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Abstract
Statistical estimators of the magnitude-squared spectrum are derived based on the assumption that
the magnitude-squared spectrum of the noisy speech signal can be computed as the sum of the
(clean) signal and noise magnitude-squared spectra. Maximum a posterior (MAP) and minimum
mean square error (MMSE) estimators are derived based on a Gaussian statistical model. The gain
function of the MAP estimator was found to be identical to the gain function used in the ideal
binary mask (IdBM) that is widely used in computational auditory scene analysis (CASA). As
such, it was binary and assumed the value of 1 if the local SNR exceeded 0 dB, and assumed the
value of 0 otherwise. By modeling the local instantaneous SNR as an F-distributed random
variable, soft masking methods were derived incorporating SNR uncertainty. The soft masking
method, in particular, which weighted the noisy magnitude-squared spectrum by the a priori
probability that the local SNR exceeds 0 dB was shown to be identical to the Wiener gain
function. Results indicated that the proposed estimators yielded significantly better speech quality
than the conventional MMSE spectral power estimators, in terms of yielding lower residual noise
and lower speech distortion.

Index Terms
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I. Introduction
A number of estimators of the signal magnitude spectrum have been proposed for speech
enhancement (see review in [1, Ch. 7]). The minimum mean square error (MMSE)
estimators [2][3] of the magnitude spectrum, in particular, have been found to perform
consistently well, in terms of speech quality, in a number of noisy conditions [4]. Several
MMSE estimators of the power spectrum [5][6][7] or more general the pth-power magnitude
spectrum [8] have also been proposed. In some applications such as speech coding [6],
where the autocorrelation coefficients might be needed, the optimal power-spectrum
estimator might be more useful than the magnitude estimator. Some [9][10] have also
incorporated the power-spectrum estimator in the “decision-directed” approach used for the
computation of the a priori SNR. This was based on the justification that the MMSE
estimator of the power-spectrum is not equivalent to the square of the MMSE estimator of
the magnitude spectrum, which is often used in the implementation of the “decision-
directed” approach.
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Analysis of the attenuation curves of the MMSE estimators of the pth-power magnitude
spectrum revealed that these estimators provide less attenuation than the linear and log-
MMSE estimators, at least for p ≥2 [8]. This in turn leads to substantial residual noise. In the
present paper, we derive estimators of the short-time power-spectrum, henceforth denoted as
magnitude-squared spectrum, which markedly reduce the residual noise without introducing
speech distortion. Maximum a posteriori (MAP) estimators and MMSE estimators of the
magnitude-squared spectrum are derived. A number of MAP estimators of the magnitude
spectrum have been proposed [11][7][12] [13][14] in the literature, but no MAP estimators
of the magnitude-squared spectrum have been reported. Furthermore, no closed form
solutions of the MAP estimators of the magnitude spectrum were derived in prior studies
without resorting to some approximations to the underlying density or the Bessel function.
In contrast, no approximations are used in the derivation of the proposed MAP estimator of
the magnitude-squared spectrum. The proposed MMSE and MAP estimators are derived
using a Gaussian statistical model [2] and the assumption that the magnitude-square
spectrum of the noisy speech signal can be computed as the sum of the (clean) signal and
noise magnitude-squared spectra. This assumption has been used widely in spectral
subtraction algorithms [15][16][17][18][19][20], as well as in statistical-model based speech
enhancement algorithms [5], and is known to hold statistically assuming that the signal and
noise are independent and zero mean. Under some conditions [21], this assumption also
holds in the instantaneous case, i.e., for short-time magnitude-squared spectra.

Of particular interest in this paper is the derived gain function of the MAP estimator of the
magnitude-square spectrum, which is shown to be the same as the ideal binary mask. The
ideal binary mask is a simple technique which is widely used in the computational auditory
scene analysis (CASA) field [22]. The ideal binary mask can be considered as a binary gain
function which assumes the value of 1 if the local SNR at a particular time-frequency (T–F)
unit is larger than a threshold, and assumes the value of 0 otherwise. When the ideal binary
mask is applied to the spectrum (computed using either the FFT or a filterbank) of the noisy
speech signal, it can synthesize a signal with high intelligibility even at extremely low SNR
levels (−5, −10 dB) [23][24]. The optimality of the ideal binary mask, in terms of
maximizing the SNR, was analyzed in [25]. The concept of the ideal binary mask has been
motivated by auditory masking principles [26], but has not been derived thus far analytically
using known statistical techniques. A theoretical formulation of the ideal binary mask is
presented in this paper, along with some new techniques for estimating the binary mask. As
the construction of the MAP gain function relies on estimates of the SNR at each frequency
bin, new estimators are proposed that incorporate SNR uncertainty. The SNR thresholding
rule used in the ideal binary mask bears resemblance to the “hard-thresholding” rule used in
wavelet denoising [27][28][29]. The similarities and dissimilarities of the ideal binary mask
with the wavelet shrinkage rules are discussed.

This paper is organized as follows. Section II presents the background information, and
Section III presents the assumptions, and also derives the MMSE estimator that uses these
assumptions. The derivation of MAP estimator is presented in Section III-C. Section IV
presents the details of soft mask estimators incorporating SNR uncertainty, and also
analyzed the relationship between these estimators and binary masking. Section V provides
the implementation details, Section VI presents the experimental results, and finally Section
VII gives the conclusions.

II. Background
Let y(n) = x(n) + d(n), denote the noisy signal, with x(n) and d(n) representing the clean
speech and noise signals respectively. Taking the short-time Fourier transform of y(n), we
get:
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(1)

The above equation can also be expressed in polar form as:

(2)

where {Yk,Xk,Dk} denote the magnitudes and {θy(k), θx(k), θd(k)} denote the phases at
frequency bin k of the noisy speech, clean speech and noise, respectively.

Wolfe and Godsill [7] proposed the following MMSE estimator of the short-time power
spectrum (MMSE-SP):

(3)

where,

(4)

(5)

and ξk and γk denote the a priori and a posteriori SNRs respectively. The derivations of the
above MMSE estimator as well as the MAP estimator were based on the following Rician
posterior density fXk(Xk|Y (ωk)):

(6)

where

(7)

(8)

(9)

and I0(·) is the first kind modified Bessel function of zeroth order. Approximations of the
I0(·) Bessel function were found necessary in [7][14] in order to derive the MAP estimator
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of the magnitude spectrum. Analysis of the suppression curves in [7] revealed that the
MMSE spectral power suppression rule of (3) follows that of the MMSE magnitude
estimator [2] closely, but provides less suppression in regions of low a priori SNR.

