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Abstract

Many indicators of protein evolutionary rate have been proposed, but some of them are interrelated. The purpose of this
study is to disentangle their correlations. We assess the strength of each indicator by controlling for the other indicators
under study. We find that the number of microRNA (miRNA) types that regulate a gene is the strongest rate indicator (a
negative correlation), followed by disorder content (the percentage of disordered regions in a protein, a positive
correlation); the strength of disorder content as a rate indicator is substantially increased after controlling for the number
of miRNA types. By dividing proteins into lowly and highly intrinsically disordered proteins (L-IDPs and H-IDPs), we find
that proteins interacting with more H-IDPs tend to evolve more slowly, which largely explains the previous observation of
a negative correlation between the number of protein–protein interactions and evolutionary rate. Moreover, all of the
indicators examined here, except for the number of miRNA types, have different strengths in L-IDPs and in H-IDPs. Finally,
the number of phosphorylation sites is weakly correlated with the number of miRNA types, and its strength as a rate
indicator is substantially reduced when other indicators are considered. Our study reveals the relative strength of each rate
indicator and increases our understanding of protein evolution.
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Introduction
Many indicators of protein evolutionary rate have been
identified, including protein connectivity, gene expression
level, gene expression breadth, gene compactness, the
number of microRNA (miRNA) types that regulate a
gene, extracellularity and protein folding pattern (Fraser
et al. 2002; Drummond et al. 2005; Chen and Chuang
2006; Liao et al. 2006, 2010; Makino and Gojobori 2006;
Pal et al. 2006; Drummond and Wilke 2008; Cheng et al.
2009; Chen et al. 2010; Yang, Zhuang, et al. 2010). However,
some of these indicators are interrelated (Liao et al.
2006, 2010; Liang and Li 2007). How the correlations
of a factor with other factors affect the strength of the fac-
tor as an indicator of protein evolutionary rate should be
investigated.

One factor that seems to be of particular interest is
miRNAs, which are noncoding RNAs that target mRNAs,
leading to mRNA destabilization and translational repres-
sion (see Guo et al. 2010). Genes targeted by more types of
miRNAs may be subject to more functional constraints
and therefore evolve more slowly (Cheng et al. 2009).
However, the number of miRNA types of a gene (NmiR)
has been shown to be positively correlated with protein

connectivity, gene expression breadth, and the length of
3# untranslated regions (3#UTRs) (Liang and Li 2007;
Cheng et al. 2009). How much do these correlations con-
tribute to the strength of NmiR as an indicator of protein
evolutionary rate?

Another interesting observation is that genes encoding
proteins with more intrinsically disordered regions (IDRs)
tend to be targeted by more types of miRNAs, compared
with genes encoding fewer IDRs (Liang and Li 2007; Chen
et al. 2008; Edwards et al. 2009). IDRs are protein regions
that fail to form compact 3D structures in native states.
IDRs have been suggested to be associated with a wide va-
riety of cellular functions (Uversky et al. 2005, 2008; Haynes
and Iakoucheva 2006; Liu et al. 2006). First, IDRs have been
demonstrated to correlate strongly with posttranslational
modifications (Iakoucheva et al. 2004). Second, IDRs often
contain short and degenerate linear motifs that promiscu-
ously bind to certain protein domains with low affinities
(see Vavouri et al. 2009). The low-affinity and promiscuous
binding of IDRs may be the reason why proteins with more
interacting partners (hubs) tend to contain more IDRs
(Haynes et al. 2006). Because hubs tend to be more disor-
dered and genes encoding more disordered proteins tend
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to be regulated by a larger number of miRNA types (NmiR)
and because both protein connectivity and NmiR are neg-
atively correlated with evolutionary rate, one may intui-
tively speculate that proteins with more IDRs, on
average, have a lower evolutionary rate than those with
fewer or no IDRs. However, IDRs tend to evolve faster than
ordered regions, and proteins with more IDRs tend to
evolve faster than proteins with fewer or no IDRs (Brown
et al. 2002, 2010; Kim et al. 2008; Chen et al. 2010). The
effect of these complicated relationships on the rate of pro-
tein evolution should be clarified.

In this study, we tried to assess the relative strengths of
the two indicators, NmiR and disorder content (the percent-
age of IDRs in a protein) because they are correlated but
have opposite effects on the protein evolution. In addition,
we have also studied the following rate indicators: protein–
protein interactions (PPIs), gene expression level, gene ex-
pression breadth, and the number of phosphorylation sites
in a protein. Other factors have less abundant data and thus
have not been considered here. For each indicator studied,
we computed the partial correlation between the indicator
and the rate of protein evolution by controlling for the other
indicators under study. This approach may largely disentan-
gle the effects of these interrelated indicators.

Materials and Methods

Data Used
Human protein sequences, human–mouse orthologs, and
the human–mouse evolutionary rates, including the num-
ber of synonymous substitutions per synonymous site (dS)
and the number of nonsynonymous substitutions per non-
synonymous site (dN) were downloaded from the Ensembl
Genome Browser at http://www.ensembl.org/ (version 56).
For human genes with more than one isoform, only the
longest isoform is chosen. To avoid the confounding factor
of gene duplication, only human–mouse 1:1 orthologues
were considered.

