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The reuse of scientific knowledge obtained from one investigation in another investigation is
basic to the advance of science. Scientific investigations should therefore be recorded in ways
that promote the reuse of the knowledge they generate. The use of logical formalisms to
describe scientific knowledge has potential advantages in facilitating such reuse. Here, we pro-
pose a formal framework for using logical formalisms to promote reuse. We demonstrate the
utility of this framework by using it in a worked example from biology: demonstrating cycles
of investigation formalization [F ] and reuse [R] to generate new knowledge. We first used logic
to formally describe a Robot scientist investigation into yeast (Saccharomyces cerevisiae)
functional genomics [ f1]. With Robot scientists, unlike human scientists, the production of
comprehensive metadata about their investigations is a natural by-product of the way they
work. We then demonstrated how this formalism enabled the reuse of the research in
investigating yeast phenotypes [r1 ¼ R( f1)]. This investigation found that the removal of
non-essential enzymes generally resulted in enhanced growth. The phenotype investigation
was then formally described using the same logical formalism as the functional genomics
investigation [ f2 ¼ F(r1)]. We then demonstrated how this formalism enabled the reuse of
the phenotype investigation to investigate yeast systems-biology modelling [r2 ¼ R( f2)].
This investigation found that yeast flux-balance analysis models fail to predict the observed
changes in growth. Finally, the systems biology investigation was formalized for reuse in
future investigations [ f3 ¼ F(r2)]. These cycles of reuse are a model for the general reuse
of scientific knowledge.
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1. INTRODUCTION

1.1. The state-of-the-art in recording biological
research

Scientific research should be recorded with sufficient
detail and semantic clarity to enable the information
obtained from one investigation to be re-used in future
investigations. The traditional way of recording science,
based on the use of natural language, does not fully
promote reuse as it permits too much ambiguity [1–3].

There are now a growing number of domain-specific
data reporting standards for experimental data,
especially in biology. These ensure that common exper-
imental metadata are recorded, and partially deal with
the ambiguity of natural languages by using standard
taxonomies. The Minimum Information for Biological
and Biomedical Investigations (MIBBI) project pro-
vides a resource for the existing checklists and fosters
coordinated development [4]. These checklists are
intended to promote transparency in experimental
reporting, enhance accessibility to data and support
effective quality assessment, thereby increasing the
orrespondence (rdk@aber.ac.uk).
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value of a body of work. Often the terminology used
in checklists is supplied by a relevant ontology that for-
mally defines those terms. The Minimum Information
about a Microarray Experiment (MIAME) was the
original checklist [5], and the MGED Ontology pro-
vided definitions for the MIAME terms. There now
exists many other similar standards [6].

An important limitation of these standards is that
they are focused on the annotation of experimental
data for a specific domain. This results in both dupli-
cation of effort, and different standard representations
for the same piece of knowledge. Another important
limitation is that they are focused on the annotation
of experimental data, and they therefore do not pay
enough attention to the rest of the scientific process.
These limitations have led to the development of more
general ontologies to provide a framework for recording
not only experimental data with a limited set of associ-
ated metadata, but all essential information about
biological experiments. The EXPO (a generic ontology
of scientific experiments) ontology formalizes domain-
independent knowledge about the organization,
execution and analysis of scientific experiments [7].
The more recent OBI (the Ontology for Biomedical
This journal is q 2011 The Royal Society
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Investigations) project (http://obi-ontology.org) aims
to model the design of an investigation: the protocols, the
instrumentation, and materials used in experiments and
the data generated [8]. Ontologies such as EXPO and
OBI enable the recording of thewhole structure of scientific
investigations: howand whyan investigation was executed,
what conclusions were made, the basis for these con-
clusions, etc. As a result of these generic ontology
development efforts, the Minimum Information about a
Genotyping Experiment (MIGen) recommends the use of
terms defined in the Ontology for Biomedical Investi-
gations (OBI). If other checklists follow the same
approach—the use of a generic or a compliant ontology
to supply terms—then this will stimulate cross-disciplinary
data-sharing and reuse [9].