The proposed estimators of the short-time power-spectrum will be compared against the
above estimator.

III. Proposed Magnitude-Squared Estimators
A. Statistical Model and Assumptions

Assuming that x(n) and d(n) are uncorrelated stationary random processes, the power
spectrum of the noise-corrupt signal, Py(ω) is simply the sum of the power spectra of the
clean speech and noise:

(10)

The above assumption is true only in the statistical sense. However, taking this assumption
as a reasonable approximation for short-term (20ms in this paper) spectra, its application can
lead to simple noise reduction methods [16].

Two assumptions are used in the derivation of the proposed estimators. The first assumption
used in this paper is based on (10) by approximating the power spectrum using the
magnitude-squared spectrum, which is the sample estimate of the ensemble average.
Therefore, we rewrite (10) as follows:

(11)

Note that  is limited in  due to (11). The above approximation is in fact widely used
in all spectral subtractive algorithms [16][17][18][19][20], as well as in statistical-model
based speech enhancement algorithms [5]. Analysis in [21] indicated that in high or low
SNR conditions, (11) still holds in the instantaneous sense.

In the rest of the paper, we will be referring to  as the magnitude-squared
spectra of the noisy, clean and noise signals, respectively.

The second assumption is that the real and imaginary parts of the DFT coefficients are
modeled as independent Gaussian random variables with equal variance [2][30].
Consequently, the probability density of  is exponential [31, pp. 190], and is given by:

(12)

Similarly, the density of  is given by:

(13)

where  are given by (5).
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The posterior probability density of the clean speech magnitude-squared spectrum can be
obtained using the Bayes’ rule as follows:

(14)

where  and λ(k) is defined as,

(15)

and

(16)

Note that if , then , and vice versa. Thus, Ψk in (14) is always positive.

B. The Minimum Mean Square Error Estimator
Using equations (11)–(14), we can derive two different estimators of the magnitude-squared
spectrum. The MMSE estimator is obtained by computing the mean of the posteriori density
given in (14):

(17)

where ν is defined as:

(18)

Note that the above MMSE estimator is derived by computing the mean of the posteriori
density conditioned on the noise-corrupt magnitude-squared spectrum , rather than the
complex noisy spectrum (Y (ωk)). This differentiates the present MMSE estimator from that
derived in (3) [6][7].

The gain function of the above MMSE estimator is given by:

(19)

We will henceforth refer to the above estimator as the MMSE-SPZC estimator, where SPZC
stands for Spectrum Power estimator based on Zero Cross-terms assumptions. Note that
much like the gain function of MMSE-SP estimator (3), the above gain function depends on
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two parameters, ξk and γk. Figures 1 and 2 show the gain function of the MMSE-SPZC
estimator for fixed values of ξ and fixed values of γ respectively. As can be seen from these
two figures, the MMSE-SPZC estimator provides more suppression than the MMSE-SP
estimator for small values of ξ (ξ <0 dB) and large values of γ (γ >10 dB). We thus expect
the MMSE-SPZC estimator to reduce the residual noise commonly encountered in speech
processed by the MMSE-SP estimator. It is interesting to note, that when ξ = 0 dB, the
MMSE-SPZC estimator provides constant attenuation of −3 dB, independent of the value of
γ. This is shown analytically in (17) and in Appendix A.

Note that Ding et al. [5] proposed this MMSE estimator incorporating a mixture of
Gaussians for modeling the clean speech variance. A mixture model, trained using data from
a large database, was used for online estimation for the clean speech from the corrupted
speech. Unlike [5], a single Gaussian was used in the present study for modeling the density
of the real and imaginary parts of the DFT coefficients.

C. The Maximum A Posterior (MAP) Estimator
The a posterior probability density (14) function is monotonic, and when ξ (expressed in
dB) changes its sign, the density changes its direction (increasing vs. decreasing). This
simplifies the maximization a great deal. The MAP estimator is given as follows:

(20)

Note that  is limited in  due to (11). Based on (14), when , the

conditional density is uniformly  in the range of , and therefore the MAP estimate
in this special case could be any value in the range of . In our case, we chose to use
the noisy observation as in (20). The gain function of the MAP estimator is given by:

(21)

Using (4), the above gain function can also be written as:

(22)

Note that unlike the MMSE gain function (19), the MAP gain function is binary valued. In
fact, it is nearly the same as the ideal binary mask widely used in CASA [22][23]. In CASA,
the binary mask assigns a binary weight for each time-frequency unit based on the value of
the local, instantaneous, SNR. If the local SNR is greater than a pre-defined threshold (e.g.,
0 dB), the binary mask takes the value of 1, and if it is less than the threshold, the binary
mask takes the value of 0. Speech is synthesized by multiplying the binary mask with the
noisy signal, and large gains in intelligibility were reported in [23][24] with speech
synthesized by the ideal binary mask. The gain function implicitly used in the ideal binary
mask technique is nearly identical to that given by (22). The main difference between the
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ideal binary mask and the MAP gain function (22) is that the latter is based on the a priori
SNR, whereas the ideal binary mask is based on the instantaneous SNR.

It is also interesting to note that this MAP estimator follows a so-called “hard-thresholding”
rule often used in the wavelet shrinkage literature [32][27][28]. The hard-thresholding rule
belongs to the class of diagonal linear projection estimators. These estimators [32] share the
same rule as given in (22) in that they keep the observation when the signal is larger than the
noise level, and “kill” the observation otherwise. According to [32] the ideal risk for our

estimation problem at hand can be computed as . There are
however, a number of differences between the diagonal estimators used in the wavelet
literature and the above MAP estimator. For one, the diagonal estimators operate on the
wavelet coefficients, which possess a different distribution than the Fourier coefficients used
in the present study. The wavelet transform produces a sparse signal and noise is typically
spread out equally over all coefficients [29]. Secondly, most of the oracle risk bounds that
were computed for different thresholding rules are not applicable here, as those bounds were
derived under the assumption that the additive noise was Gaussian [33][34]. In our case, the
magnitude-squared spectrum of the noise in our model in (11) is assumed to have an
exponential distribution, i.e., our additive noise model in (11) is based on an exponential
distribution assumption and not a Gaussian assumption. In brief, while the proposed MAP
estimator is similar to the hard-thresholding rule used in the wavelet shrinkage literature, the
underlying assumptions and criteria are totally different.