Only genes that had mRNA expression data in both of
the two human mRNA expression data sets used here were
included for analysis. The first data set was derived from six
human tissues (heart, kidney, liver, muscle, spleen, and tes-
tis) using high-density exon arrays (Xing et al. 2007). The
second data set was generated by Su et al. (2004) from 73
nonpathogenic human tissues (Gene Atlas V2, http://
symatlas.gnf.org/). We aligned each probe set against the
Ensembl coding sequences (CDSs) and only considered
the probe sets that were 100% identical to the CDSs.
We further removed probe sets that matched to more than
one gene to avoid ambiguity (Chen et al. 2010). The expres-
sion level of a gene was defined as the average signal in-
tensity across 6 and 73 examined tissues for the first
and the second expression data sets, respectively. A gene
is said to be expressed in a tissue if its average signal inten-
sity in this tissue is greater than 200, as suggested by
Su et al. (2004). The expression breadth of a gene was mea-
sured by the number of tissues that the gene is expressed in
data of Su et al.

Human PPIs were downloaded from Bossi and Lehner
(2009). They collected PPIs from 21 databases and only
considered the interactions supported by at least one di-
rect experimental validation. Their data set contained
10,229 proteins and 80,922 interactions. According to their
definition, a PPI may occur in a tissue only if both of the
interacting proteins are expressed in the same tissue (i.e.,
mRNA intensities of two interacting genes are both greater
than 200). Because a PPI in our study could be present in at
most 73 tissues, we defined narrowly expressed PPIs (‘‘EB_-
Narrow’’) as PPIs that are present in less than 15 tissues
(;20% of the total number of tissues considered). For
the PPI analysis, we only considered proteins that at least
one of their interacting partners is also present in our data
set (5,124 proteins remain). To increase the reliability of our
result, we used two definitions of hub proteins: 1) top 20%
(PPIs across all tissues.18) and 2) top 35% (PPIs across all
tissues.10) highly connected proteins (supplementary ta-
ble S1, Supplementary Material online).

Experimentally validated phosphorylation sites of hu-
man proteins were obtained from Chen et al. (2010). This
data set contained 15,914 phosphorylation sites on 4,398
proteins, collected from UniprotKB (http://www.uniprot.
org/), PhosphoELM (Diella et al. 2008), and HPRD (Keshava
Prasad et al. 2009).

miRNA Target Prediction
Human miRNA target predictions were downloaded from
TargetScanHuman at http://www.targetscan.org/ (release
5.1), one of the most widely used miRNA target prediction
tools. To obtain more reliable prediction results, we only
considered miRNAs whose target sites are conserved across
most mammals (defined by TargetScan). The complexity
(level) of miRNA regulation of a gene was measured by
the total number of distinct miRNA types by which the
3#UTR of this gene was targeted (NmiR).

Prediction of Disordered Residues and Protein
Disorder Content
We predicted disorder potential for each residue of human
proteins using DISOPRED2 (version 2.4) with default pa-
rameters (5% for false positive threshold) (Ward et al.
2004). DISPPRED2 is one of the top-ranking disorder pre-
diction tools and has a lower level of false positive rate
(Moult et al. 2007). The disorder content (i.e., percentage
of IDRs, denoted ‘‘DisCont’’) of each protein was estimated
by dividing the number of disordered residues by the pro-
tein length. Proteins with,100 amino acids in length were
not considered in the study because the estimate of disor-
der content in a short protein is subject to a large standard
error. We classified proteins into three groups of similar
size, according to their DisCont: lowly intrinsically disordered
(DisCont, 18%; 3,258 proteins), moderately intrinsically dis-
ordered (18% � DisCont , 43%; 3,372 proteins), and highly
intrinsically disordered (DisCont � 43%; 3,164 proteins), as
described in Gsponer et al. (2008). To examine how disor-
der content influences the evolution of proteins and how it
is related to miRNA regulation, we grouped lowly and
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moderately intrinsically disordered proteins together as L-
IDPs and compared the evolution of L-IDPs with that of
highly intrinsically disordered proteins (H-IDPs). L-IDPs
are lumped together because they evolve at similar rates
(P value 5 0.67, Wilcoxon rank-sum test with continuity
correction; supplementary fig. S1, Supplementary Material
online), whereas H-IDPs evolve faster.

Results

The Number of miRNA Types Is a Stronger
Indicator of Evolutionary Rate Than Disorder
Content
Previous reports have suggested that IDRs and miRNA reg-
ulation have opposite effects on protein evolutionary rate
(dN/dS) (Kim et al. 2008; Cheng et al. 2009). But which fac-
tor is a better indicator of dN/dS? To answer this question,
we compile a list of 9,794 human–mouse 1:1orthologous
gene pairs to study the relationships between disorder con-
tent of the protein (DisCont) and dN/dS and between the
number of miRNA types that regulate the gene (NmiR)
and dN/dS. In agreement with previous results, dN/dS is neg-
atively correlated with NmiR (Cheng et al. 2009) but posi-
tively correlated with DisCont (Kim et al. 2008) (fig. 1A and
supplementary table S2, Supplementary Material online).
Interestingly, the absolute value of the former correlation
is nearly three times that of the latter. Because NmiR and
DisCont are also correlated (Edwards et al. 2009), we com-
pute the partial correlation between NmiR and dN/dS and
that between DisCont and dN/dS by controlling for DisCont

and NmiR, respectively. Interestingly, the partial correlation
of DisCont almost doubles, whereas that of NmiR increases
only slightly (fig. 1A and supplementary table S2, Supple-
mentary Material online). However, the latter is still twice
larger in absolute value than the former. Thus, NmiR is a far
stronger indicator of evolutionary rate than DisCont. Also,
the strength of DisCont as a rate indicator is reduced due
to the correlation between DisCont and NmiR.