The desire to record as much detail about an investi-
gation as possible in order to make the investigation
more reproducible, and reusable, needs to be balanced
against the practicality of persuading scientists to actu-
ally record the details. It is these ‘human factors’ that
are in large part the reason for the restricted nature of
most existing reporting standards: they are a compro-
mise between what is reasonable to expect a working
scientist to record, and what one would ideally like to
record. It is hoped that, over time, the added value to
science of comprehensive data will alter the behaviour
of working scientists such that they will be prepared
to put greater effort into the formal reporting of scien-
tific investigations, and that better tools will be built
which more easily facilitate this recording process.
1.2. Robot scientists

The investigations described in this paper arose out of
research into the automation of scientific research. For
over 10 years we have been developing ‘Robot scientists’:
these are physically implemented computer/robotic sys-
tems that use techniques from artificial intelligence (AI)
to execute cycles of scientific experimentation [10].
A Robot scientist is designed to automatically originate
hypotheses to explain observations, devise experiments
to test these hypotheses, physically run the experiments
using laboratory robotics, interpret the results and then
repeat the cycle.

The development of Robot scientists is significant for
the reuse of scientific investigations because with Robot
scientists, unlike human ones, the production of com-
prehensive metadata about their investigations is a
natural by-product of the way they work. Everything
they do can be made explicit, and this enables all
aspects of a scientific investigation to be recorded, and
potentially re-used. This advantage of Robot scientists
over human ones makes the records of the science
they produce of higher quality and easier to re-use. It
also makes Robot scientists excellent test beds for the
development of new approaches to the recording and
reuse of scientific investigations.

We have recently developed the Robot scientist ‘Adam’
to automate yeast (Saccharomyces cerevisiae) functional
genomics investigations [11]. Adam’s hardware is designed
to execute high-throughput micro-batch growth exper-
iments using microtitre plates. Adam measures growth
curves (phenotypes) of selected microbial strains
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(genotypes) growing in defined media (environments).
Adam’s investigations are recorded in great detail
making them suitable for the testing of new approaches
to the recording and reuse of scientific investigations.

To demonstrate the full automation of a Robot scien-
tist, we programmed Adam to repeat the experiments of
our first, semi-automated, Robot scientist [10]. These
experiments concern the rediscovery of functional geno-
mics knowledge about the aromatic amino acid
biosynthesis pathway in S. cerevisiae. The comparison
between the previous gene-function prediction exper-
iments and those performed by Adam showed that
results for Adam were slightly better than the original
Robot scientist. This demonstrates that cycles of exper-
iment can be automated by a Robot scientist, and
confirms the first Robot scientist’s results.

We also applied Adam to the discovery of genes
encoding orphan enzymes in S. cerevisiae—enzymes
catalysing biochemical reactions believed to occur in
the yeast cell, but for which the gene encoding the rel-
evant enzyme has not been identified. Note that the
discovery of the genes encoding these enzymes is pre-
sumably particularly difficult, as decades of research
had not found them. Adam formulated and tested 20
hypotheses concerning genes encoding 13 orphan
enzymes. The weight of the experimental evidence for
the hypotheses varied, and 12 novel hypotheses were
confirmed with p , 0.05 for the null hypothesis. We
argue that Adam’s confirmation of these 12 hypotheses
it formed constitutes the first example of novel scientific
knowledge generated by a machine [11].
1.3. The laboratory ontology for Robot scientists

To formalize Adam’s functional genomics experiments,
we developed the LABORS ontology (LABoratory Ontol-
ogy for Robot Scientists) [11]. LABORS is a version of the
ontology EXPO [7] customized for Robot scientists. (For
clarity, below, we use italics for terms in the ontology
where appropriate.) In order to support a comprehensive
representation of scientific investigations, LABORS
defines various structural research units, e.g. trial, study,
cycle of study and replicate (see the definitions and expla-
nations in Qi et al. [12]). All aspects of the scientific
process (i.e. hypotheses formation, experiment planning
and analyses of results) have tobe consistently represented
in a form that can be processed by a robot. LABORS also
defines what is the most essential information about auto-
mated investigations, i.e. design strategy, plate layout,
expected results and actual results. (Robot scientists
could potentially record absolutely all information about
implemented investigations, i.e. all movements of the
robots. However, it is important to record only essential
information and in a structured way for further proces-
sing.) Finally, LABORS defines the concepts and
relations in the functional genomics data (e.g. optical
density readings and growth curves) and metadata (i.e.
temperature, humidity, time-stamp and investigator).