As mentioned earlier, a number of MAP estimators of the magnitude spectrum have been
proposed in the literature [35][12][13][14][11][7] for speech enhancement, and these are
summarized in Table I. There are however a number of distinct differences between the
derived MAP estimator and the previous MAP estimators. For one, no MAP estimators of
the magnitude-squared spectrum have been reported previously. Secondly, the posteriori
density used in prior studies (except [14]) is different as it is conditioned on the complex
spectrum of the noisy signal, rather than the magnitude-squared spectrum of the noisy signal
(see Table I). As shown in Eq. (6), the posteriori density involved in the derivation of
previous MAP estimators contains a Bessel function (Io(x)), making it difficult to derive a
closed form solution for the MAP estimator. In fact, a closed form solution was found in
previous MAP estimators [11][7][12] [13][14] only after approximating the Bessel function
with a function of the form . While this approximation is valid for large values
of x, it becomes erroneous for small values of x. In contrast, the derived posteriori density
(see Eq. (14)) in the present study has a much simpler form enabling us to derive a closed
form solution without resorting to any approximations. Furthermore, based on the fact that

 (owing to Eq. (11)), the integration is simplified a great deal, as shown for instance
in Eq. (17). In [14], the authors opted to approximate the Laplacian and Gamma
distributions with parametric density functions. In brief, we derived in the present study a
MAP estimator of the magnitude-squared spectrum, rather than a MAP estimator of the
magnitude spectrum (already reported previously - see Table I), and this MAP estimator was
derived in closed-form without making any approximations. Finally, and perhaps more
importantly, we demonstrated that there exists a link between the proposed MAP estimator
and the ideal binary mask used in CASA applications.

IV. Incorporating SNR Uncertainty and proposed soft masks
We showed in the last section that the MAP estimator is similar to the binary mask
technique used in CASA [22]. The ideal binary mask (IdBM) is often used as the
computational goal in CASA [25][22]. Use of IdBM has been shown to restore speech
intelligibility even when speech is corrupted at extremely low SNR levels [23][24][36].
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However, implementation of IdBM requires access to the true local (instantaneous) SNR
rather than the a priori SNR. Estimation of the local SNR is difficult as it requires
knowledge of the speech and noise magnitude-squared spectra, which we do not have.
Furthermore, applying a binary gain to noisy speech spectra, could affect the quality of
speech in that frequent zeroing of spectral components (when the local SNR < 1) could
potentially produce musical noise. This is so because the zeroing of spectral components can
create small, isolated peaks in the spectrum occurring at random frequency locations in each
frame. Converted to the time domain, these peaks sound similar to tones with frequencies
that change randomly from frame to frame, and produce musical noise. In brief, there exists
an uncertainty of estimating the local and a priosi SNR accurately and reliably at all SNR
levels.

In this section, we propose soft masking methods which incorporate local SNR uncertainty,
thereby making the gain function continuous (soft) rather than binary. Henceforth, we refer
to these estimators as soft masking estimators. Methods for estimating reliably a binary gain
function, as required for the IdBM technique, have been reported in [36][37].

In the rest of this section, we propose two soft masking methods that incorporate a priori
and a posteriori SNR uncertainty, respectively.

A. Soft mask formulation
The variances of the speech and noise spectra are the key parameters in most statistical
models. As neither speech or noise are stationary, their variances are time-varying.
However, in short-time intervals (10–30 ms), the speech and noise signals can be assumed to
be quasi-stationary processes. Their variances can be modeled as unknown but deterministic
parameters. Thus, the a priori SNR ξk can also be assumed to be unknown but
deterministic1. Given the a priori SNR, the probability density of the local (instantaneous)
SNR can be computed. More precisely, after defining the instantaneous SNR, ξI, as follows:

(23)

we express the ideal binary mask (IdBM) rule as:

(24)

Following the approach in [40], we formulate the binary mask problem using the following
binary hypothesis model:

(25)

The gain function G in (24) can be considered to be a random variable as it depends on the
instantaneous SNR, ξI. In the context of binary masking, G is a Bernoulli distributed random
variable taking the value of 0 or 1, and its parameter p is the hypothesis probability P(H1). It
is difficult to estimate G as it depends on accurate estimates of the instantaneous SNR.

1The noise variance is typically estimated using noise PSD estimation methods, such as the minimum statistics [38], and Minimum
Controlled Recursive Average [39] algorithms. The a priori SNR is usually estimated by the “decision-directed” [2] method.
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However, we can obtain G more reliably by taking its expectation. In doing so, we obtain
the following weighted average estimate of the magnitude-square spectrum now
incorporating the above two hypothesis:

(26)

where P(H1) denotes the probability that hypothesis H1 is true, E[Gk|H1] denotes the gain
function assuming that hypothesis H1 is true (i.e., target signal dominates) and E[Gk|H0]
denotes the gain function assuming that hypothesis H0 is true (i.e., masker dominates). From
Eq. (24), E[Gk|H1] = 1 and E[Gk|H0] = 0. In practice, using a very small value for E[Gk|H0]
results in better quality and with enhanced speech containing small amounts of residual
noise. In our study, we used the value of Gf = −20 dB for E[Gk|H0] to minimize the residual
noise. In the next two sub-sections, we derive the probability terms P(H1) and P(H0).

B. Soft masking by incorporating a priori SNR uncertainty
Assuming independence between the clean speech and noise magnitude-squared spectra, we
can easily use (12) and (13) to model the hypothesis probability given the a priori SNR ξ.
As we do not use any other constraint or assumption, we refer to this hypothesis probability
as the a priori SNR uncertainty.