dN/dS Is Not Always Positively Correlated With
Disorder Content
Previous findings that proteins with more IDRs tend to
evolve faster than those with fewer or no IDRs (Kim
et al. 2008) and that transcripts encoding proteins with
more IDRs have a higher level of miRNA regulation (Liang
and Li 2007) need clarification because genes with a higher
level of miRNA regulation were reported to evolve more
slowly (Cheng et al. 2009). To disentangle the related effects
of DisCont and NmiR, we divide proteins into two groups, ‘‘H-
IDPs’’ and ‘‘L-IDPs,’’ according to whether the DisCont is
higher or lower than 43% (see Materials and Methods).
Our correlation analyses reveal that dN/dS and NmiR are cor-
related in both groups, whereas dN/dS and DisCont are not
correlated in L-IDPs (fig. 1B and supplementary table S2,
Supplementary Material online). We next examine whether
this lack of correlation is because NmiR has an opposite and
stronger effect on dN/dS than does DisCont and because the
correlation between NmiR and DisCont is much stronger in L-

IDPs than in H-IDPs (fig. 1B and supplementary table S2,
Supplementary Material online). We compute the partial
correlations between dN/dS and DisCont for both groups
by controlling for NmiR. Indeed, the partial correlation be-
tween dN/dS and DisCont in L-IDPs increases and becomes
significant (fig. 1B and supplementary table S2, Supplemen-
tary Material online). We also try different disorder content
thresholds for classifying the two groups and find similar
results (fig. 2). Our results indicate that among less disor-
dered proteins, those with higher disorder content do not
have an elevated evolutionary rate if NmiR is not controlled.

The Number of Highly Disordered Interaction
Partners of a Protein and dN/dS Are Negatively
Correlated
In addition to NmiR and DisCont, other factors (PPIs, gene
expression level, and gene expression breadth) have been
reported to be indicators of dN/dS (Bloom and Adami 2004;
Fraser and Hirsh 2004; Drummond and Wilke 2008; Park
and Choi 2010). Moreover, proteins having phosphorylated
resiudes may evolve more slowly because they may bemore
functionally important: phosphorylated and nonphos-
phorylated forms can perform different functions or be
transported to different localizations (Cohen 2000).

FIG. 1. Spearman’s rank correlations between evolutionary rate (dN/
dS) and disorder content (DisCont) or the number of miRNA types
(NmiR). (A) All: all proteins under study (9,794 proteins). (B) L-IDPs:
lowly and moderately intrinsically disordered proteins (DisCont ,

43%; 6,630 proteins); H-IDPs: highly intrinsically disordered proteins
(DisCont � 43%; 3,164 proteins). DisCont: the number of disordered
residues divided by the protein length; NmiR: the number of miRNA
types that regulate the gene under study. Significance:*P value �
0.05, **P value � 0.001,***P value � 0.0001.
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Interestingly, the above indicators are interrelated (Liao
et al. 2006; Liang and Li 2007; Cheng et al. 2009). To disen-
tangle their relationship and assess the relative strength of
each factor, we compute the partial correlation of each
factor with dN/dS by controlling for the remaining factors.
Proteins without PPI data are excluded to measure and con-
trol the effects of PPIs (5,124 proteins remain; see Materials
and Methods). In addition to the total number of PPIs
(PPIAll), two other indices are examined: the number of
H-IDPs with which a protein interacts (PPIH-IDP) and the
number of L-IDPs with which a protein interacts (PPIL-IDP)
because features of the interaction partners of a protein
may affect its evolutionary rate (Makino and Gojobori 2006).

When the relationships among these interrelated factors
are not considered, all the indicators are negatively corre-
lated with dN/dS, except that DisCont is positively correlated
with dN/dS. However, only NmiR (q5�0.32), DisCont

(q5�0.21), and PPIH-IDP (q5�0.13) remain as strong rate
indicators after controlling for the other factors (table 1 and
supplementary table S3, Supplementary Material online).
The strengths of gene expression breadth and expression

level become weak and that of PPIL-IDP, PPIAll, and the num-
ber of phosphorylation (NPhospho) disappear. Moreover, all
the indicators, except for NmiR, have different strengths in
L-IDPs and in H-IDPs. For example, strengths of DisCont

and PPIH-IDP in H-IDPs are twice the corresponding values
in L-IDPs; the strengths of expression level and expression
breadth are significant in L-IDPs but disappear in H-IDPs (ta-
ble 1 and supplementary table S3, Supplementary Material
online). Unexpectedly, PPIL-IDP and PPIAll become as positive
rate indicators in H-IDPs after controlling for the other fac-
tors (table 1 and supplementary table S3, Supplementary
Material online). This suggests that the negative correlation
between PPIAll (and also PPIL-IDP) and dN/dS is mainly be-
cause PPIAll (and also PPIL-IDP) is positively correlated with
PPIH-IDP (q50.77 for PPIAll; q50.49 for PPIL-IDP) and because
PPIH-IDP is a strong negative indicator. Therefore, proteins
that interact with more H-IDPs tend to evolve more slowly.

