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Abstract
Purpose—To quantify the morphological features of the optic nerve head using radial
polynomials, to use these morphometric models as the basis for classification of glaucomatous
optic neuropathy glaucomatous optic neuropathy via an automated decision tree induction
algorithm, and to compare these classification results with established methods.

Methods—A cohort of patients with high-risk ocular hypertension or early glaucoma (n = 179)
and a second cohort of normal subjects (n = 96) were evaluated for glaucomatous optic neuropathy
using stereographic disc photography and confocal scanning laser tomography. Morphological
features of the optic nerve head region were modeled from the tomography data using pseudo-
Zernike radial polynomials and features derived from these models were used as the basis for
classification by a decision tree induction algorithm. Decision tree classification performance was
compared with expert classification of stereographic disc photos and analysis of neural retinal rim
thickness by Moorfields Regression Analysis (MRA).

Results—Root mean squared (RMS) error of the morphometric models decreased asymptotically
with additional polynomial coefficients, from 62 ± 0.5 μm (32 coefficients) to 32 ± 5.7 μm (256
coefficients). Optimal morphometric classification was derived from a subset of 64 total features
and had low sensitivity (69%), high specificity (88%), very good accuracy (80%), and area under
the ROC curve (AUROC) was 88% (95% CI = 78 to 98%). By comparison, MRA classification of
the same records had a comparatively poorer sensitivity (55%), but had higher specificity (95%),
with similar overall accuracy (78%) and AUROC curve, 83% (95 % CI = 70 to 96%).

Conclusions—Pseudo-Zernike radial polynomials provide a mathematically compact and
faithful morphological representation of the structural features of the optic nerve head. This
morphometric method of glaucomatous optic neuropathy classification has greater sensitivity, and
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similar overall classification performance (AUROC) when compared with classification by neural
retinal rim thickness by MRA in patients with high-risk ocular hypertension and early glaucoma.
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Introduction
In recent years, clinical imaging techniques such as confocal scanning laser tomography,
optical coherence tomography, and scanning laser polarimetry have played an increasingly
important role in the diagnosis and management of glaucoma.1-7 Each of these imaging
methods generates a great amount of data providing a precise, quantitative description of the
anatomical structural features of the optic nerve and surrounding neuroretinal tissues. Best
methods of analysis, interpretation, and display of the resulting information for the support
of clinical decision making are an area of active research and the motive for this study.

Detecting glaucomatous optic neuropathy based on morphological characteristics of the
optic nerve head is a challenge compounded by the wide spectrum of normal anatomical
variation seen in the optic nerve head. The difficulty of this task is even greater in patients
with early stages of disease and when examiners are without the benefit of longitudinal
observations. Several strategies have been developed by others to help address this
challenge. For example, neural networks and wavelet-Fourier analysis are two strategies that
have been used by others to improve detection of glaucomatous optic neuropathy from nerve
fiber layer thickness scans.8, 9 Bowd and colleagues have demonstrated the ability to detect
the signature features of glaucomatous optic neuropathy from measurements of the retinal
nerve fiber using Optical Coherence Tomography (OCT) imaging.10 Multivariate regression
analysis of the neuroretinal rim thickness, linear discriminant functions, and support vector
machines were each used with scanning laser tomography data to detect glaucomatous optic
neuropathy.11-13 Each of these strategies was devised to address a specific imaging
technique or a particular aspect of glaucoma.

In work closely related to this research, Swindale and colleagues modeled scanning laser
tomography measurements of the optic cup with a Gaussian template to derive a
morphological basis for the classification of glaucomatous optic neuropathy.14 While this
Gaussian model provides a good global description of the optic cup, this approach cannot
capture local structural features, e.g. notching of the neuroretinal rim or other locally
varying structural details associated with glaucomatous optic neuropathy. More flexible and
complex mathematical functions could, in theory, provide a better basis for the wide-ranging
and often locally varying structural features seen in normal and diseased optic nerves. We
hypothesized that modeling the optic nerve with more complex polynomials functions would
provide a better basis for structural classification of glaucomatous optic neuropathy.

