of an epileptic network that is pivotal in the
genesis of focal seizures, facilitating and intensifying the
spread of seizures from a focus in the hippocampus or

Figure 1 EEG-fMRI group analysis

Results of a second-level random-effects group analysis of 19 patients with focal epilepsy syndromes. For visualization,
consistent common activations (p � 0.001) are overlaid on axial slices of a mean T1-weighted template brain (X, Y, Z �

�30, 6, �2, coordinates in Montreal Neurological Institute space). The activation within the region of interest near the
presumed area tempestas was significant at p � 0.05 (family-wise error), when correcting for multiple comparisons across
the search region (2,744 mm3).
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other limbic sites to cortical and subcortical regions
along pathways that are also used in normal move-
ments.26–29 The deep piriform cortex is a site at which

unilateral microinjection of a GABA receptor antago-
nist or glutamate receptor agonists triggered limbic mo-
tor seizures in rats and nonhuman primates, whereas
enhancement of GABA-mediated mechanisms reduced
seizure activity. Before our study, there was no direct
evidence implicating the piriform cortex in the patho-
genesis of human epilepsy.

Our observed association of low FMZ-VT in the
human frontal piriform (primary olfactory) cortex
with increased seizure frequency is concordant with
findings in animal models of focal epilepsies.30,31

FMZ-VT is directly correlated with central benzodi-
azepine receptor density (Bmax) and hence may act as
an index of GABAA density. Postsynaptic increases in
the number of GABAA receptors underlying the in-
hibitory potentiation in the kindling model have
been described.32 Such an increase in available bind-
ing sites (Bmax) will lead to an increase in FMZ-VT.
Likewise, a recent study using the pilocarpine model
found presynaptic and postsynaptic changes of

Figure 2 Flumazenil PET group comparison

Regions of significantly increased flumazenil volume of distribution in 18 patients with fo-
cal epilepsy syndromes compared with those of 24 normal control subjects. The hot metal
color scale displays all voxels falling below p � 0.01 for display; increasing intensity corre-
sponds to increased significance.

Figure 3 Flumazenil PET correlational analysis

(Top row) Regions of increased flumazenil volume of distribution (VD) in 18 patients with focal epilepsy syndromes in a paramet-
ric analysis of patient data alone that showed reduced flumazenil binding with increased number of seizures per month (p � 0.05
corrected). (Bottom) Scattergraph of seizure frequency vs flumazenil volume of distribution at the voxel with a maximum z score
(indicated by � in the left panel).
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GABA transmission involving changes of GABAA re-
ceptor subunit composition.33 Thus, increased den-
sity or affinity of available receptors per neuron,
either on abnormal nerve cells or as an adaptive re-
sponse to the abnormal neuronal activity, may ex-
plain the observed increases of FMZ binding. If
increased FMZ-receptor binding reflects increased
GABAergic inhibition locally, the increased inhibi-
tion in this area would result in reduced cortical ex-
citability in the lobe of seizure origin. Thus, we can
speculate that the greater the increase in FMZ bind-
ing the fewer the seizures, as observed in this study.
Likewise, greater reductions of FMZ binding were
found as the interval since the last seizure got
shorter.34 This potential plasticity of receptors after
seizures is consistent with our observation of greater
reductions of FMZ binding as the seizure frequency
got higher. This observation holds true in particular
for patients with frequent seizures (�10/month)
(figure 4) but not necessarily for patients with very
few seizures, in whom PET scans were performed at
various intervals since the last seizure.

For group comparisons, the images of patients
with clear right-sided focus were right-left reversed
before normalization, making the focus appear on

the same side in all patients. We have previously care-
fully investigated the influence of such right-left re-
versals before spatial normalization, and we did not
find a difference in the statistical results.35 In both
fMRI and PET groups, few patients had bilateral or
no localizing features on MRI, EEG, or seizure semi-
ology, but wrong lateralization would only reduce
the likelihood of observing a unilateral (ipsilateral)
effect.

Our findings from combined hemodynamic and
neuroreceptor imaging studies support the concept
of a network of cortical and subcortical structures
modulating epileptiform activity. Our group analysis
will be less sensitive to IED-correlated BOLD signal
changes, reflecting potentially different irritative and
seizure-onset zones, but will highlight common fea-
tures (typical effects) in a group of patients. Despite
exhibiting disparate sites of seizure foci, the patients
in our study shared a common region of discharge-
correlated activity. We restricted our analyses to
EEG-fMRI studies with 1–20 IED/min. This en-
abled us to make valid inferences at the group level
using a 2-stage procedure but limited the group size
to 19 patients.36 Violations of homoscedasticity im-
plicit in the loss of balance at the first level can make

Figure 4 Combined EEG-fMRI/PET results

Clusters around the peak voxels for EEG-fMRI group analysis (yellow) and correlation between flumazenil binding and
seizure frequency (blue) are superimposed on a T1 template. ce � capsula externa; ci � capsula interna; Cl � claustrum;
CN � caudate nucleus; fPC � frontal piriform cortex; GP � globus pallidus; IC � insular cortex; oc � optic chiasm; Pu �

putamen; tPC � temporal piriform cortex.
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the second-level inference less efficient but would not
bias or invalidate it.37

At the single-subject level, there may be other ar-
eas fulfilling such a role, which failed to reach signif-
icance as a result of group averaging. Interestingly,
recent PET studies have suggested that increased
FMZ binding in one of these areas, the retroventricu-
lar area (table e-2), is predictive of poor surgical out-
come.38 Although there is likely to be considerable
individual variability in potential epileptogenic net-
works, some areas are common to all networks and
may be potential target areas for new therapeutic ap-
proaches. Our findings support an understanding of
epilepsy moving on from the traditional zone con-
cept to that of a network theory.39,40
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Editor’s Note to Authors and Readers: Levels of Evidence in Neurology®

Effective January 15, 2009, authors submitting Articles or Clinical/Scientific Notes to Neurology®

that report on clinical therapeutic studies must state the study type, the primary research ques-
tion(s), and the classification of level of evidence assigned to each question based on the AAN
classification scheme requirements. While the authors will initially assign a level of evidence, the
final level will be adjudicated by an independent team prior to publication. Ultimately, these levels
can be translated into classes of recommendations for clinical care. For more information, please
access the articles and the editorial on the use of classification of levels of evidence published in
Neurology.1-3
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