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The mechanism of protein S-nitrosation in cells is not fully understood. Using rat 3Y1 cells, we addressed this issue. Among S-
nitrosothiols and NO donors tested, only S-nitrosocysteine (CysNO) induced S-nitrosation when exposed in Hanks’ balanced
salt solution (HBSS) and not in serum-containing general culture medium. In HBSS, NO release from CysNO was almost
completely abolished by sequestering metal ions with a metal chelator without affecting cellular S-nitrosation. In contrast, L-
leucine, a substrate of L-type amino acid transporters (LATs), significantly inhibited S-nitrosation. The absence of S-nitrosation
with CysNO in general culture medium resulted not only from a competition with amino acids in the medium for LATs but
also from transnitrosation of cysteine residues in serum albumin. Collectively, these results suggest that in simple buffered saline,
CysNO-dependent S-nitrosation occurs through a cellular incorporation-dependent mechanism, but if it occurs in general culture

media, it may be through an NO-dependent mechanism.

1. Introduction

Nitric oxide (NO) plays diverse roles in physiological pro-
cesses, such as vasodilatation, host defenses against infection,
and neuromodulation, some of which are mediated by the
activation of the guanylate cyclase (GS)/cGMP pathway [1,
2]. Accumulating evidence suggests that NO also acts as a
signaling molecule through the formation of S-nitrosothiols
in proteins. S-nitros(yl)ation is a post-translational modifi-
cation of proteins and low molecular weight thiols in which
the nitrosonium cation attaches to the thiolate anion of a
cysteine residue in proteins in a net reaction [2, 3]. Protein
S-nitrosation has been shown to regulate the functions of
various proteins including caspases [3, 4]. However, excessive
S-nitrosation of certain proteins has been proposed as a
causative event for some diseases [5-7]. More than 100
proteins have been identified to undergo S-nitrosation [3].
Incubation of cysteine-containing proteins or low mo-
lecular weight thiols with NO donors in a simple aqueous

solution under aerobic conditions yields S-nitrosothiols. The
principal mechanism has been proposed to be mediated by
dinitrogen trioxide (N,O3) formation as follows [8]:

2NO + O, — 2NO, (1)
NO, + NO — N,03 (2)

N, O3 + Protein-Cys-SH —

(3)
Protein-Cys-SNO + NO, ™ + H*

In case of S-nitrosation of intact cells by NO, similar mech-
anisms are believed to occur in the hydrophobic interior of
proteins or the plasma membranes [9, 10]; however, recent
studies have implicated the involvement of low molecular
weight amines, such as urate, as a catalyst for the reaction
between N,Os and cysteine [11, 12]. Alternatively, it is
suggested that dinitrosyl iron complexes (DNIC), which
are formed from NO, cytosolic chelatable iron, and thiols


mailto:nwatanab@rs.noda.tus.ac.jp

are responsible for S-nitrosation of cellular proteins [13].
Similarly, several mechanisms have been proposed for S-
nitrosation of cells exposed to extracellular S-nitrosothiols.
In particular, S-nitroso-L-cysteine (CysNO) is widely used
as an “NO donor” [5, 6, 14, 15] because it spontaneously
decomposes in aqueous solutions to release NO. However,
CysNO has been suggested to enter the cells via L-type
amino acid transporters (LATs) [16-19], thus leading to
S-nitrosation of cellular proteins. In some cell types, cell
surface-associated protein disulfide isomerase (PDI) has
been shown to participate in the incorporation of nitroso
moieties or NO from CysNO or other S-nitrosothiols into
cells [20-22]. Furthermore, recent studies also proposed a
novel mechanism for the transfer of nitroso moieties from
S-nitrosated albumin to cells via caveolae [23].

In addition to the ambiguity of the mechanism, the ex-
tent of S-nitrosation that can be detected by commonly
used assays, such as the biotin-switch assay or the 2,3-
diaminonaphthalene (DAN) assay [24, 25], is inconsistent
among various cell types and assay conditions. For example,
while activation of NO synthases or exposure to exogenous
NO derived from pure NO donors, such as DETA NONOate,
can cause S-nitrosation of cellular proteins within 30 min
in some cell types [14, 26] in other cell types these NO
donors fail to induce S-nitrosation within such a short
period of time [27]. Similarly, brief (<30 min) exposure
to CysNO, but not GSNO, causes S-nitrosation in a wide
variety of cell types [18, 28]; however, in HEK293 cells,
which are very popular for molecular biology studies due to
their amicability to transfection with foreign genes, GSNO
can cause S-nitrosation within such short periods of time
[14, 27, 29]. Moreover, in the case of spinal cord neurons,
S-nitrosation is induced by GSNO and not by CysNO
[27].