Using the exponential models for  (i.e., (12) and (13)) it is easy to derive (see
Appendix B) the probability density of ξI as:

(27)

where u(·) is the step function. For an arbitrary SNR threshold θ, the hypothesis probability
needed in (26) is computed as:

(28)

Note that the above probability can only be assessed when the a priori SNR ξ is given. We
refer to this probability as priori since it does not require information from the noise-corrupt
observations and does not need the assumption of Eq. (11). As mentioned before, ξ can be
estimated using the “decision-directed” approach in conjunction with noise PSD estimation
algorithms.

Finally, by inserting (28) into (26), we get:

(29)

where ξk is the a priori SNR (4). It is interesting to note that when θ = 1, the above estimator
becomes identical to the Wiener filter. We will be referring to the above estimator as the soft
mask estimator with a priori SNR uncertainty, and we denote it as SMPR.

Fig. 3 plots the gain function of the SMPR estimator for three different thresholds, θ = −5, 0
and 5dB. The gain function of the Wiener filter is superimposed for comparative purposes.
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As discussed, the Wiener gain is identical to the SMPR gain for θ = 0 dB. For thresholds θ >
0 dB, the SMPR gain function becomes steep and more aggressive, while for thresholds θ <
0 dB, the SMPR gain function becomes shallow and less aggressive.

There exists a large body of literature in wavelet denoising in terms of choosing the right
threshold, and includes among others adaptive selection selection procedures such as the
SURE [28] and cross-validation methods. These threshold selection techniques, however,
are based on the Gaussian additive model assumption, which as discussed previously (see
Sec. III-C) is not applicable to our study. Our choice of thresholds was based largely on
perceptual studies. The study in [23] for instance, indicated that SNR threshold values in the
range of [−12, 5] dB produced large improvements in intelligibility. This range of SNR
threshold values will be examined in the present study.

C. Soft masking based on posteriori SNR uncertainty
Clearly the above SMPR estimator did not incorporate information about the noisy
observations, as it relied solely on a priori information about the instantaneous SNR ξI. It is
reasonable to expect that a better estimator could be developed by incorporating posteriori
information about the SNR at each frequency bin. In this case, we incorporate the
assumption given in (11) to compute the hypothesis probability, which is referred to as a
posteriori SNR uncertainty.

This hypothesis probability can be computed as the posteriori probability of ξI,k ≥ θ as
follows:

(30)

Inserting (14) into (30), we get,

(31)

Finally, substituting (31) into (26), we obtain the following estimator:

(32)

We will be referring to the above estimator as the soft mask estimator with posteriori SNR
uncertainty, and will be denoted as SMPO.

The SMPO gain function (32) is dependent on both the ξ and the γ values. Figures 4 and 5
plot the gain functions of SMPO as a function of ξ (for fixed values of γ) and as function of
γ (for fixed values of ξ) respectively. For these plots the SNR threshold was fixed at θ =0
dB. The gain function of the MMSE-SPZC estimator (19) is plotted for comparison. As can
be seen from both figures, the gain function of the SMPO estimator is more aggressive (i.e.,
provides more attenuation) than the MMSE-SPZC for low values of ξ (ξ <−5 dB). Fig. 6
plots the gain function of the SMPO estimator for different values of θ (with γ fixed at 0
dB). Overall, the gain functions are steep, resembling to some degree binary functions (at
least for the value of γ chosen), with small values of θ (θ < 0 dB) shifting the curve to the
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left and large values of θ (θ > 0 dB) to the right, as expected. Unlike the binary gain function
of the MAP estimator (22) which depends solely on the value of ξ, the gain function of the
SMPO estimator depends on information collected from both the ξ and γ parameters. As
shown in Fig. 4, the γ parameter can shift the gain function to the right (for large values of γ)
and to the left (for smaller values of γ). For that reason, we expect the SMPO estimator to be
more robust than the MAP estimator (22) to inaccuracies in the estimate of ξ.

V. Implementation
Estimates of the a priori SNR ξ are needed in the implementation of the MMSE-SPZC,
SMPO and SMPR estimators. For that, we used the “decision-directed” [2] approach:

(33)

where ξmin = −20 dB, l denotes the frame index and  denotes the estimate of the noise
variance.

The MAP estimator can be implemented by either using Eq. (21) or Eq. (24). Both
implementations were considered. In order to estimate the instantaneous SNR ξ̂I,k needed in
Eq. (24), we used the MMSE estimator to obtain the spectral amplitude estimate X̃k of the

clean speech and thereafter computed the instantaneous SNR as . This method
was noted as MAP-BM.

For the implementation of the MAP estimator given in (21), a method was needed to
compute the signal variance . More precisely, the following method was adopted for
estimating the signal variance:

(34)

where ak is a smoothing constant (computed adaptively) and  is estimated from the
current frame as follows:

(35)

and  is computed using first-order recursive smoothing:

(36)

where η is a smoothing constant. The signal variance  was computed using (3) as
follows:

(37)
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A simple adaptive method was used to adjust the smoothing constant αk in (34). The
motivation behind the adaptive rule described below is to use a small value of α when γ is
large, and a comparatively larger value when γ is small:

(38)

where α0 < α1 < 1, and ζk are adaptive thresholds determined similarly by:

(39)

where ζ0, ζ0 and δ are constants. Figure 7 shows example estimates of α for a sentence
corrupted by babble at 10 dB SNR. The signal variance estimate is also shown in panel (c)
based on (34) and (37). As can be seen, when γ is small, the value of α is large (α1 = 0.96),
suggesting that more emphasis should be placed on the previous frame’s variance estimate.
Hence, for the most part, low-energy segments use α1, while high-energy segments use α0.

In our study we adopted the following constants: η = 0.65 (36), δ = 0.2, ζ0 = 14, ζ1 = 5, α1 =
0.96, and α0 = 0.92. Different values of α were used in (33) for different estimators. For the
MMSE-SP estimator it was set to α = 0.98, for the MMSE-SPZC estimator it was set to α =
0.97, and for the SMPR and SMPO estimators it was set to α = 0.90. These values were
optimized for each estimator based on their resulting PESQ [41] score2. This ensured best
performance from each estimator.

For the soft masking methods incorporating SNR uncertainty, i.e., SMPR (29) and SMPO
(32), the E[Gk|H0] term was set to Gf = −20 dB in order to retain small amounts of residual
noise and make the quality of the enhanced speech more natural.