The Number of Phosphorylation Sites and the
Number of miRNA Types Are Weakly Correlated
Phosphorylation plays an important role in protein func-
tion, stability, and localization (Cohen 2000). Therefore,
it may be interesting to see if proteins with more phosphor-
ylation sites are under more complex miRNA regulation.
On the basis of experimentally validated phosphorylation
sites, we find that the number of phosphorylation sites
(NPhospho) and NmiR are positively correlated in both H-IDPs
and L-IDPs (table 2). Because two-third of the proteins un-
der study have no identified phosphorylation sites, we re-
move proteins without any experimentally validated
phosphorylation sites (2,885 proteins remain). Now a pos-
itive correlation between NPhospho and NmiR is observed on-
ly in L-IDPs. Moreover, the partial correlations between
NPhospho and NmiR in all proteins and in L-IDPs become
weak after controlling for other factors (table 2), suggesting
a weak tendency for proteins with more phosphorylation
sites to have more complex miRNA regulation.

The Number of miRNA Types and the Number of
Tissue-Specific PPIs Are Weakly Correlated
It has been reported that hub proteins are subject to more
complex miRNA regulation than non-hub proteins (Liang
and Li 2007). However, whether the expression patterns of
their PPIs affect the complexity of their miRNA regulation
remains unclear. Because housekeeping proteins tend to
have more PPIs (Lin et al. 2009) and have been suggested
to be reused for tissue-specific processes (Bossi and Lehner
2009), we hypothesize that hub proteins with more tissue-
specific PPIs need tighter regulation (i.e., under more com-
plex miRNA regulation). To test this hypothesis, we focus
on hub proteins (total number of interactions across all
tissues.18) and calculate the number of their interactions
that are narrowly expressed (EB_Narrow) (see Materials
and Methods). We find that L-hubs (DisCont , 43%) and
H-hubs (DisCont � 43%), on average, have similar number
of EB_Narrow PPIs (P value . 0.05 by Wilcoxon rank-sum
test). However, the positive correlation between NmiR and
the number of EB_ Narrow PPIs is only weakly significant in

FIG. 2. Spearman’s rank correlations (Rs) between disorder content
and the number of miRNA types and between disorder content and
evolutionary rate (dN/dS). Proteins are divided into ‘‘H-IDPs’’ and ‘‘L-
IDPs’’ groups according to whether the disorder content is higher or
lower than the given threshold (the x axis). For example, proteins in
the ‘‘H-IDPs’’ group and the ‘‘L-IDPs’’ group with the threshold of
50% are the groups with a disorder content higher and lower than
50%, respectively. Each point stands for the Rs value of the
corresponding group. Five disorder thresholds are examined here to
see how the correlations change under different thresholds. In (B),
‘‘H-IDPsjmiRNA’’ and ‘‘L-IDPsjmiRNA’’ represent the partial corre-
lations (controlled for the number of miRNA types that regulate the
gene) for the H-IDPs and L-IDPs groups, respectively. In both (A)
and (B), points above the dotted line represent correlations
significantly greater than zero by Spearman’s rank test (P , 0.05).
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L-hubs (table 3). The trend remains when we control for
other factors or choose another connectivity threshold
for the definition of hubs (total number of interactions
across all tissues .10) (table 3). In addition, we find that
expression breadth and disorder content are slightly neg-
atively correlated (q 5 �0.06; P value , 1.42 � 10�5by
Spearman’s correlation test), suggesting a slight tendency
for highly disordered proteins to have a higher level of tis-
sue specificity. These results indicate that the expression
breadth or disorder content of the interacting partners
of less disordered hubs may slightly increase the complexity
of their miRNA regulation.

Discussion
Prior studies have reported factors that can affect the evo-
lutionary rate of proteins (e.g., the number of miRNA types,
expression level, expression breadth, gene compactness,
extracellularity and protein folding pattern) (Fraser et al.
2002; Drummond et al. 2005; Liao et al. 2006, 2010; Makino
and Gojobori 2006; Pal et al. 2006; Drummond and Wilke
2008; Yang, Zhuang, et al. 2010). However, as some factors
are correlated, the relative influence of a factor on protein
evolution remains unclear. In this study, we clarify this issue
by computing the partial correlation between a factor and

protein evolutionary rate by controlling for the other fac-
tors. We summarize these correlations in fig. 3. We find that
the number of miRNA types is the strongest indicator and
its correlations with other indicators only mildly affect its
strength. One possible scenario is that genes with higher
number of miRNA types are more likely to be pleiotropic.
Pleiotropic genes have been suggested to encode multi-
functional products, which can be involved in different bi-
ological processes or have more interacting partners (He
and Zhang 2006). Therefore, pleiotropic genes may need
more precise regulation of gene expression, which is asso-
ciated with a more complex miRNA regulation. Also, the
multifunctional property of pleiotropic genes may impose
stronger selective constraints on their sequence evolution,
leading to the observation that genes with higher number
of miRNA types evolve more slowly. Future studies on the
relationships among miRNA regulation, pleiotropy, and
protein evolution may help to examine this scenario.