The application of an ontology to describe a particu-
lar scientific investigation results in a logical description
of that investigation. Philosophers generally agree that
scientific knowledge is best expressed using formal
logical languages [13]. The advantages of logic are of
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increasing practical importance as logic, and especially
description logic, are being used more frequently and
more to describe biological knowledge (e.g. [14]).

LABORS is expressed in the W3C standard Web
Ontology Language OWL-DL [15]—a form of descrip-
tion logic. LABORS uses EXPO as an upper level
ontology and OBO RO as a set of relations. The
instances of the classes are stored in a relational data-
base. LABORS is expressed in the W3C Semantic
Web Ontology Language OWL-DL. It has been checked
for logical consistency with the reasoner FaCTþþ.
Unfortunately, reasoners for description logic are still
inefficient. We therefore translated both LABORS
and the corresponding database into Datalog in order
to use the SWI-Prolog reasoner for required appli-
cations. Datalog enables search, querying, retrieval
and automated reasoning. We are continuing to investi-
gate the use of semantic web technology [16], i.e.
triplestore as an alternative to Datalog databases.
2. RESULTS

A major motivation for developing the formalization
used for Adam’s functional genomics investigations is
the expectation that its use should make an investi-
gation more easily re-usable. An ontology-based
formalization makes it possible to keep an accurate
track of all the result units used for different goals,
while preserving the semantics of all the experimental
entities involved in all the investigations. Therefore, it
is possible to safely reuse information without fear
that the meaning of the information will subtly
depend on the context in an undocumented way. In
addition, thanks to the comprehensive nature of the
formalism, it is possible to safely re-use the information
without fear that important information is missing. For
example, it is possible to check if two yeast strains were
grown under the same experimental conditions (temp-
erature, medium, etc.), and if the same methods were
used to calculate growth parameters, etc. Formalization
makes it easier to compare like with like, and decreases
the chance of the introduction of systematic error into a
new investigation based on reusing information from
another.

Below we propose a formal framework for using logi-
cal formalisms to promote reuse. We then demonstrate
the utility of this framework by employing it in a
worked example from biology: demonstrating cycles of
investigation formalization and reuse to generate new
knowledge.
2.1. A generic framework for the reuse of
investigations

We will refer to the process of formalization as F, and
we will denote particular instances of the formalism F
applied to particular investigations x and y as fx ¼
F(x), fy ¼ F(y), etc. We will denote the process of reus-
ing a particular investigation as R. Particular instances
of reuse R applied to a particular formalized investi-
gation represented as fi within another investigation
with different goals will be denoted as ri ¼ R( fi).
J. R. Soc. Interface (2011)
We propose the following formal generic framework
for formalizing the reuse of knowledge in scientific
investigations:

2.1.1. Formalization (F)

— There is a formalism F for recording the most essen-
tial components of a scientific investigation.

— There are domain-specific formalisms D1, D2, D3, . . .
that are compliant with F and that formalize
domain-specific entities.

— An investigation is recorded through the use of the
formalism F, and the corresponding domain-specific
formalisms Di, Dj, . . . . The formalisms F, Di, Dj, . . .
form a system of formalisms Ext(F).

— There is a set of completed investigations formali-
zed using the F-compliant formalisms Ext(F): f1,
f2, f3, . . . .

— There is a set of queries defined over the terms in
the formalisms Ext(F), Q(Ext(F)): q1, q2, q3, . . . .
These queries Q can be applied to the formalized
investigations f1, f2, f3, . . . .

2.1.2. Reuse (R)

— There is a new investigation i which has as one of
its objectives to re-use data and knowledge items from
the completed investigations formalized as f1, f2, f3, . . . .