These confounding situations prompted us to investi-
gate the factors responsible for inconsistent S-nitrosation
observed in cultured cells, as well as the mechanism of S-
nitrosation. We demonstrate here that among the potential
nitrosating agents examined, only CysNO can induce S-
nitrosation in rat embryonic fibroblast 3Y1 cells when treated
in buffered saline. This mechanism is independent of the
action of liberated NO or transnitrosation of cell surface
proteins, but is dependent on its cellular uptake by LATs.
In a cell culture medium, however, S-nitrosating activity
of CysNO is suppressed not only by competition of the
reaction with amino acids in the medium but also by the
transnitrosation reaction with cysteine residues in serum
albumin.

2. Materials and Methods

2.1. Chemicals. 5,5’ -Dithiobis(2-nitrobenzoic acid) (DTNB)
and mercury (II) chloride (HgCl,) were purchased from
Wako Chemicals (Osaka, Japan). L-cysteine, diethylenetri-
aminepentaacetic acid (DETAPAC), ethylenediaminetetraa-
cetic acid (EDTA), Hanks’ balanced salt (HBSS), L-leucine,
methyl methanethiosulfonate, and N-ethylmaleimide
(NEM) were purchased from Sigma-Aldrich (St. Louis, MO).
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Biotin-N-[6-Biotinamido)hexyl]-3’-(2’-pyridyldithio)-pro-
pionamide was purchased from Thermo Scientific (Rock-
ford, Ill). 2,3-diaminonaphthalene (DAN), (+)-(E)-4-ethyl-
2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), and
3-morpholinosydnonimine (SIN-1) were purchased from
Dojindo (Kumamoto, Japan). Horseradish peroxidase-
(HRP-) conjugated antibiotin antibody was purchased from
Bethyl Laboratories (Montgomery, Tex). D-cysteine was
purchased from Tokyo Kasei Co. (Tokyo, Japan). All other
chemicals and salts were of the highest purity available.

CysNO and S-nitrosoglutathione (GSNO) were synthe-
sized by mixing 0.2 M NaNO, with an equal concentration
of the respective thiol in HCI, followed by neutralization with
NaOH [30]. The concentration of the respective nitrosothiol
was determined spectrometrically using extinction coeffi-
cients e333 = 900M'cm™! and €335 = 920M~'cm™! for
CysNO and GSNO, respectively. Under these conditions, the
yield of each nitrosothiol was more than 90%.

2.2. Cells and Treatment. Rat embryonic fibroblast 3Y1 cells
[31] were routinely cultured in DMEM medium (Wako
041-29775) supplemented with 10% (v/v) FCS, 100 U/ml
penicillin G, and 100 gg/ml streptomycin under a humidified
atmosphere containing 5% CO, at 37°C. Experiments were
performed using cells at confluence in 6-well plates or
60 mm dishes. Before exposure to the respective S-nitrosating
agent, the cell culture medium was replaced with fresh 10%
FCS/DMEM medium or HBSS, and the cell cultures were
equilibrated in a CO; incubator for 30 min. Next, the con-
centrated test nitrosothiols (50—250-fold final concentration)
or NO donors were added to the respective culture medium,
and the cells were maintained for designated time periods in
a CO; incubator.

2.3. DAN Assay. Fluorometric detection of cellular S-
nitrosothiols was performed according to the method used
by Kostka and Park [25]. Briefly, after treatment, cells were
washed with PBS and lysed in a lysis buffer (0.1% [w/v] SDS,
0.5% [v/v] Triton X-100, 0.5 mM EDTA, and 5 mM NEM in
PBS). The lysates were divided into two parts of 200 ul, and
10 ul DAN in 0.8 N HCl was added to both parts. Next, to one
part, 1 ul of 100 mM HgCl, dissolved in dimethylformamide
(DMF) was added and to the other only DMF was added.
After incubation at room temperature for 15min, 10ul of
2N NaOH was added to each part, and 200-ul aliquots
were transferred to the wells of a white fluorescence assay
plate. Naphthotrizole fluoresecence was measured using a
fluorescence plate reader (Fluoro Count, Packard) with an
excitation and emission wavelength of 380 nm and 460 nm,
respectively. Mercury-dependent fluorescence was converted
to S-nitrosothiol concentrations by a standard curve made of
serially diluted NaNO; in the same lysis buffer without HgCl,
treatment.