Because L-IDPs (lowly and moderately intrinsically disor-
dered proteins) are more than 50% ordered, dN/dS may be
dominated by the evolutionary pressures in the ordered
regions in L-IDPs. Indeed, for lowly disordered proteins
(DisCont , 18%; 3,258 proteins), disorder content and
dN/dS are not correlated even after miRNA regulation is

Table 1. Spearman’s Rank Correlation Between an Indicator and Evolutionary Rate After Controlling for the Other Indicators.

Indicator

Before Control After Controlk

Alla L-IDPsa H-IDPsa Alla L-IDPsa H-IDPsa

NmiR
b 20.298*** 20.344*** 20.293*** 20.316*** 20.329*** 20.297***

DisCont
c 0.113*** 0.026 0.134*** 0.209*** 0.081*** 0.197***

PPIH-IDP
d 20.196*** 20.206*** 20.241*** 20.128*** 20.10*** 20.201***

PPIL-IDP
e 20.124*** 20.156*** 20.056* 0.002 20.028 0.074*

PPIAll
f 20.171*** 20.188*** 20.160*** 0.001 20.022 0.074*

NPhospho
g 20.060*** 20.116*** 20.021 0.001 20.031 0.030

Expbreadth
h 20.110*** 20.153*** 20.016 20.017 20.055* 0.045

Explevel_xing
i 20.150*** 20.178*** 20.078** 20.058*** 20.085*** 20.017

Explevel_Su
j 20.129*** 20.168*** 20.038 20.049** 20.067** 20.044

a All: all proteins under study that have PPI data (5,124 proteins); L-IDPs (DisCont , 43%; 3,300 proteins); and H-IDPs (DisCont � 43%; 1,824 proteins).
b NmiR: The number of miRNA types that regulate the gene under study.
c DisCont: Disorder content, the number of disordered residues divided by protein length.
d PPIH-IDP: The number of H-IDPs with which a protein interacts.
e PPIL-IDP: The number of L-IDPs with which a protein interacts.
f PPIAll: The total number of PPIs.
g NPhospho: The number of experimentally verified phosphorylation sites.
h Expbreadth: The number of tissues that a gene is expressed in data of Su et al.
i Explevel_xing: The average signal intensity of a gene in data of Xing et al.
j Explevel_Su: The average signal intensity of a gene in data of Su et al.
k Partial correlation between evolutionary rate and the indicator under study by controlling for NmiR, PPIH-IDP, DisCont, PPIAll, NPhospho, Expbreadth, and Explevel_xing, except for
the indicator under study.

Significance: *P value , 0.05, **P value � 0.001, and ***P value � 0.0001.

Table 2. Spearman’s Rank Correlation Between the Number of miRNA Types (NmiR) and the Number of Phosphorylation Sites (NPhospho).

Before Control After Controlb

Alla L-IDPsa H-IDPsa Alla L-IDPsa H-IDPsa

All proteins (9,794 proteins) 0.172*** 0.123*** 0.169*** 0.076*** 0.057*** 0.085***
Proteins with verified phosphorylation sites (2,885 proteins) 0.109*** 0.113*** 0.022 0.044* 0.073* 0.001

a All: all proteins under study; L-IDPs (DisCont , 43%; 3,300 proteins); and H-IDPs (DisCont � 43%; 1,824 proteins).
b Partial correlations: the partial correlation between NmiR and NPhospho is controlled for disorder content, total number of PPIs, expression breadth, expression level, and
evolutionary rate.

Significance: *P value � 0.05, **P value � 0.001, and ***P value � 0.0001.
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controlled (supplementary fig. S2, Supplementary Material
online). The lack of correlation may suggest that dN/dS is
dominated by constraints on ordered regions in a protein
that is more than 72% ordered. For moderately disordered
proteins (18% � DisCont , 43%; 3,372 proteins), however,
disorder content and dN/dS are weakly correlated before
control, and the correlation almost doubles when miRNA
regulation is controlled (supplementary fig. S2, Supplemen-
tary Material online). Hence, the result indicates that dis-
order content indeed affects dN/dS even when proteins are
57–82% ordered. The increase in correlation is mainly be-
cause disorder content and miRNA regulation are corre-
lated and because miRNA regulation has an inversely
stronger effect on evolutionary rate than disorder content.