Speech was segmented into 20-ms frames and Han-windowed with 50% overlap. The short-
time Fourier transform was applied to each frame to obtain the noisy magnitude spectrum
Yk. The gain functions Gk of the derived estimators (Sections III and IV) were applied to the
noisy magnitude spectrum to get the enhanced signal spectrum X̂k as X̂k = GkYk. An inverse
Fourier transform was taken of X̂k using the noisy speech phase spectrum to reconstruct the
time-domain signal. The overlap-add method was used to obtain the enhanced signal.

VI. Experiments
A total of 30 sentences taken from the NOIZEUS [4] database was used to evaluate the
performance of the proposed estimators. The sentences were corrupted by car, street, babble
and white noise at 0 dB, 5 dB, 10 dB and 15 dB. Two measures were used to assess
performance, the mean-square error (MSE) between the estimated (short-time) and the true
magnitude-squared spectrum, and the Perceptual Evaluation of Speech Quality (PESQ) [41]
measure. The MSE measure is defined as:

(40)

2Thirty sentences in 10 dB babble noise were used to optimize the selection of α for each estimator. Consistent results were obtained
in other types of noise.
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where  is the short-time magnitude-squared spectrum of the clean signal,  is the
estimated magnitude-squared spectrum, N is the total number of frequency bins, and M is
the total number of the frames in a sentence. While small values of MSE imply a better
estimate of the true magnitude-squared spectrum, they do not imply better speech quality.
For that reason, we used the PESQ [41] measure which has been found to correlate highly
[42] with speech quality. Unlike the MSE, higher PESQ values indicate better performance,
i.e., better speech quality.

A. Influence of threshold value on performance
In the first set of experiments, we wanted to examine the influence of the selected thresholds
in the performance of the SMPO and SMPR estimators. The thresholds were varied from −5
dB to 5 dB, and performance (in terms of MSE and PESQ scores) was assessed. Table II
shows the MSE results and Table III shows the PESQ results. In terms of PESQ scores,
better performance is obtained with the SMPR estimator when θ = 5 dB. This was found to
be consistent for all types of noise examined. For the SMPO estimator, good performance
(in terms of PESQ scores) was obtained with θ = 0 dB. The MSE values were consistently
low for θ = 0 dB. For that reason, we fixed the threshold to θ = 0 dB for the SMPO estimator
and to θ = 5 dB for the SMPR estimator in subsequent experiments.

B. Evaluation of proposed estimators
In the second set of experiments, we first compared the performance of the magnitude-
squared spectrum estimators derived in the present study against that proposed by [7] (see
(3)). The latter estimator (3) derived in [7][6] is denoted as MMSE-SP. In addition, for
benchmark purposes we report the performance of the (oracle) ideal binary mask and ideal
ratio masks [25], which assume access to the true instantaneous SNR of each bin. These
oracle estimators are included as they provide the upper bound in performance of the MAP
estimators. The ideal binary mask (noted as IdBM) adopts the rule of (24), while the ideal
ratio mask (noted as IdRM) is computed using the following gain function [43]:

(41)

For further evaluation of the MMSE-SPZC (17) estimator, and following [40][44], we
incorporated the SNR uncertainty in the estimator. In Section IV, we derived the probability
of the local SNR exceeding a threshold. We assume that when the local SNR is below −20
dB, speech is absent. The hypothesis is given below:

(42)

Therefore, the probabilities of  can be computed by (30), by setting the threshold θ =
−20 dB.

The MMSE-SPZC estimator incorporating a priori SNR uncertainty is denoted as “MMSE-
SPZC-U” and is implemented as follows:

(43)

When speech is absent, a minimum gain Gmin = −28 dB is used.
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Finally, to determine the influence of noise estimation accuracy in the performance of the
proposed estimators, we run experiments using an oracle noise estimator [10], and a
different set of experiments using the the Minimum Controlled Recursive Average (MCRA)
noise estimator [39]. The oracle estimator of the noise variance  is computed as:

(44)

where β = 0.85 in this study and D2(k, l) is the true noise magnitude-squared spectrum in
frame l and frequency bin k. The above oracle noise estimator was used to assess the
performance of the various estimators in the absence of the confounding effect of the
feedback introduced by the estimate of the noise spectrum in the computation of the a priori
SNR in (33). To assess significant differences between the scores obtained with the various
estimators, we used the Fisher’s LSD statistical test.

1) Results with the oracle noise estimator—Tables IV and V show the performance
comparisons based on the MSE and PESQ measures respectively. In terms of MSE, lower
values indicate better performance. The unprocessed corrupted speech is noted as UNProc in
the Tables. The MMSE-SPZC estimator yielded significantly (significance level p < 0.05)
lower MSE values than the MMSE-SP estimator for all four types of noise tested and for all
SNR levels. The SMPR estimator yielded the lowest MSE values in most noisy conditions,
followed by the SMPO estimator. The MAP estimator also yielded significantly (p < 0.05)
lower MSE values than the MAP-BM estimator. The MMSE-SPZC-U estimator yielded
slightly higher MSE than MMSE-SPZC. The IdRM yielded lower MSE values than IdBM.
This outcome was consistent with that reported in [25]. In the following discussion,
comparisons in performance are analyzed only between the proposed estimators and not
against the oracle estimators, IdBM and IdRM.

In terms of PESQ, higher values indicate better performance, i.e., better speech quality. The
IdRM and IdBM yielded, as expected, the highest scores. The MMSE-SPZC yielded
significantly higher (p < 0.05) PESQ scores than MMSE-SP. The MAP estimator yielded
significantly better PESQ scores than MMSE-SP, MMSE-SPZC and MAP-BM. Finally, the
performance of the SMPR and SMPO estimators was significantly higher than the other
estimators (except for IdRM and IdBM), and in particular the MMSE-SP and MMSE-SPZC
estimators. In babble noise (0 dB SNR), for instance, the PESQ scores improved from 1.894
with the MMSE-SP estimator [7] to 2.137 with the proposed SMPO estimator. Similar
improvements were also noted at all SNR levels and with the other types of noise. The
MMSE-SPZC-U estimator yielded slightly higher PESQ value than MMSE-SPZC for car,
street and babble noise, but it yielded significantly higher PESQ than the MMSE-SPZC in
white-noise conditions, but still lower PESQ values than SMPR and SMPO. Overall, the
SMPO estimator yielded the highest PESQ scores in all conditions.