In previous work involving different ocular structures, we have used a series of orthogonal
circular polynomials (Zernike polynomials) to successfully model the morphological
features of the cornea and then used these modeled features as input for a machine learning
classifier to detect keratoconus.15 Using an analogous strategy, the three objectives of this
research were (1) to use a related orthogonal series of radial polynomials (pseudo-Zernike
polynomials) to quantitatively model the morphological features of the optic nerve head
from confocal scanning laser tomography data and then (2) use these morphometric models
as the basis for classification of normal and glaucomatous optic neuropathy by machine
learning methods, and finally, (3) to determine the classification performance of our
morphometric analysis with expert evaluation of stereographic disc photography and

Twa et al. Page 2

J Glaucoma. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Moorfields Regression Analysis in patients with high-risk ocular hypertension and early
glaucoma.

Methods
Subjects

A total of 275 subjects were recruited from the Portland, Oregon metropolitan area as
participants in the Perimetry and Psychophysics in Glaucoma Study (Discoveries in Sight
clinical research facility, Legacy Health Systems, Portland, OR). All subjects underwent a
full ophthalmologic eye examination that included visual field testing–Humphrey Field
Analyzer II, 24-2 test procedure with the SITA Standard or Full Threshold test strategy. In
one cohort (n = 179), subjects included individuals with high-risk ocular hypertension
(bilateral untreated intraocular pressure ≥ 22 mmHg) as well as individuals with early
glaucoma (Mean Deviation [MD] −6 dB or better). Subjects were required to have one or
more additional risk factors for glaucoma, or for disease progression listed as inclusion
criteria in Table 1.16 Additional details regarding these subjects are described in previous
publications.17 A second cohort of normal subjects (n = 96) were combined with these high-
risk subjects to form the total study sample. Participants from this normal group were
excluded if they had any signs of glaucomatous optic neuropathy or an abnormal visual field
assessed by standard automated perimetry, Table 1. This research conformed to the tenets of
the Declarations of Helsinki; all participants provided informed consent as participants in
the primary study, the Perimetry and Psychophysics in Glaucoma study, which was
approved by the Legacy Health System Institutional Review Board (IRB).

Subjects received both stereographic disc photography (model 3-Dx; Nidek, Fremont, CA)
and confocal scanning laser tomography examinations (HRT 1.0, Heidelberg Engineering,
Vista, CA) less than 30 days apart. Two fellowship-trained glaucoma specialists
independently graded the stereo disc photos as described previously, 17 noting any signs of
glaucomatous optic neuropathy such as a cup-disc ratio asymmetry > 0.2, global or localized
neuroretinal rim thinning, sectoral nerve fiber bundle defects, narrowing, or disc
hemorrhage. Any disagreements between examiners were adjudicated by a third expert
examiner. The final categorical assignments of Normal and glaucomatous optic neuropathy
served as the reference standard for comparisons with other classification methods.

Confocal scanning laser tomography was performed by an experienced ophthalmic
technician using the HRT (Heidelberg Engineering, GmbH, Vista, CA, USA). A minimum
of three scans were taken with a 10° field centered on the optic disc. Images were corrected
for astigmatism >1D and corneal magnification due to corneal curvature. Contour lines
outlining the disc margin were drawn by experienced examiners while simultaneously
viewing stereoscopic photographs of the disc to enable classification using Moorfields
Regression Analysis.11 The numeric topographical data were exported and processed for
further analysis as described below.

Morphometric Modeling with Radial Polynomials
The morphological features of the optic disc that we measured using confocal scanning laser
tomography were mathematically modeled with pseudo-Zernike polynomials.18 Like the
more familiar and related Zernike polynomials, each of the circular, radially symmetric
orthogonal geometric modes are combined in varying proportions to model arbitrarily
complex surfaces—in this case the morphological features of the optic disc. The polynomial
modes are scaled to unit variance over a unit circle. Thus, each individual polynomial
coefficient provides independent and proportional information about the contribution of its
related mode to the overall fitted surface.19 For the interested reader, additional details
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regarding the mathematical properties of these polynomials and their use can be found
elsewhere.19, 20

One eye from each subject was randomly selected to evaluate the fidelity of the calculated
morphological models (RMS error) and the computational time associated with increasing
model complexity. For each record, the HRT elevation data array was centered on the optic
disc and cropped to a maximum diameter of 2.1 mm.21, 22 This was sufficient to capture the
entire optic nerve head and a small portion of the adjacent peripapillary tissue.23, 24 All left
eye data were reflected about the central vertical axis to represent mirror symmetric right
eyes allowing us to combine right and left eye data for subsequent statistical analysis. We
computed a number of different morphological models for each record using custom
routines written in MatLab (Natik, MA), varying the model complexity from 16 to 256 total
polynomial coefficients.