For H-IDPs (disorder content� 43%), however, disorder
content is positively correlated with evolutionary rate even
without controlling for miRNAs or other factors. This is
mainly because the correlation between disorder content
and the level of miRNA regulation is weaker and the
strength of disorder content is stronger in H-IDPs, com-
pared with that in L-IDPs. Thus, our results may explain
the previous finding that proteins with a disorder content
higher than 50% evolve faster than those with a disorder
content lower than 50% (Kim et al. 2008). Furthermore, the
less long-range interactions between residues in the protein
in H-IDPs may lead to an elevated rate of sequence evolu-
tion. Long-range interactions in a protein are interactions
between residues that are in contact with each other in the
protein native structure but are distant to each other in the
primary sequence (Gromiha and Selvaraj 2004). The long-
range interactions between residues in a protein play
a critical role in its folding, stability, and function, such
as ligand binding, conformational changes, and catalysis
(Gromiha and Selvaraj 1999, 2004; Yang, Welch, et al.
2010). Residue changes involving long-range interactions
may be deleterious. Thus, the less long-range interactions
in disordered proteins than in ordered proteins make
changes in disordered proteins have a higher likelihood
to survive in evolution.

In addition, we find that proteins interacting with more
H-IDPs tend to evolve more slowly, shedding light on the
functional role of the high disorder content of a protein’s
interacting partners. The lack of well-defined 3D structures
of IDRs may create exposed hydrogen bonds for IDPs,

which may increase the risk of protein aggregation
(Fernandez and Chen 2009) or increase the ability to form
protein complex with other H-IDPs. It has been shown that
proteins that are involved in complex formation evolve
more slowly than those that are not (Manna et al.
2009). Therefore, increasing disorder content is one way
to increase interactions and the tendency of complex for-
mation, which in turn constrains evolutionary rate. How-
ever, a high disorder content of its interacting partners
could be another way for a protein to increase its ‘‘disorder-
ness’’ without increasing its own disorder content. Through
its interaction with a H-IDP, a protein could participate in
complex formation or interact with other H-IDPs via the
interactions between this H-IDP and other H-IDPs (the
‘‘hitchhiking effect’’ or ‘‘connections through connec-
tions’’). The gain of function by interacting with H-IDPs
may in turn impose selective constraints on the protein
sequence evolution. Thus, the more H-IDPs that a protein
interacts, the more likely it evolves slowly. This may explain
the previous observation of a negative correlation between
evolutionary rate and the total number of PPIs (Fraser et al.
2002) because the total number of PPIs and the number of
highly disordered interaction partners of a protein are pos-
itively correlated (q5 0.77; P value, 2.2� 10�16 by Spear-
man’s correlation test). Unexpectedly, highly disordered
proteins that interact with more L-IDPs tend to evolve fast-
er. One possible scenario is that when the number of L-IDPs
with which an H-IDP interacts increases, its chance to in-
teract with other H-IDPs may be reduced.

We notice that the partial correlations between evolution-
ary rate and expression breadth and between evolutionary
rate and expression level are not significant in H-IDPs. The
trend remains similar when expression specificity (s), defined
in Yanai et al. (2005), is used, although for L-IDPs, the strength

FIG. 3. Rate indicators of protein evolution in (A) L-IDPs and in (B)
H-IDPs. Gray and black arrows, respectively, represent negative and
positive correlations. The thickness of a line between two indicators
indicates the strength of their correlation.

Table 3. Spearman’s Rank Correlation Between the Number of
miRNA Types (NmiR) and the Number of Narrowly Expressed PPIsa

in Hubs.

Hub
Definition

Before Control After Controlc

All
Hubs L-Hubsb H-Hubsb All Hubs L-Hubsb H-Hubsb

PPIs > 18 0.100** 0.166***20.052 0.104** 0.155*** 20.014
PPIs > 10 0.024 0.064* 20.057 0.042 0.072* 20.025

a The number of PPIs that are expressed in less than 15 tissues in data of Su et al.
b L-hubs: hubs with DisCont , 43%; H-hubs: hubs with DisCont � 43%.
c The partial correlation is controlled for disorder content, the total number of
PPIs, the number of phosphorylation sites, expression breadth, expression level,
and evolutionary rate.

Significance: *Pvalue � 0.05, **P value � 0.001, and ***P value � 0.0001.
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of expression specificity as a rate indicator is stronger than
that of expression breath (supplementary tables S4 and S5,
Supplementary Material online). There are two possible rea-
sons. First, the expression levels of H-IDPs, on average, are
lower than those of L-IDPs (supplementary fig. S3, Supple-
mentary Material online). Their lower expression reduces
the strength of expression breadth as an indicator of evolu-
tionary rate because whether they are present in a tissue
becomes difficult to determine and because they are more
narrowly expressed (supplementary fig. S3, Supplementary
Material online). Second, the resolution of microarray is not
high enough to distinguish between expression levels
among H-IDPs because of their lower expression and the
smaller expression variance (P value , 1.65 � 10�6 by
the Brown–Forsythe test) compared with those in L-IDPs.
Future technologies with a higher resolution power may
help to overcome this problem.

In our study, we did not remove orthologues with,50%
sequence identity as commonly done in the literature. To
see whether fast evolving proteins dominate our results, we
also conducted the analyses only on those orthologues
with ,50% sequence identity. We found that only miRNA
regulation complexity and protein disorder are the strong
rate indicators in H-IDPs, whereas only expression breadth
is a strong rate indicator in L-IDPs (supplementary tables S6
and S7, Supplementary Material online). However, because
the number of fast evolving proteins is small compared
with that of all proteins (319 vs. 9,794 for the study of
the correlation of evolutionary rate with miRNA and with
disorder content; 111 vs. 5,124 for the study of the relative
strength of each rate indicator), our conclusions are not
affected by fast evolving proteins.