2) Results with the MCRA noise estimator—Tables VI and VII show the
performance, in terms of MSE and PESQ values respectively, of the proposed estimators
implemented using the MCRA noise estimation algorithm.

In terms of MSE, the MMSE-SPZC estimator yielded significantly (p < 0.05) lower MSE
values than MMSE-SP, for most cases except at 0 dB SNR in the street and babble noise
conditions. The MMSE-SPZC-U yielded slightly higher MSE values than MMSE-SPZC.
The MAP estimator yielded significantly (p < 0.05) lower MSE values than MAP-BM for
most cases except at 0 dB SNR in the street and babble noise conditions. The SMPR
estimator yielded the lowest MSE values in the low SNR (0dB and 5dB) conditions, while
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the SMPO estimator yielded the lowest MSE values in the high SNR (10 dB and 15 dB)
conditions.

In terms of PESQ, shown in Table VII, the MMSE-SPZC yielded significantly higher (p <
0.05) PESQ scores than MMSE-SP. The MMSE-SPZC-U yielded slightly higher PESQ
scores than MMSE-SPZC for car, street and babble noise conditions, but yielded higher (by
0.1) PESQ scores than MMSE-SPZC in white-noise conditions. The MAP estimator yielded
significantly better PESQ scores than MAP-BM in the car and white noise conditions, but no
statistically significant difference (p > 0.05) was noted between the MAP and MAP-BM
estimators in the street and babble noise conditions. The SMPO estimator yielded
significantly (p < 0.05) higher PESQ scores than the other estimators in the car and white
noise conditions. Finally, the performance of the SMPR estimator was significantly better
than the other estimators in the street and babble noise conditions.

C. Spectrograms
Figures 8 and 9 show sample spectrograms of speech processed by the various estimators.
The sample sentence was corrupted by babble at 10 dB SNR. The IdRM output clearly
resembles the clean signal. Residual noise is evident in the spectrogram showing the
MMSE-SP output (Fig. 8). This residual noise is reduced considerably in the MMSE-SPZC
output speech (Fig. 9). The MAP estimators greatly reduced the residual noise even further.
A smaller amount of distortion was introduced with the MAP-processed speech. The SMPR
speech contained more residual noise than the MAP estimator. Finally, the SMPO output
speech had less speech distortion and low noise distortion. Informal listening tests confirmed
that SMPO yielded the highest quality, consistent with the PESQ data shown in Table V.

VII. Conclusions
Statistical estimators of the magnitude-squared spectrum were derived based on the
assumption that the magnitude-squared spectrum of the noisy speech signal can be
computed as the sum of the clean signal and noise magnitude-squared spectrum. Aside from
the two traditional estimators, based on MAP and MMSE principles, two additional soft
masking methods were derived incorporating SNR uncertainty. Overall, when compared to
the conventional MMSE spectral power estimators [6][7], the proposed MAP estimators that
incorporated SNR uncertainty yielded significantly better speech quality. The main
contribution of this paper is the finding that the gain function of the MAP estimator of the
magnitude-squared spectrum is identical to that of the ideal binary mask. This finding is
important as it suggests that the MAP estimator of the magnitude-squared spectrum has the
potential of improving speech intelligibility, given the past success of the ideal binary mask
in improving, and in most cases, restoring speech intelligibility at extremely low SNR levels
[23][24][36]. The challenge remaining is to find techniques that can estimate the local SNR
reliably from the noisy observations.
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Appendix A
In this appendix, we derive the convergence of the MMSE gain function, given in (19), in
the case that  or equivalently when ξ=1. When ξ ≠ 1, we have:
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(45)

When ξ → 1, ν → 0, and . To avoid the singularity, we use the Taylor series
expansion of the exponential term:

(46)

In doing so, we get:

(47)

Appendix B
In this appendix, we derive the a priori distribution of the instantaneous SNR, ξI.

Let {pi} and {qj} be i.i.d Gaussian random variables, with .
Let p and q denote the sum of their squares:

(48)

If , then  is known to be F-distributed [31, pp. 208]:

(49)

where Γ(·) denotes the Gamma function. In our case, , m = n = 2, and
. We can then express the instantaneous SNR, ξI as:

(50)

From that, we can obtain the probability density of ξI as:

(51)
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where u(z) is the step function and ξ is the a priori SNR.

References
1. Loizou, P. Speech Enhancement: Theory and Practice. 1st ed.. CRC Taylor and Francis; 2007.
2. Ephraim Y, Malah D. Speech enhancement using a minimum mean square error short-time spectral

amplitude estimator. IEEE Trans. Acoust., Speech, and Signal Processing. 1984; vol. 32(no. 6):
1109–1121.

3. Ephraim Y, Malah D. Speech enhancement using a minimum mean square error log-spectral
amplitude estimator. IEEE Trans. Acoust., Speech, and Signal Processing. 1985; vol. 33(no. 2):443–
445.

4. Hu Y, Loizou P. Subjective evaluation and comparison of speech enhancement algorithms. Speech
Communication. 2007; vol. 49:588–601. [PubMed: 18046463]

5. Ding GH, Huang T, Xu B. Suppression of additive noise using a power spectral density MMSE
estimator. IEEE Signal Processing Letters. 2004 June.vol. 11:585–588.

6. Accardi, A.; Cox, R. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP 1999).
Phoenix, Arizona: 1999 May. A modular approach to speech enhancement with an application to
speech coding; p. 201-204.

7. Wolfe PJ, Godsill SJ. Efficient alternatives to Ephraim and Malah suppression rule for audio signal
enhancement. EURASIP Journal on Applied Signal Processing. 2003; vol. 2003(no. 10):1043–
1051.

8. You CH, Koh SN, Rahardja S. β-order MMSE spectral amplitude estimation for speech
enhancement. IEEE Trans. on Speech and Audio Processing. 2005; vol. 13(no. 4):475–486.

9. Erkelens J, Jensen J, Heusdens R. A data-driven approach to optimizing spectral speech
enhancement methods for various error criteria. Speech Communication. 2007; vol. 49(no. 7–8):
530–541.