Morphological Classification
The confocal scanning laser tomography data from the fellow eyes, which were not used in
the modeling experiments described above, were fit with a pseudo-Zernike polynomial (64
coefficients). These morphological models were then used to develop and test the
performance of a machine learning classifier designed to differentiate normal and
glaucomatous optic disc morphology. These data were divided into training (75%; n =
206/275) and testing (25%; n = 69/275) partitions that were stratified such that the number
of normal and glaucomatous eyes were proportional to the total sample, Figure 1. The
training data partition was used to develop and validate the performance of the decision tree
classifier using conventional 10-fold cross-validation techniques.25 The testing data partition
was held-out to evaluate the performance of the final best classifier.

The individual pseudo-Zernike mode coefficients were selected as numeric input features for
the C4.5 decision tree induction algorithm (Weka data mining suite v 3.5.2).26 Based on the
morphological input features provided, the algorithm was used to quantitatively derive the
best subset of features necessary to distinguish between the two categorical classes of
interest: Normal and glaucomatous optic neuropathy. An example of the conditional
classification rules that are the output of this algorithm is shown in Figure 2.27, 28 In separate
experiments not presented here,29 we systematically evaluated the required morphological
model resolution and any user-specified decision tree algorithm parameters in order to
maximize decision tree classification performance using area underneath the ROC curve
(AUROC) as the criterion. Decision tree classification performance was optimal when optic
disc morphology was modeled with 64 pseudo-Zernike coefficients; we therefore used these
models in all subsequent classification experiments. As shown in Figure 3 and in detail
elsewhere,29 this morphological representation of the raw tomography data had consistently
greater ROC curve area when compared to models generated with 32, 128 or 256
polynomials.

Classification Comparisons
During the development phase, the training data partition was used to estimate classification
performance measures such as sensitivity, specificity, accuracy, and area underneath the
ROC curve. These metrics are reported as the mean of multiple iterations from the 10-fold
cross-validation. During the test phase, the optimal decision tree structure derived from
training was used to classify data from the previously unused test data partition.
Classification performance of the optimal decision tree model was compared against
Moorfields Regression Analysis. To make comparisons between the binary decision tree
classifier and Moorfields Regression Analysis, we combined the Borderline and Outside
Normal Limits categories forming a single glaucomatous optic neuropathy class to create a
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binary classifier. Area underneath the ROC curves were estimated using a binormal
assumption with Stata v. 11.0 (College Station, TX).

To visualize the structural features that differed between the two categories and to better
discern the morphological basis for classification of glaucomatous optic neuropathy, we
constructed a morphological surface from the pseudo-Zernike coefficients that was
representative of each patient category. This was done by setting the model coefficients
equal to values from the decision tree along with the remaining coefficients proportional to
the median values representative of each class, either normal or glaucomatous optic
neuropathy. This visualization provides an intuitive way to visualize and graphically
interpret the quantitative morphological differences observed between the two patient
categories studied.

Results
The subjects evaluated in this study were predominantly female (60%) and white (83%).
The average age of these subjects was 57 ± 13 years. Classification of the 275 eyes by
expert examiners using stereographic disc photography resulted in a total of 163 eyes with
normal optic discs (59%) and 112 eyes (41%) with glaucomatous optic neuropathy. With
some exceptions, visual function in both groups of subjects was normal when measured by
standard automated perimetry. The distribution of visual field Mean Deviation when
subjects were grouped by stereographic disc photography classifications was not statistically
different at the p < .05 level (Mann-Whitney test, p = .05). The median and inter-quartile
range for the Normal group was +0.96 (IQR = +0.13 to +1.71 dB) and for the glaucomatous
optic neuropathy group was +0.64 (IQR = −0.40 to +1.55 dB).