— The objects, goals and hypotheses of the investi-
gation i are specified in the terms defined within
the formalism Ext(F).

— The entities used to compose the objectives, goals
and hypotheses of the investigation i are compared
with the entities used to compose the hypotheses
and results of the completed investigations, which
are recorded as Ext(F): f1, f2, f3, . . . . The matches
found M, if any, are output as M: m1, m2, m3, . . . .

— If there are not any matches M found, then reuse of
the previous investigation ri ¼ R( f1, f2, f3, . . .)
cannot be supported by the formalism Ext(F).

— Queries Q(M): q1, q2, q3, . . . are run over the set of
completed investigations which are formalized as
Ext(F): f1, f2, f3, . . .. The outputs of the queries
Q(M) provide knowledge items and data which can
be re-used ri ¼ R( f1, f2, f3, . . .) in order to achieve
the goals and objectives of the investigation i.

2.1.3. Formalization of reuse F(R)

— The investigation i which includes the reuse
ri ¼ R( f1, f2, f3, . . .) can be formalized with the
formalism Ext(F): fiþ1 ¼ F(r).

2.2. The formalization of cycles of reuse

It is possible to have cycles of formalizations and reuses.
For example, r1 ¼ R( f1) represents the reuse of formal-
ism f1. The investigation based on reuse of formalism f1
could then be formalized f2 ¼ F(r1). This formalization
could then be re-used r2 ¼ R( f2), ad infinitum. This
models cycles of formalization and reuse as a mutually
recursive process.
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Below we describe an example of cycles of formaliza-
tions and reuse, where LABORS serves as the formalism
F for recording the key components of scientific investi-
gations. The set of queries Q is defined by the list of
LABORS terms (plus instances of the classes defined in
LABORS and stored in a relational database), relations
between those terms and the syntax of the SWI-Prolog
inference engine that was used for querying. The full
logical representations of all the formalization may
be found at http://www.aber.ac.uk/en/cs/research/cb/
projects/robotscientist/results/.

This example of cycles of formalizations and reuse
demonstrates that LABORS is a suitable formalism to
support the reuse of scientific research results. The
described reuse investigations have generated new scien-
tific results, not through executing new experiments,
but by reusing the results of the previous experiments.
2.2.1. Formalization f1. We first used LABORS to
formalize Adam’s functional genomics investigation (inves-
tigation-1¼ ‘Robot scientist investigation into automation
of science’; figure 1) [11,17]. The National Center for Bio-
medical Ontology (NCBO) taxonomy was used as a
formalism D to define the object of the functional genomics
investigation—S. cereviceae. This class was imported from
NCBO to LABORS, thus Ext(F)¼ F¼ LABORS in this
case. This formalization resulted in the logical description
f1, involving 9312 research units (segments of experimental
research such as investigations, studies, tests, trials,
replicates).

This description has a nested tree-like structure,
10 levels deep, that logically connects the experimental
observations to the experimental metadata. A typical
path through the formalization would proceed as fol-
lows: the investigation into the automation of science
has a part (the investigation into whether the Robot
scientist Adam can discover some novel science that
has a part (the study aimed at finding the genes encod-
ing orphan enzymes, which has a part (the study of the
orphan enzyme E.C.2.6.1.39 in S. cerevisiae, which has
a part (the cycle of study of the gene YER152C, which
has a part (the study of the gene YER152C, which has a
part (the cycle 1, which has a part (the trial of the com-
pound C00047/lysine, which has a part (the test of
addition of C00047/lysine, which has a part (the repli-
cate 1, which has more than 300 observations))))))))).
This complete structure resembles a computer program
trace and takes up several hundred megabytes. We
believe that this formalization of the functional geno-
mics investigation is the most detailed and complete
description of any substantial scientific investigation.
2.2.2. Reuse r1 ¼ R( f1). LABORS is designed to sup-
port the reuse of investigations. Within LABORS, the
class investigation is defined as a subclass of the class
process and it can have parts such as studies, trials,
tests, replicates which are also subclasses of the class
process. This representation of investigations facilitates
the construction of new investigations by reusing parts
of existing investigations. LABORS uses the part_of
relation from the OBO Relation Ontology. It is the inverse
to the relation has_part and is a transitive relation: if a test
J. R. Soc. Interface (2011)
is a part of a study, and the study is a part of an investi-
gation, then the test is a part of the investigation.
Research units from completed investigations can thereby
be defined via part_of relations as parts of new investi-
gations. Moreover, research units can include input and
output information. In this way, results from a completed
research unit, e.g. hypotheses, can be used as input for
other research units. Many queries, which researchers
already routinely apply, can be considered as very
simple reuse queries, for example ‘What is known about
a particular compound?’. Such queries are supported by
LABORS, and we argue that other ontological formalisms
are less supportive of data reuse.