10. Cohen I. Relaxed statistical model for speech enhancement and a priori SNR estimation. IEEE
Trans. Speech and Audio Processing. 2005 Sept; vol. 13(no. 5):870–881.

11. Wolfe, PJ.; Godsill, SJ. Simple alternatives to the Ephraim and Malah suppression rule forspeech
enhancement; Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal
Processing; 2001 August. p. 496-499.

12. Lotter, T.; Vary, P. Noise reduction by maximum a posteriori spectral amplitude estimation with
super Gaussian speech modeling; Proc. International Workshop on Acoustic Echo and Noise
Control (IWAENC ’03); Kyoto, Japan: 2003 September. p. 83-86.

13. Lotter, T.; Vary, P. EUSIPCO. Vienna, Austria: 2004 September. Noise reduction by joint
maximum a posteriori spectral amplitude and phase estimation with super Gaussian speech
modeling; p. 1457-1460.

14. Lotter T, Vary P. Speech enhancement by map spectral amplitude estimation using a super-
Gaussian speech model. EURASIP Journal on Applied Signal Processing. 2005; vol. 2005(no. 1):
1110–1126.

15. Boll SF. Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust.,
Speech, and Signal Processing. 1979 April.vol. 27:113–120.

16. Berouti M, Schwartz M, Makhoul J. Enhancement of speech corrupted by acoustic noise. Proc.
IEEE Int. Conf. Acoust., Speech, Signal Processing. 1979:208–211.

17. Etter W, Moschytz GS. Noise reduction by noise-adaptive spectral magnitude expansion. J. Audio
Eng. Soc. 1994 May.vol. 42:341–349.

18. Sim BL, Tong YC, Chang JS, Tan CT. A parametric formulation of the generalized spectral
subtraction method. IEEE Trans. Speech and Audio Processing. 1998 July; vol. 6(no. 4):328–337.

19. Diethorn, EJ. Subband noise reduction methods for speech enhancement. In: Gay, SL.; Benesty, J.,
editors. Acoustic Signal Processing for Telecommunication. Kluwer Academic Publishers; 2000.
p. 155-178.

20. Faller C, Chen J. Suppressing acoustic echo in a spectral envelope space. IEEE Trans. on Speech
and Audio Processing. 2005 Sept; vol. 13(no. 5):1048–1062.

Lu and Loizou Page 17

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2011 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



21. Lu Y, Loizou P. A geometric approach to spectral subtraction. Speech Communication. 2008 June;
vol. 50(no. 6):453–466. [PubMed: 19122867]

22. Wang, D.; Brown, G., editors. Computational Auditory Scene Analysis: Principles, Algorithms,
and Applications. Wiley/IEEE Pres; 2006.

23. Brungart DS, Chang PS, Simpson BD, Wang D. Isolating the energetic component of speech-on-
speech masking with ideal time-frequency segregation. J. Acoust. Soc. Am. 2006; vol. 120(no. 6):
4007–4018. [PubMed: 17225427]

24. Li N, Loizou P. Factors influencing intelligibility of ideal binary-masked speech: Implications for
noise reduction. J. Acoust. Soc. Am. 2008; vol. 123(no. 3):1673–1682. [PubMed: 18345855]

25. Li Y, Wang D. On the optimality of ideal binary time-frequency masks. Speech Communication.
2009 March.vol. 51:230–239.

26. Wang, D. On ideal binary mask as the computational goal of auditory scene analysis. In: Divenyi,
P., editor. Speech Separation by Humans and Machines. Kluwer Academic Publishers; 2005. p.
181-197.

27. Donoho DL. De-noising by soft-thresholding. IEEE Trans. on Information Theory. 1995 May; vol.
41(no. 3):613–627.

28. Donoho DL, Johnstone IM. Adapting to unknown smoothness via wavelet shrinkage. Journal of
the American Statistical Association. 1995; vol. 90(no. 432):1200–1224.

29. Jansen, M. Noise reduction by wavelet thresholding. Vol. vol. 161. Springer Verlag; 2001. ser.
Lecture notes in Statistics

30. Jensen J, Batina I, Hendriks RC, Heusdens R. A study of the distribution of time-domain speech
samples and discrete fourier coefficients. Proc. SPS-DARTS. 2005; vol. 1:155–158.

31. Papoulis, A.; Pillai, SU. Probability, Random Variables and Stochastic Processes. 4th ed..
McGraw-Hill; 2002.

32. Donoho DL, Johnstone IM. Ideal spatial adaptation by wavelet shrinkage. Biometrika. 1994; vol.
81(no. 3):425–455.

33. MALLAT, S. A Wavelet Tour of Signal Processing. Academic Press; 1999.
34. Yu G, Mallat S, Bacry E. Audio denoising by time-frequency block thresholding. IEEE Trans. on

Signal Processing. 2008 May; vol. 56(no. 5):1830–1839.
35. Gauxain J-L, Lee C-H. Maximum a posteriori estimation for multivariate gaussian mixture

observations of markov chains. IEEE Trans. on Speech Audio Proc. 1994 April; vol. 2(no. 2):291–
299.

36. Kim G, Lu Y, Hu Y, Loizou PC. An algorithm that improves speech intelligibility in noise for
normal-hearing listeners. J. Acoust. Soc. Am. 2009 September; vol. 126(no. 3):1486–1494.
[PubMed: 19739761]

37. Kim G, Loizou PC. Improving speech intelligibility in noise using environment-optimized
algorithms. IEEE Trans. Audio, Speech, and Lang. Processing. 2010 September; vol. 18(no. 8):
2080–2090.

38. Martin R. Noise power spectral density estimation based on optimal smoothingand minimum
statistics. IEEE Trans. Speech and Audio Processing. 2001 July; vol. 9(no. 5):504–512.

39. Cohen I, Berdugo B. Noise estimation by minima controlled recursiveaveraging for robust speech
enhancement. IEEE Signal Processing Letters. 2002 January.vol. 9:12–15.

40. McAulay R, Malpass M. Speech enhancement using a soft-decision noise suppression filter. IEEE
Trans. on Acoust., Speech and Signal Processing. 1980 April; vol. 28(no. 2):137–145.