We find that phosphorylated proteins tend to have
a higher level of miRNA regulation of the gene and that
the number of phosphorylation sites of a protein is corre-
lated with the level of miRNA regulation in L-IDPs. There
are two possible reasons. First, a protein with multiple
phosphorylation sites may be recognized by different
kinases, so it may be involved in various signaling pathways,
may be transported to different cellular localizations, and
may have distinct conformations (Cohen 2000; Gsponer
et al. 2008). Second, phosphorylation could regulate pro-
tein half-life by resisting or promoting protein degradation
(Lin et al. 2006). Thus, proteins with phosphorylation sites
are dynamic in time and space in response to environmen-
tal conditions and developmental stages. miRNAs may
serve as a mechanism to fine-tune the expression level
of these functionally important proteins.

We also show that the number of tissue-specific PPIs is
weakly but positively correlated with the level of miRNA
regulation for hub proteins with disorder content ,43%.
Because miRNAs can be expressed in a tissue-specific
manner, transcripts that need complex expression pat-
terns to be reused as core modules of the PPI network
may need a higher level of miRNA regulation to perform
tissue-specific functions. In addition, because H-IDPs tend
to be narrowly expressed, they may participate in network

modularity and tissue-specific functions with hub pro-
teins.

Supplementary Material
Supplementary tables S1–S7 and figures S1–S3 are available
at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).

Acknowledgments
We thank the two reviewers and Dr. Ben-Yang Liao for
valuable suggestions. This study was supported by National
Science Council (NSC99-2628-B-001-009-MY3) and
(NSC99-2628-B-001-008-MY3) and National Institute of
Health grants (GM30998 and 5R01MH080425).

References
Bloom JD, Adami C. 2004. Evolutionary rate depends on number of

protein-protein interactions independently of gene expression
level: response. BMC Evol Biol. 4:14.

Bossi A, Lehner B. 2009. Tissue specificity and the human protein
interaction network. Mol Syst Biol. 5:260.

Brown CJ, Johnson AK, Daughdrill GW. 2010. Comparing models of
evolution for ordered and disordered proteins. Mol Biol Evol.
27:609–621.

Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW,
Oldfield CJ, Williams CJ, Dunker AK. 2002. Evolutionary rate
heterogeneity in proteins with long disordered regions. J Mol
Evol. 55:104–110.

Chen FC, Chen CJ, Li WH, Chuang TJ. 2010. Gene family size
conservation is a good indicator of evolutionary rates. Mol Biol
Evol. 27:1750–1758.

Chen FC, Chuang TJ. 2006. The effects of multiple features of
alternatively spliced exons on the K(A)/K(S) ratio test. BMC
Bioinformatics. 7:259.

Chen J, Liang H, Fernandez A. 2008. Protein structure protection
commits gene expression patterns. Genome Biol. 9:R107.

Chen SC, Chen FC, Li WH. 2010. Phosphorylated and non-
phosphorylated serine and threonine residues evolve at different
rates in mammals. Mol Biol Evol. 27:2548–2554.

Cheng C, Bhardwaj N, Gerstein M. 2009. The relationship between
the evolution of microRNA targets and the length of their UTRs.
BMC Genomics. 10:431.

Cohen P. 2000. The regulation of protein function by multisite
phosphorylation—a 25 year update. Trends Biochem Sci.
25:596–601.

Diella F, Gould CM, Chica C, Via A, Gibson TJ. 2008. Phospho.ELM:
a database of phosphorylation sites—update 2008. Nucleic Acids
Res. 36:D240–D244.

Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH. 2005.
Why highly expressed proteins evolve slowly. Proc Natl Acad Sci
U S A. 102:14338–14343.

Drummond DA, Wilke CO. 2008. Mistranslation-induced protein
misfolding as a dominant constraint on coding-sequence
evolution. Cell 134:341–352.

Edwards YJ, Lobley AE, Pentony MM, Jones DT. 2009. Insights into
the regulation of intrinsically disordered proteins in the human
proteome by analyzing sequence and gene expression data.
Genome Biol. 10:R50.

Fernandez A, Chen J. 2009. Human capacitance to dosage imbalance:
coping with inefficient selection. Genome Res. 19:2185–2192.

Fraser HB, Hirsh AE. 2004. Evolutionary rate depends on number of
protein-protein interactions independently of gene expression
level. BMC Evol Biol. 4:13.

Indicators of Protein Evolution · doi:10.1093/molbev/msr068 MBE

2519

http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://mbe.oxfordjournals.org/cgi/content/full/msr068/DC1
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/


Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW. 2002.
Evolutionary rate in the protein interaction network. Science
296:750–752.

Gromiha MM, Selvaraj S. 1999. Importance of long-range inter-
actions in protein folding. Biophys Chem. 77:49–68.

Gromiha MM, Selvaraj S. 2004. Inter-residue interactions in protein
folding and stability. Prog Biophys Mol Biol. 86:235–277.