2.4. Biotin-Switch Assay. Protein S-nitrosation was detected
by the biotin-switch assay as previously described [24].
Briefly, after treatment, cells were lysed in a lysis buffer
composed of HNE buffer (250 mM HEPES [pH 7.8], 1 mM
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EDTA, and 0.1 mM neocuproine), 10% (w/v) SDS, and 10%
(v/v) MMTS in DMF at a ratio of 9:1:0.2, respectively.
Samples were then incubated at 50°C with occasional
vortexing for blocking any free thiols. Proteins were pre-
cipitated with 70% acetone at —20°C, and precipitates
were collected by centrifugation at 8000 xg for 5min. The
pellets were washed in a similar manner three times with
70% acetone. The pellets were dissolved in HEN buffer
containing 0.25mg/ml biotin-HPDP and 1% SDS, briefly
sonicated, and then mixed with sodium ascorbate to obtain
a final concentration of 1 mM. Following 1-h incubation at
room temperature, proteins sedimented were washed by the
acetone precipitation method as described above. The pellets
were dissolved in 0.1% SDS in PBS. Equal amounts of the
biotinylated proteins were resolved by SDS-PAGE using 10%
or 6%-16.5% gradient acrylamide gel, and then transferred
to a polyvinylidene difluoride membrane (Immobirone,
Millipore). After blocking the membrane with 1% (w/v) skim
milk in PBS containing 0.05% (v/v) Tween 20, the membrane
was probed with HRP-conjugated antibiotin antibody. The
biotinylated proteins were visualized using an ECL reagent
(GE Healthcare), and the signal was recorded using LAS3000
image analyzer (Fuji Film Co., Japan).

2.5. Other Assays. NO released from nitrosothiol degrada-
tion in the media was aerobically measured using an NO elec-
trode (Apollo 1000, World Precision Instrument) at 37°C.
The device was calibrated according to the manufacturer’s
instructions.

S-alkylation of the cysteine residues in BSA was per-
formed using NEM. Defatted BSA in PBS (30 mg/ml) was
incubated with NEM (15mM) at room temperature for
1h, and excess NEM was thoroughly removed by dialysis
against PBS. The thiol content of BSA before and after NEM
treatment was evaluated by the DTNB method using GSH as
a standard. After NEM treatment, the number of free thiols
decreased from 0.37 to less than 0.02 SH per BSA molecule.

Protein concentration was determined by the BCA
method (Pierce Biotechnology) with BSA as standard.

2.6. Statistics. Data are expressed as mean = SEM. The
Student’s t-test or one-way analysis of variance followed by
the Tukey’s test was used for appropriate statistical analyses.

3. Results and Discussion

3.1. All Potential S-Nitrosating Agents Caused S-Nitrosation
in 3Y1 Cell Lysates. In an aqueous solution, S-nitrosation
of thiols can be induced by various NO donors and S-
nitrosothiols, as well as conditions where NO and O, are
generated together [32]. The ability of these potential S-
nitrosating agents/conditions to S-nitorosate proteins in 3Y1
cell lysates was compared. CysNO and GSNO were used as
the test S-nitrosothiols, NOR-3 as the NO donor, and SIN-
1 as the NO/O,™ cogenerator. At a neutral pH and 37°C,
NOR-3 and SIN-1 both have a half-life of approximately
30 min [33, 34]. The cell lysates were incubated with CysNO
(200uM), GSNO (200uM), NOR-3 (200uM), or SIN-1

(1mM) at 37°C for 30 min, and S-nitrosated proteins were
detected by the biotin-switch assay. As shown in Figure 1(a),
GSNO and CysNO potently S-nitrosated almost the same
array of proteins to a similar extent. NOR-3 and SIN-1 (when
tested at a higher concentration of 1 mM) could also cause
S-nitrosation of many proteins. However, the extent of S-
nitrosation caused by either compound was considerably less
than that induced by either GSNO or CysNO. The specificity
of S-nitrosated proteins detected by the biotin-switch assay
was confirmed. Without ascorbate in the biotinylation step,
the number of S-nitrosated protein bands decreased to
almost untreated control level, indicating that our biotin-
switch assay detected S-nitrosation (Figure 1(b)).