41. ITU. Perceptual evaluation of speech quality (PESQ), and objective method for end-to-end speech
quality assessment of narrowband telephone networks and speech codecs. ITU-T
Recommendation 862. 2000

42. Hu Y, Loizou P. Evaluation of objective quality measures for speech enhancement. IEEE Trans. on
Audio, Speech, and Language Processing. 2008; vol. 16(no. 1):229–238.

43. Srinivasan S, Roman N, Wang D. Binary and ratio time-frequency masks for robust speech
recognition. Speech Communication. 2006 November.vol. 48:1486–1501.

44. Cohen I. Optimal speech enhancement under signal presence uncertainty using log-spectra
amplitude estimator. IEEE Signal Processing Letters. 2002; vol. 9(no. 4):113–116.

Lu and Loizou Page 18

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2011 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Biographies
Yang Lu received the B.S and M.S degrees in electrical engineering from Tsinghua
University and the Institute of Acoustics, Chinese Academy of Sciences, Beijing, China in
2002 and 2005, respectively. He received his Ph.D. degree in electrical engineering from the
University of Texas at Dallas, Richardson, Texas, in 2010. He worked as a Research Intern
in Dolby Labs, San Francisco, California, in the summer of 2008. He is now with Cirrus
Logic in Austin, Texas, as a DSP Engineer. His research interests include speech
enhancement, microphone array and general audio signal processing.

Philipos C. Loizou (S’90-M’91-SM’04) received the B.S., M.S., and Ph.D. degrees in
electrical engineering from Arizona State University, Tempe, in 1989, 1991, and 1995,
respectively. From 1995 to 1996, he was a Postdoctoral Fellow in the Department of Speech
and Hearing Science, Arizona State University, working on research related to cochlear
implants. He was an Assistant Professor at the University of Arkansas, Little Rock, from
1996 to 1999. He is now a Professor and holder of the Cecil and Ida Green Chair in the
Department of Electrical Engineering, University of Texas at Dallas. His research interests
are in the areas of signal processing, speech processing, and cochlear implants. He is the
author of the textbook Speech Enhancement: Theory and Practice (CRC Press, 2007) and
co-author of the textbooks An Interactive Approach to Signals and Systems Laboratory
(National Instruments, 2008) and Advances in Modern Blind Signal Separation Algorithms:
Theory and Applications (Morgan & Claypool Publishers, 2010).

Dr. Loizou is a Fellow of the Acoustical Society of America. He is currently an Associate
Editor of the IEEE Transactions on Biomedical Engineering and International Journal of
Audiology. He was an Associate Editor of the IEEE Transactions on Speech and Audio
Processing (1999–2002), IEEE Signal Processing Letters (2006–2009), and a member of the
Speech Technical Committee (2008–2010) of the IEEE Signal Processing Society.

Lu and Loizou Page 19

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2011 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Gain function of the proposed MMSE-SPZC estimator of the power spectrum plotted as a
function of the instantaneous SNR (γk-1) for fixed values of ξk. The gain function of the
MMSE-SP estimator [7] is superimposed for comparison.
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Fig. 2.
Gain function of the proposed MMSE-SPZC estimator of the power spectrum plotted as a
function of the a priori SNR (ξk) for fixed values of γk. The gain function of the MMSE-SP
estimator [7] is superimposed for comparison.
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Fig. 3.
Gain function of the SMPR estimator plotted as a function of the a priori SNR ξk and for
different values of threshold θ. The Wiener gain function is superimposed for comparison.
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Fig. 4.
Gain function of the SMPO estimator plotted as a function of the a priori SNR ξk and for
different values of γk. The threshold θ was fixed at θ = 0 dB. The gain function of the
MMSE-SPZC estimator is superimposed for comparison.
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Fig. 5.
Gain function of the SMPO estimator plotted as a function of the instantaneous SNR (γk-1)
and for different values of ξk. The threshold θ was fixed at θ = 0 dB, while the floor gain Gf
was set to −20dB. The gain function of the MMSE-SPZC estimator is superimposed for
comparison.
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Fig. 6.
Gain function of the SMPO estimator plotted as a function of the a priori SNR ξk (γ = 5 dB)
and for different values of threshold θ.
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Fig. 7.
Panel (d) shows example estimates of the smoothing constant αk (at bin f=500 Hz) used in
the computation of the signal variance (34). Panel (a) shows the time waveform for the
sentence corrupted by babble noise at 10 dB SNR. Panel (b) shows the a priori SNR ξ
(solid) and the a posteriori SNR γ (dash-dotted) values. Panel (c) shows the estimated
speech variance (solid), based on (34) and (37), and the true speech variance (dash-dotted).
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Fig. 8.
Wideband spectrograms of: (a) the clean sentence (b) the sentence corrupted by babble noise
at 10 dB SNR, (c) sentence processed by the IdBM [25], (d) sentence processed by the
IdRM [43], and (e) sentence processed by the MMSE-SP estimator [7]. The sentence
(“Hurdle the pit with the aid of a long pole”) was taken from the NOIZEUS database.
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Fig. 9.
Wideband spectrograms of: (a) sentence processed by the MAP-BM estimator (24), (b)
sentence processed by the MMSE-SPZC estimator (19), (c) sentence processed by the MAP
estimator (21), (d) sentence processed by the SMPR estimator (θ = 5 dB) (29), and (e)
sentence processed by the SMPO estimator (θ = 0 dB) (32). The sentence was the same as in
Fig. 8 and was corrupted by babble noise at 10 dB SNR.

Lu and Loizou Page 28

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2011 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lu and Loizou Page 29

TABLE I

MAP estimator comparisons

Method Posterior Density MAP Estimators

MAP
spectral
amplitude
estimator
[11][7]

Joint MAP
spectral
amplitude
and phase
estimator
[11][7]

MAP
spectral
amplitude
estimator
using
super-
Gaussian
assumption
[12][14]

 κ, μ are
parameters for super-Gaussian approximation

Joint MAP
spectral
amplitude
and phase
estimator
using
super-
Gaussian
assumption
[13][14]

 κ,
μ are parameters for super-Gaussian approximation

Proposed
MAP
power
spectrum
estimator
(22)

The frequency subscript k is removed for convenience in this table.

Note that Y (ω) is complex valued, while X and Y indicate the magnitude spectra (real-valued).
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