Morphometric Modeling
Modeling the morphological features of the optic disc from confocal scanning laser
tomography elevation data with pseudo-Zernike polynomials was computationally intensive.
The time required to compute the coefficients for these polynomial models using our
customized algorithms increased linearly as a function of the number of computed
coefficients (increasing model complexity). The time required to compute the 32 coefficient
morphological model was 5 ± 0.5 s, 64 coefficients required 11±1.0 s and 256 coefficients
took 61 ± 5.7 s. A representative example comparing the raw tomography elevation data to a
64 coefficient morphometric model along with the stereographic disc photo is shown in
Figure 4. The Moorfields Regression Analysis category for this eye was “Within Normal
Limits.” The full report for this case is provided as supplemental content online (Figure
MRA 1, Supplemental Digital Content 1). The residual model error decreased
asymptotically as additional coefficients were included in the morphometric model. The
RMS error of the 64 coefficient pseudo-Zernike model was 51±1μm. While the model error
was reduced to 32±5 μm with 256 coefficients, the computational time increased greatly.

Morphological Classification
The best decision tree classification performance was the product of a compact decision tree
structure that included a total of 3 pseudo-Zernike polynomial coefficients. The resulting
decision tree is shown in Figure 2. The first geometric mode, C0, is a plane whose elevation
corresponds to the mean height of the optic disc and surrounding peripapillary tissue and is
related to the diameter and depth of the cup. Thus, applying the rule from the first branch of
the decision tree (Figure 2), a mean surface height less than 181 μm could differentiate 79%
(96/121) of all eyes with normal optic discs in this training sample. Knowing the value of
two additional polynomial modes (C60 and C62) helped to further separate eyes with
glaucomatous optic neuropathy from the remaining eyes with normal optic discs.
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Classification Comparisons
Repeated trials with 10-fold cross validation on the training data provided initial estimates of
classification performance as well as the variability of those estimates (mean ± SD):
accuracy was 84 ± 15% and ROC curve area was 85 ± 15%. Final performance of the
optimal decision tree classifier was determined using the previously unseen test data
partition. Final classification performance on the test data partition was consistent with
estimates from the training data and is summarized in Table 2: accuracy was 80% and ROC
curve area was 88% (95% CI = 78 to 98%); which was not statistically different from the
training performance estimates (t-test; p>.05). This indicates that the training and testing
data partitions were representative of one another and the sampling methods used to
partition the data were fair. Sensitivity of this classification method on these data was 53.3%
at 95% specificity. Agreement with the stereo disc grading standard was estimated using the
Kappa statistic (0.58, p < .001).

Classification performance of these data using Moorfields Regression Analysis was
performed for the same test data described above, Table 3. There were a total of 15
disagreements between the photographic and Moorfields Regression Analysis classification
methods—13 false negative and 2 false positive cases (accuracy = 78%). Using stereo disc
photography as the standard, Moorfields Regression Analysis had poorer sensitivity in our
test sample, 55% (16 of 29 eyes correctly identified as glaucomatous optic neuropathy) and
excellent specificity; 95% (38 of 40 eyes correctly identified as normal optic discs).
Sensitivity of the Moorfields Regression Analysis classification method on these data was
19.9% at 95% specificity. Agreement with stereo disc grading was estimated using the
Kappa statistic (0.55, p < .001).

A comparison of the ROC curve area for our morphometric classification method and
Moorfields Regression Analysis is shown in Figure 5. The ROC curve area for the
Moorfields Regression Analysis was 83% (95% CI = 70 to 96%). The ROC curve area for
our morphometric classification method was 88% (95% CI = 78 to 98%); this difference was
not statistically significant (chi square; p =.10).

Classification Visualization
A contour map for each patient category (normal and glaucomatous optic neuropathy) was
constructed by combining the polynomial modes comprising the decision tree along with the
median values of the remaining polynomial modes for each respective subject category. The
constructed morphological model creates a representative visualization for each patient
category. The resulting contour map for each patient group is shown in Figure 6. Analogous
to the isometric contour lines of a geological topographic map, each contour line represents
a 50 μm change in elevation. These contour plots illustrate the common morphological
features that differentiate these two groups using these methods. Notable differences include
a larger area of deeper cupping (corresponding to C0), vertical ovalization of the cup, and
more steeply sloped walls (corresponding to the higher order terms of the model C60 and
C62) in the group classified as glaucomatous optic neuropathy.