Gsponer J, Futschik ME, Teichmann SA, Babu MM. 2008. Tight
regulation of unstructured proteins: from transcript synthesis to
protein degradation. Science 322:1365–1368.

Guo H, Ingolia NT, Weissman JS, Bartel DP. 2010. Mammalian
microRNAs predominantly act to decrease target mRNA levels.
Nature 466:835–840.

Haynes C, Iakoucheva LM. 2006. Serine/arginine-rich splicing factors
belong to a class of intrinsically disordered proteins. Nucleic
Acids Res. 34:305–312.

Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P,
Uversky VN, Vidal M, Iakoucheva LM. 2006. Intrinsic disorder is
a common feature of hub proteins from four eukaryotic
interactomes. PLoS Comput Biol. 2:e100.

He X, Zhang J. 2006. Toward a molecular understanding of
pleiotropy. Genetics 173:1885–1891.

Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG,
Obradovic Z, Dunker AK. 2004. The importance of intrinsic
disorder for protein phosphorylation. Nucleic Acids Res.
32:1037–1049.

Keshava Prasad TS, Goel R, Kandasamy K, et al. (30 co-authors).
2009. Human Protein Reference Database—2009 update. Nucleic
Acids Res. 37:D767–D772.

Kim PM, Sboner A, Xia Y, Gerstein M. 2008. The role of disorder in
interaction networks: a structural analysis. Mol Syst Biol. 4:179.

Liang H, Li WH. 2007. MicroRNA regulation of human protein
protein interaction network. RNA 13:1402–1408.

Liao BY, Scott NM, Zhang J. 2006. Impacts of gene essentiality,
expression pattern, and gene compactness on the evolutionary
rate of mammalian proteins. Mol Biol Evol. 23:2072–2080.

Liao BY, Weng MP, Zhang J. 2010. Impact of extracellularity on the
evolutionary rate of mammalian proteins. Genome Biol Evol.
2:39–43.

Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ,
Rustgi A, Fuchs SY, Diehl JA. 2006. Phosphorylation-dependent
ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin)
complex. Mol Cell. 24:355–366.

Lin WH, Liu WC, Hwang MJ. 2009. Topological and organizational
properties of the products of house-keeping and tissue-specific
genes in protein-protein interaction networks. BMC Syst Biol.
3:32.

Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK. 2006.
Intrinsic disorder in transcription factors. Biochemistry
45:6873–6888.

Makino T, Gojobori T. 2006. The evolutionary rate of a protein is
influenced by features of the interacting partners. Mol Biol Evol.
23:784–789.

Manna B, Bhattacharya T, Kahali B, Ghosh TC. 2009. Evolutionary
constraints on hub and non-hub proteins in human protein
interaction network: insight from protein connectivity and
intrinsic disorder. Gene 434:50–55.

Moult J, Fidelis K, Kryshtafovych A, Rost B, Hubbard T,
Tramontano A. 2007. Critical assessment of methods of protein
structure prediction-Round VII. Proteins 69(Suppl 8):3–9.

Pal C, Papp B, Lercher MJ. 2006. An integrated view of protein
evolution. Nat Rev Genet. 7:337–348.

Park SG, Choi SS. 2010. Expression breadth and expression
abundance behave differently in correlations with evolutionary
rates. BMC Evol Biol. 10:241.

Su AI, Wiltshire T, Batalov S, et al. (13 co-authors). 2004. A gene
atlas of the mouse and human protein-encoding transcrip-
tomes. Proc Natl Acad Sci U S A. 101:6062–6067.

Uversky VN, Oldfield CJ, Dunker AK. 2005. Showing your ID:
intrinsic disorder as an ID for recognition, regulation and cell
signaling. J Mol Recognit. 18:343–384.

Uversky VN, Oldfield CJ, Dunker AK. 2008. Intrinsically disordered
proteins in human diseases: introducing the D2 concept. Annu
Rev Biophys. 37:215–246.

Vavouri T, Semple JI, Garcia-Verdugo R, Lehner B. 2009. Intrinsic
protein disorder and interaction promiscuity are widely
associated with dosage sensitivity. Cell 138:198–208.

Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. 2004. Prediction
and functional analysis of native disorder in proteins from the
three kingdoms of life. J Mol Biol. 337:635–645.

Xing Y, Ouyang Z, Kapur K, Scott MP, Wong WH. 2007. Assessing
the conservation of mammalian gene expression using high-
density exon arrays. Mol Biol Evol. 24:1283–1285.

Yanai I, Benjamin H, Shmoish M, et al. (12 co-authors). 2005.
Genome-wide midrange transcription profiles reveal expression
level relationships in human tissue specification. Bioinformatics
21:650–659.

Yang JR, Zhuang SM, Zhang J. 2010. Impact of translational error-
induced and error-free misfolding on the rate of protein
evolution. Mol Syst Biol. 6:421.

Yang X, Welch JL, Arnold JJ, Boehr DD. 2010. Long-range interaction
networks in the function and fidelity of poliovirus RNA-
dependent RNA polymerase studied by nuclear magnetic
resonance. Biochemistry 49:9361–9371.

Chen et al. · doi:10.1093/molbev/msr068 MBE

2520