To investigate the utility of formalization for re-using
information from scientific investigations, we re-used the
formalization f1 of the functional genomics investigation
to investigate yeast phenotypes (investigation-2 ¼ ‘inves-
tigation into the reuse of the results of Robot scientist
investigation into automation of science’; figure 1). In
this reuse investigation, we investigated the relationship
between S. cerevisiae genotype, environment and pheno-
type [18]. This investigation has as an objective to re-use
data and information from the investigation-1 in order
to understand the impact of gene deletions on yeast
growth in rich and minimal media. Investigation-2 had
two parts. The first was a study of the differences in
growth of deletant (gene removed) and wild-type (no
gene removed) strains in the same media: we varied the
genotype while keeping the environment constant. The
hypotheses of the investigation-2 are expressed using
the terms defined in LABORS (as textual entities):
there is a difference in growth between knockouts
and wild-type in rich medium;

there is a difference in growth between knockouts
and wild-type in minimal medium;

there is a difference in growth of wild-type in
different media.
Hypotheses may be instantiated, e.g. there is a differ-
ence in growth between DYER152C and wild-type in
rich medium (for strain name formalisms see [11]) and
also expressed as logical entities:
difference_growth(delta_YER152C, wt).
has_object(Research_unit, s_ cerevisiae).
has_participant(Research_unit, rich_medium).
has_participant(Research_unit, delta_YER152C).
has_participant(Research_unit, wt).
The SWI-Prolog engine can run queries specified by the
hypothesis expressed as a logical entity to find all
research units (studies, trials, tests, replicates) that
have S. cerevisiae as an object of study, involve the
yeast strain DYER152C, involve the yeast strain wild-
type and use rich medium as an environment. In the
same way, it is possible to select research units that
have identical experimental designs, normalization
strategies, etc. The list of yeast strains served as
matches M: m1, m2, m3, . . . Example queries are:
has_participant(Research_unit, wt).
is_concretised_as(Research_unit,

experiment_design).

http://www.aber.ac.uk/en/cs/research/cb/projects/robotscientist/results/
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mation in science (in blue), the investigation into the reuse of the results of the investigation into automation in science (in
brown) and the investigation into the FBA model (in green). The boxes represent parts of the investigations, the links are
has-part relations.
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Such queries identify which data, from which research
units, may be re-used in order to achieve the objectives
of investigation-2. Such optical density (OD) data were
from pre-growth experiments and from trials and their
replicates (figure 1).

We compared 20 different single-gene deletion geno-
types with the wild-type using both a rich and a
minimal growth medium. The deleted genes are from
J. R. Soc. Interface (2011)
a little-studied class: non-essential (not required for
growth on rich medium) and isoenzymes (table 1).
The second part was a study of the differences in
growth of the wild-type in different media: we varied
the environment while keeping the genotype constant.
We compared the growth of the wild-type on 63 differ-
ent growth media [11]. Figure 2 summarizes the results
of the reuse study into yeast phenotype.