Discussion
Although structural features associated with glaucomatous optic neuropathy do not always
precede loss of visual function, it has been reported that this is frequently the case.30-33 This
observation motivated our efforts to seek a morphological basis for the classification of
glaucomatous optic neuropathy. Our results demonstrate the evaluation of a novel shape-
based method to classify glaucomatous optic neuropathy in a population of patients at high-
risk for glaucomatous optic neuropathy or with early disease.
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This study had limited racial diversity and was primarily white. The Ocular Hypertension
Treatment Study demonstrated that different racial groups are associated with different
anatomical structural characteristics, e.g. larger discs were observed in patients of African
American or Hispanic ethnicity.34, 35 It is not known how this classification strategy would
perform using a different ethnic sample of patients or with patients that have established
glaucoma. We would expect that patients with established glaucoma would show even better
sensitivity by this method.

By design, the subjects evaluated in this study were especially challenging and particularly
well suited for testing methods to distinguish eyes with normal optic discs from those with
early glaucomatous optic neuropathy that differ only by structural features. Most of the
subjects evaluated in this study had little to no visual field loss identifiable by standard
automated perimetry. This is in contrast to the work by Swindale and colleagues who
contrasted the morphological characteristics of normal patients with others who had
confirmed visual field defects caused by glaucoma that were more extensive. It would be
interesting to compare these two different morphological modeling methods on a common
dataset, especially one that represents the full range of early and late-stage glaucomatous
optic neuropathy. Our intentions in this study were to compare our approach with methods
that are clinically familiar and widely accessible (e.g. Moorfields Regression
Aglobalnalysis). As expected, our patients who were relatively mild on the disease spectrum
challenged the sensitivity of our morphological methods of classification as well as the
Moorfields Regression Analysis. Our decision tree approach had similar overall accuracy
and total AUROC, but had greater sensitivity. Moorfields Regression Analysis on this same
sample had high specificity, but comparatively poorer sensitivity; the majority of errors were
false-negative classifications (13/15 errors). These classification methods are not based upon
the same features and are therefore providing fundamentally different information.
Moorfields Regression Analysis is based on a multivariate regression analysis of the neural
retinal rim thickness. In contrast, our method captures both global and local morphological
features of glaucomatous optic neuropathy in addition to features of the neural retinal rim
including disc size, depth, cup shape (e.g. vertical ovalization), and slope of the cup wall.
We find that these additional features appear to be important for correct classification of
early glaucomatous optic neuropathy.

Our use of radial polynomial modes as a surrogate morphological classification feature is
one of the primary contributions of this work. In this research, we have extended the use of
radial polynomial functions that are widely used for other purposes in vision science, e.g. to
model the structural features of optical wavefront aberrations, or the anatomical features of
the corneal surface. Using a polynomial series related to the familiar Zernike polynomials,
we show that pseudo-Zernike polynomials capture morphological features of the optic disc
with good fidelity. Moreover, we show that this modeling method provides a compact
representation of those features and preserves the structural details needed to discern the
features of early glaucomatous optic neuropathy. Although we fit the data at varying levels
of resolution, from low (32 polynomial coefficients) to high resolution (up to 256
coefficients), the model complexity required to produce the best basis for classification was
relatively low—64 total coefficients (Figure 3). This is advantageous as the computational
time required to generate these polynomial coefficients can be considerable and having too
many may make their use impractical. While most eyes could be modeled with good
fidelity, in a few cases, these polynomial models had high RMS error (> 50 μm), Figure 7.
The Moorfields Regression Analysis associated with the case presented in Figure 7
classified this eye as “Borderline” and the full report is provided as Supplemental Digital
Content (Figure MRA2, Supplemental Digital Content 2). The common pattern observed in
these eyes was a very high elevation gradient at the edge of the optic cup. Without
exception, these eyes were glaucomatous and had a steeply sloped cup margin that was not
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well fit by the polynomial models. While we did not include RMS error as a candidate
feature for the basis of classification, these high gradients and localized RMS errors may
also be useful for disease detection.

This observation also points out a limitation of our morphological modeling approach.
Fitting the structural data with these pseudo-Zernike polynomials results in greater detail
and less residual error than fitting the data with a uniform Gaussian, nevertheless, it still
results in some smoothing of the data and this loss of detail may sacrifice some information
needed for optimal classification. This was in part the reasoning behind our use of models
with multiple levels of resolution (e.g. 32-256 polynomial coefficients). The lack of
improvement in classification accuracy with higher-order models suggests that additional
coefficients were not providing additional useful information, but were adding significantly
to the computational burden.

Modeling the anatomical features of the optic nerve with radial polynomials has another
important purpose: to expose the morphological features of the optic nerve for use by
machine learning methods. Most previous methods have used traditional summary data (e.g.
cup/disc ratio, disc area, cup volume, etc.) or combinations of these summary indices as
input for machine classifiers.12, 36 Our morphological modeling methods permit us to use a
compact and faithful representation of the raw instrument data while preserving relevant
details.

The modeled morphological features produced a decision tree that is compact, requiring
only three polynomial coefficients, and is easily interpreted as a series of conditional logical
tests of these three attributes. The first attribute, C0, corresponds to the mean height of optic
disc. It is more difficult to assign any direct anatomical correspondence to the higher order
modes of the morphological model. A fundamental property of these polynomials is that the
profile of the center of the mode becomes less complex for terms that have higher angular
frequency, e.g. C62. Thus, modes with lower angular frequency, e.g. C60 will have a greater
gradient magnitude near the center when compared with C62. Conversely, C62 will have a
greater peripheral gradient magnitude by comparison. Lower coefficients will therefore be
associated with steeper cup walls at varying diameters. These observations are consistent
with greater negative coefficient values associated with the glaucomatous optic neuropathy
as predicted by the decision tree classifier. When these polynomial modes are combined
with the median class attributes (Figure 6), the resulting contour surfaces show several
characteristics typical of glaucomatous optic neuropathy. The contour surface of the normal
category has a relatively smaller and shallower depression of the optic cup, with more gently
sloping walls. This is evident by comparing the contour plots provided in Figure 6 where
each contour line represents an increment of 50 μm change in depth. Also apparent is the
difference in the degree of vertical ovalization of the cup. The normal category has contour
lines that reveal a horizontally oriented elliptical shape and the glaucomatous optic
neuropathy category has a distinctly vertically oriented elliptical shape. While these
differences help discriminate between these two patient groups on a cross-sectional basis,
how these same features evolve with disease onset and progression is the subject of ongoing
work.

The decision tree classification approach that we employed is one of many supervised
learning methods, which depend on training data that have been separately categorized
based upon prior knowledge. We chose expert classification of stereographic disc
photography as the classification standard for this study since it is arguably the most
relevant comparison and the most widely used clinical standard for evaluation of structural
change associated with glaucomatous optic neuropathy.17, 33, 37-41 A common limitation of
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such supervised learning methods is that classification performance is limited to the
agreement with the selected standard.

Swindale and colleagues have shown by different methods and in patients with disease
defined by confirmed visual field loss, that several of the same features we have shown are
important for correct classification of glaucomatous optic neuropathy.14 In their work, they
modeled confocal scanning laser tomography data, but used a model based a priori on a two-
dimensional Gaussian surface. Similar to what we show, they found that horizontal and
vertical curvature in the peripapillary region helped to discriminate between normal and
glaucomatous eyes respectively. They also found that steepness of the cup wall, e.g.
curvature gradient in the cup was a useful discriminating feature. They further suggested the
need to characterize additional features not captured by their Gaussian-based model as we
have tried to do in this research. They suggested that local features such as cup excavations
or rim notching might be useful discriminating features and this is part of what we attempted
to address in our research. Unlike the methods of Swindale and colleagues, the decision tree
classification method we describe has no assumed morphological model of the
glaucomatous optic disc. It is derived from the data, and is therefore easily capable of
incorporating a wide range of variant morphological characteristics into the definition of
normal and diseased eyes. While our modeling methods may capture additional features,
abrupt discontinuities in the data caused by distinctly local features (e.g. steep cup wall
gradients) still prove difficult for our current methods. It may be possible to modify our
approach and develop specific modeling methods capable of representing local anomalies
better, however, as we tune our methods preferentially detect local features it will be more
challenging to separate subtle local anatomical features from natural anatomical variation.