Table 1. Comparison of the predicted (sim.) change in growth rate (deletant 2 wild-type) with the experimentally measured
(exp) growth rate change for the 20 manually studied gene deletants. MM denotes minimal medium; YPD is rich medium; n.a.
means the reactions are not present in the iND750 model.

reaction ID in iND750 deleted gene (open reading frame) exp. DM sim. DM exp. YPD sim. YPD

R_AATA YER152C 0.009 20.733 0.019 20.222
R_AATA YGL202W 20.024 20.733 0.024 20.222
R_AATA YJL060W 0.013 20.733 0.024 20.222
R_AGAT_SC YDL052C 0.009 20.733 0.034 20.805
R_FTHFCLm YER183C 0.022 0 0.014 0
R_G6PDA YGR248W 0.017 0 0.007 0
R_G6PDA YHR163W 20.222 0 0.005 0
R_G6PDA YNR034W 0.023 0 0.028 0
R_GLUN YIL033C 20.079 0 20.205 0
R_M1PD YNR073C 0.016 0 0.024 0
R_MACACI YLL060C 0.011 0 0.014 0
R_POLYAO2 YMR020W 0.016 0 0.023 0
R_PUNP1 YLR017W 0.003 0 0.008 0
R_PUNP1 YLR209C 0.017 0 0.004 0
R_PYDXK YNR027W 0.013 0 0.023 0
R_PYDXK YPR121W 0.036 0 0.025 0
R_SERATi YJL218W 0.015 20.733 0.038 0
n.a. YDL168W 0.018 0 0.024 0
n.a. YJL045W 0.016 0 0 0
n.a. YLR070C 0.012 0 0.019 0
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Figure 2a shows the difference in maximum growth
rate (mmax) between the deletant strains and the
wild-type. In both the rich and the defined media, the
general shape of the distributions is similar—a distinct
mode and a skew to the left. The two distributions
modes (and medians) are greater than zero, which
means that (on average) the deletant strains grew
faster than the wild-type (they are tachytrophs); the
skew to the left indicates that there were some deletant
strains that grew much slower than the wild-type (bra-
dytrophs). In moving from the rich to the defined
medium, the distribution shifts to the left, and the
left tail extends. This means that the deletant strains
grew (on average) less well, relative to the wild-type,
than on the defined medium and a subset of them
grew much worse.

Figure 2b shows the difference between maximum
cell density (biomass yield) between the deletant strains
and the wild-type. On the rich and the defined media,
the observed distributions are qualitatively different.
In the rich medium, both the mode and the median
are less than zero, which means that (on average) the
deletants’ maximum cell density was lower (they are
ischnotrophs) than that of the wild-type, and there is
little skew. In the defined medium, both the mode
(and median) shift to the right and are greater than
zero, which means that the deletant strains produced
relatively more biomass (on average) than the wild-
type, on the defined medium (they are pachytrophs).
The outlier is the deletant strain DSOL3—this
was the strain most affected, relative to the wild-type,
by the addition of metabolites [11].

Figure 2c shows the difference in lag-time of the wild-
type moving from rich medium into the standard
defined medium when compared with the defined
medium with added metabolites. Here the mode is
greater than zero, which means that (in general) the
J. R. Soc. Interface (2011)
addition of a metabolite increases the lag-time. This
was unexpected, and may reflect changes in the
physico-chemical environment (e.g. pH) owing to the
addition of the metabolite, and the consequent need
for the cells to adapt to the new environment.

It is surprising that the removal of non-essential
enzymes generally results in enhanced growth (both
higher maximum growth rates (figure 2a) and higher
maximum cell densities (figure 2b) as it is often assumed
that growth of the wild-type is optimal—but see [19].
2.2.3. Formalization f2 ¼ F(r1). We used LABORS to
formalize investigation-2 ¼ ‘investigation into the
reuse of the results of Robot scientist investigation
into automation of science’. A fragment of the formal-
ism f2 is shown in figure 1. It shows, for example, that
information from the two tests: ‘DYER152C and no
C00047’ and ‘wild-type and no C00047’ from the inves-
tigation represented as f1 were re-used in the ‘study of
the difference in the growth of knockouts and WT in
minimal medium’. (Each of these tests has 12 replicates
and hundreds of observations logically associated to it
in the database.) Reuse therefore enabled observational
data collected to answer questions about yeast func-
tional genomics to also answer questions concerning
the relationship between genotype, environment and
phenotype. These questions are quite different from
those concerned with functional genomics, for which
the original investigations were designed to answer.