In an approach similar to ours, Artes and colleagues fit confocal scanning laser tomography
data from 51 normal and 85 glaucoma patients with as many as 256 Zernike polynomials to
model the optic nerve head features and then classified patients using two different machine
learning methods.42 They used multilayer perceptrons (MLP) and support vector machines
(SVM) to classify their data. Their reported accuracy for the MLP was 74% and SVM was
87%. They too evaluated several levels of model resolution, but unlike our findings, they
found that more polynomial coefficients were required to achieve best classification
performance (47 polynomial terms). Consistent with our findings, they also reported that
additional coefficients resulted in lower overall classification accuracy (87% with 47 terms,
79% with 254 terms). There is a point at which increasing the number of terms in the
polynomial model contributes no additional information and therefore no improvement in
the ability to separate these two patient categories. The magnitude of higher-order
polynomials asymptotically declines and their variability increases with increasing model
complexity. Our results demonstrate that a 7th order polynomial fit captures much of the
fundamental difference between these two groups. It is possible that our use of pseudo-
Zernike polynomials explains the fewer number of coefficients that were required with our
modeling methods. An additional advantage of our approach is that the use of a decision tree
classifier permits the user to easily visualize the basis for categorical assignments as
opposed to other black-box machine learning methods like neural networks and support-
vector machines.

Decision trees provide a non-parametric means of partitioning the data into discrete
categories that produces an easily interpretable set of rules for classification. Alternative
machine-learning-based methods of classification exist that may offer better classification
performance. The tradeoff of these alternative approaches is that they often sacrifice
interpretability for improved classification performance. For example, meta-classifiers (e.g.
boosting and bagging techniques) that can be used in combination with traditional decision
tree algorithms, parametric decision trees, support vector machines and other techniques
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may provide greater classification performance, but provide little to no insight for the user
about how or why a particular case was classified as it was. Using support vector machines
and neural networks, Artes and colleagues reported similar classification performance
compared to what we show here, but these methods do not permit clinicians to know the
basis of classification assignments by these methods, e.g. what features contributed to the
resulting categories. The accuracy of our current methods may be improved upon by using a
combination of ensemble techniques known as boosting and bagging.43 We have previously
used these ensemble techniques to improve decision tree performance for keratoconus
detection.44 While this decision tree classification method permits cross-sectional
classification of data it may also be adapted for longitudinal analysis and this is the subject
of ongoing research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustration of how the classification data were managed (□ = Glaucoma, ○ =Normal). The
total sample was divided into training and test subsets (75% / 25%). The Training data
(n=206/275) were further stratified into 10 equal partitions. Nine partitions were used to
induce a classification tree while the 10th partition (validation) was held-out to evaluation
performance of the induced decision tree. For each of 10 iterations, the validation partition
was swapped with a new partition and another decision tree was induced and then validated.
The final best classifier was then evaluated on the previously unused test subset (n =
69/275).
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Figure 2.
Decision tree structure is comprised of branches, nodes and leaves. Each node is an
individual polynomial coefficient hierarchically selected as the most relevant attribute for
separating the two categories of interest. Branches of the decision tree represent a
conditional test upon the value of each attribute at that node. Leaves correspond to the
terminal nodes containing individual records that are given a single classification label, e.g.
G = glaucoma, N = normal. A leaf with mixed class representation is labeled with the
majority class and a breakdown of the number of subjects from each group is given, e.g. (33
G/N 7) where 33 subjects were correctly labeled as glaucoma and 7 were false positive
errors.
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Figure 3.
Plot of classification performance (ROC curve area) as a function of model complexity
(minimum number of objects per node. Better classification (larger AUROC) is achieved
with a total of 64 polynomial coefficients. Likewise, a more complex decision tree with
many branches (fewer objects per node) does not produce the best classification
performance. PZ-## = pseudo-Zernike model with the corresponding number of polynomial
coefficients.
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Figure 4.
Example of pseudo-Zernike model of the optic disc data; stereographic disc photo (A); raw
elevation data of the confocal scanning laser tomography examination (B); pseudo-Zernike
model of the elevation data using a total of 64 polynomial coefficients (C). The RMS error
of this fit was 31 μm.
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Figure 5.
Receiver Operator Characteristic Curves for the two classification methods evaluated: a
decision tree classifier developed from a pseudo-Zernike model with 64 coefficients (PZ64)
and Moorfields Regression Analysis (MRA). Area under the ROC curve (AUROC) is given
in the legend.
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Figure 6.
Visualization of the classification attributes modeled with 64 pseudo-Zernike coefficients by
patient category. Isometric contour lines are separated by 50 μm increments in both plots.
These models were constructed from the median attributes of the representative class as
assigned by the decision tree classifier. Eyes categorized as normal (A) had
characteristically shallow contour with a horizontally oriented elliptical shape. In contrast,
the eyes classified as Glaucomatous optic neuropathy (B) had a larger, deeper, and more
steeply contoured peripapillary region. In contrast to the normal class, this model of
glaucomatous optic neuropathy demonstrates vertical ovalization
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Figure 7.
Sample of an optic disc with high RMS error (RMSE = 76 μm); stereographic disc photo
(A) and raw elevation data (B) show a relatively large optic disc with deep cup and steeply
sloped walls. The third panel (C) shows the pseudo-Zernike fit to the raw data. Some visible
fitting errors are evident within the optic cup. The final panel (D) shows the spatial
distribution of the residual error between the raw data (B) and the pseudo-Zernike model
(C). The majority of errors with high magnitude occur near the disc margin where the
gradient magnitude is greatest.
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Table 1

Subject Inclusion and Exclusion

Inclusion Criteria for High-Risk Ocular Hypertension and Early Glaucoma Cohort*

  History of glaucoma treatment

  History of migraine

  Reynaud’s syndrome or vasospasm

  African-American ancestry

  Age > 70 years

  History of systemic hypertension

  Diet-controlled diabetes

  Visual field loss (Abnormal GHT or PSD (p < .05%)), with Mean Deviation (MD) better than −6 dB
  at baseline.

Exclusion Criteria

  Other previous or current ocular pathology

  Previous ocular surgery (except successful cataract surgery)

  Prior neurological surgery or disease

  Visual acuity worse than 20/40 in either eye

  Refractive error worse than ±5.00 D sphere and 2.00 D cylinder

  Diabetes requiring medication

Additional Exclusion Criteria for Normal Comparison Cohort

  Abnormal GHT test: SAP 24-2 program

  Cup-disc ratio asymmetry > 0.2

  Possible neuroretinal rim thinning, notching, narrowing

  Disc hemorrhage

*
Subjects in the High-Risk Ocular Hypertension and Early Glaucoma cohort were required to have one or more of the listed inclusion criteria.

GHT = Glaucoma Hemifield Test; PSD = Pattern Standard Deviation; SAP = standard automated threshold perimetry
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Table 2

Decision Tree Classification Performance

Decision Tree Class

Photo Class GON Normal Total

GON 20 9 29 Sensitivity = 20/29 = 69%

Normal 5 35 40 Specificity = 35/40 = 88%

Total 25 44 69 Accuracy = (20+35)/69 = 80%

Comparison of Classification Assignments by Stereographic Disc Photography (Photo Class) and Decision Tree Classification GON =
Glaucomatous Optic Neuropathy; AUROC = 88%; Kappa = 0.58. Sensitivity at 95% specificity was 50.3%.
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Table 3

Moorfields Regression Classification Performance

MRA Class

Photo Class GON Normal Total

GON 16 13 29 Sensitivity = 16/29 = 55%

Normal 2 38 40 Specificity = 38/40 = 95%

Total 18 51 69 Accuracy = (16+38)/69 = 78%

Comparison of Classification Assignments by Stereographic Disc Photography (Photo Class) and Moorfields Regression Analysis (MRA); GON =
Glaucomatous Optic Neuropathy; Borderline and Outside Normal Limits categories were combined to create binary MRA class assignments;
AUROC = 83%; Kappa = 0.53. Sensitivity at 95% specificity was 19.9%.

J Glaucoma. Author manuscript; available in PMC 2013 June 01.