The investigation into yeast phenotypes also re-used
data/metadata from the functional genomics investi-
gation that was recorded, but not directly used to infer
the functional genomics investigation’s conclusions.
These data/metadata describe how well the deletant
strains grew on the rich medium, YPD. For example,
the two procedures: ‘pregrowth of DYER152C’ and
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strain (k) and that of the wild-type (w) in both minimal and rich media (black bars, k-w in minimal; grey bars, k-w in rich).
(c) The histogram shows the median observed differences in hours between the lag-time parameter of the wild-type grown in
the presence of a nutrient and that of the wild-type grown on minimal medium (black bars).
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‘pregrowth of WT’ were re-used in the ‘study of the differ-
ence in the growth of knockouts and WT in rich medium’
along with their replicates and observations (figure 1).
Each of these procedures has 48 replicates plus the
hundreds of observations logically associated with
them. This pregrowth information was irrelevant to the
functional genomics study as it was part of the pre-
paration for inoculation, and the inoculum size for the
main investigation was subsequently normalized. Use of
this information to answer new questions illustrates the
importance of formally describing and making available
all research undertaken, and not just research that is
used directly in a scientific paper’s conclusions, as it
may prove useful in other investigations.
2.2.4. Reuse r2 ¼ R( f2). To demonstrate cycles of for-
malization and reuse, we re-used information from
investigation-2 ¼ ‘investigation into yeast phenotype’
formalized as f2 in an investigation into systems biology
J. R. Soc. Interface (2011)
modelling (investigation-3 ¼ ‘investigation into the flux
balance analysis (FBA) model’; figure 1). FBA model-
ling [20] is currently the most common quantitative
approach in systems biology to modelling metabolism.
It is a constraint-based approach that uses linear
programming to identify a flux distribution that
optimizes a given objective function. The output of an
FBA model for a specified growth medium is an esti-
mated maximum growth rate. The yeast FBA model
we used was based on the iND750 model of Duarte
et al. [21]. We re-used the formalization of yeast pheno-
type investigation to investigate the suitability and
accuracy of FBA models of S. cerevisiae metabolism.
Investigation-3 has the following goals (expressed as
text entities):
to test the suitability of FBA models to predict
yeast phenotypes.

to test the accuracy of FBA models.
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In order to achieve these goals, data and information from
the already completed and formalized investigation-2
were re-used. The hypotheses of investigation-3 are
encoded as logical entities, e.g.
J. R. S
not_match(model_iND750_prediction,
data_reuse_results),
where the information item data_reuse_results serves
as the match M, and was used to retrieve results of
all research units within the the yeast phenotypes inves-
tigation of yeast strains. Figure 1 shows that
information from the ‘study of the difference in the
growth of knockouts and WT in rich medium’, and
the ‘study of the difference in the growth of knockouts
and WT in minimal medium’ were re-used in the
‘study of the iND750 Systems Biology model’.

For each of the 20 genes investigated within
investigation-2, FBA modelling was used to simulate
the change in the flux distribution associated with the
deletion (table 1). Reactions associated with multiple
genes could be annotated as either isoenzymes or
enzyme complexes. For model prediction, both were con-
sidered—with only the results from enzyme complexes
being reported here. To incorporate the hypothesized
effect of the deletion of a gene, the associated reaction(s)
were disallowed by setting the lower and upper bounds
for their fluxes to zero. Four of these reactions are
blocked and unable to carry any flux at all. For four
other reactions, using the minimal medium, the flux
range for minimal growth is large and encompasses
zero. Therefore, the FBA model predicts that elimin-
ation of these eight reactions will not prevent the cell
from growing using the defined medium. The model
also predicts that the removal of two of the reactions
(involving four gene annotations) will stop the cell grow-
ing, as the minimum growth requires their fluxes to be
positive.

The estimated differences in growth rates between
wild-type and deletant strains, re-used from the investi-
gation into yeast phenotype, are generally inconsistent
with the predictions of the FBA model (table 1). The
reason is that many of the deletants were observed to
grow at a higher maximal growth rate than the wild-
type, and a central assumption of most FBA modelling
is that metabolic fluxes are optimized to maximize cell
growth. This means that if setting any flux to zero
improved cell growth this would already have been
found during optimization. This inconsistency could
have been directly inferred without simulation. However,
the simulation also illustrates that the quantitative
differences predicted by the FBA modelling for the
other deletants are also inconsistent with observations
(table 1). We have confirmed these results using the mini-
mization of metabolic adjustment approach to modelling
deletion growth rate [22].
2.2.5. Formalization 3 ( f3 ¼ f(r2)). We have demon-
strated two cycles of formalization and reuse: f1, r1 ¼

r( f1), f2 ¼ f(r1), r2 ¼ r( f2). In principle, these cycles
can be repeated ad infinitum, reflecting the cumulative
nature of scientific knowledge discovery. To continue
the process, we therefore used LABORS again to
oc. Interface (2011)
formalize the systems biology investigation f3 ¼ F(r2)
(‘investigation into the FBA model’; figure 1). This
formalization is available for further reuse of the infor-
mation in future cycles of investigation: for example, an
investigation that compares different systems biology
models with FBA ones: r3 ¼ R( f3), with the formalization
of that investigation being f4 ¼ F(r3), and so on.
3. DISCUSSION

The proposed reuse framework is a principled way of
reusing the existing knowledge from scientific investiga-
tions in new investigations. This framework obviously
requires additional resources to implement compared
with using no formalism. However, it is clearly generally
cheaper, and faster, to re-use the existing knowledge
from scientific investigations than to regenerate it
afresh from wet biology investigations.

The vision we have of science is the comprehensive
annotation of all investigations with metadata derived
from standard ontologies and storage of these metadata
and data in open repositories. This would make scientific
knowledge more explicit, scientific results more reprodu-
cible, help detect errors, promote the interchange and
reliability of experimental methods and conclusions,
and remove redundancy. It would also enable accrued
scientific knowledge to be re-used to answer other
scientific questions. Scientific investigations that are
comparable could be identified by their metadata, and
then data-mining algorithms used to find patterns in
them. These patterns could then be used to generate
new hypotheses, which could be tested using other anno-
tated investigations, or through new empirical research.
In this paper, we have made a step towards this vision;
we have shown that it is possible to demonstrate repeated
cycles of formalization and reuse.

The EXPO and LABORS ontologies were developed
when no other generic formalism for the logical descrip-
tion of experiments was available. The OBI project
aims to provide such a formalism. OBI v.1 has been
released recently (November 2010). The Robot scientist
project joined the OBI project in October 2008, and the
LABORS representations are aligned with the OBI rep-
resentations. However, the reuse features discussed in
this paper are still not inbuilt into OBI.
4. CONCLUSIONS

A comprehensively described scientific investigation is a
permanent contribution to knowledge, and therefore
improved ways of recording scientific investigations
make the scientific process more efficient. The use of
logical formalisms has clear theoretical advantages
over using natural languages owing to their clear
semantics and ability to represent all aspects of the
scientific process. We have demonstrated their practi-
cality for describing research through a worked
example of cycles of formalization and reuse involving
yeast biology. This has resulted in the improved under-
standing of the importance of non-essential enzymes
when growing in standard defined media, and has also
shown that FBA models fail both qualitatively and
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quantitatively to predict the observed changes in
growth. The cycles of reuse in these investigations are
a model for the general reuse of scientific knowledge.

Of course, the demonstration of the utility of the
reuse formalization does not constitute proof that
such logical formalisms are generally applicable and
useful in practice for reuse, as that would require mul-
tiple test comparisons taken from multiple domains,
which we hope will occur in due course. However,
given their theoretical advantages, and the results pre-
sented here, we argue that the balance of evidence
supports the case for using logical formalisms to
describe research in order to promote its reuse.
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a SRIF 2 award to R.D.K.; by the Framework 7 UNICELL
SYS project (R.D.K, and S.G.O.); and by an RC-UK
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