3.2. Only CysNO Can S-Nitrosate Live 3Y1 Cells in HBSS but
Not in Culture Medium. Next, the extent of protein S-
nitorosation occurring in intact cells exposed to each S-
nitrosating agent was examined. To minimize reactions
and/or interactions (i.e., transnitrosation) of the nitrosating
agents with media components and to evaluate the pri-
mary effects of the test agents, exposure time was set to
30 min. When cells maintained in HBSS were incubated
with CysNO (200 uM), GSNO (200 uM), NOR-3 (200 yM),
or SIN-1 (1 mM), only CysNO resulted in S-nitrosation of
various proteins in these cells (Figure 2(a)). Under these
treatment conditions, 1 mM CysNO resulted in maximum S-
nitrosation while 200 uM CysNO resulted in approximately
50% of the maximum level (data not shown). However,
when the same treatment was performed in a general
culture medium (10% FCS/DMEM), none of these agents
caused S-nitrosation in these cells (data not shown). In
10% FCS/DMEM, even 1 mM CysNO was unable to induce
protein S-nitrosation (Figure 2(b)). Furthermore, 1 mM
GSNO failed to induce S-nitrosation regardless of the
media (Figure 2(b)). The DAN assay can detect not only
S-nitrosated proteins but also cytosolic S-nitrosated low
molecular weight thiols such as GSNO. When examined
using the DAN assay, the prominent S-nitrosating ability of
CysNO over GSNO was observed in HBSS (each at 1 mM),
but not in 10% FCS/DMEM (Figure 2(c)). These results
suggest that S-nitrosation efficiency in intact 3Y1 cells in
culture depends not only on the nitrosating agent but also
on the incubation medium.

3.3. Cellular Uptake of CysNO, rather than NO Liberation, Is
Responsible for S-Nitrosation in Intact 3Y1 Cells. Next, the
S-nitrosating ability of CysNO in 3Y1 cells was investigated
to determine if S-nitrosation was caused by NO released by
CysNO or some other mechanism. Thus, we measured the
concentration of NO that was derived from the spontaneous
degradation of CysNO (200uM) in the media using an
NO electrode. When diluted with HBSS at 37°C, CysNO
immediately liberated NO that reached a peak 3 min after
dilution and declined gradually thereafter (Figure 3(a)). In
contrast, only marginal amount of NO was released from
GSNO under identical conditions. Similar marked difference
was observed in the stability of CysNO and GSNO in
HBSS when Hg?*-cleavable SNO moieties were measured
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FIGURE 1: Protein S-nitrosation induced by potential S-nitrosating agents in 3Y1 cell lysates. (a) Detection of S-nitrosated proteins in cell
lysate treated with potential S-nitrosating agents. 3Y1 cell lysates prepared in PBS containing 0.5 mM EDTA and 0.5% Triton X-100 were
incubated with CysNO (200 yuM), GSNO (200 yuM), NOR-3 (200 uM), or SIN-1 (1 mM) at 37°C for 30 min. S-nitrosated proteins were
detected by the biotin-switch assay. (b) Specificity of the biotin switch assay. 3Y1 cells lysates were incubated with or without GSNO (500 uM),
and the resulting S-nitrosated proteins were assessed by biotin-switch assay as above, but with or without ascorbate in the biotinylation step.
A 10% gel was used for this confirmation experiment. Therefore, the resolution of S-nitrosated protein bands was different from that in all

other experiments in which 6.0%-16.5% gradient gels were used.

by Saville-Griess assay [35]; CysNO decayed with a half-life
of 10 min, whereas essentially no decay was observed for
GSNO after 2 h (data not shown). The stability of CysNO in
a solution depends on the amount of ionic transition metal
impurities, such as iron [36]. To examine the involvement
of any transition metal ions, the effect of the metal chelator
DETAPAC on NO release was measured. DETAPAC presence
drastically inhibited NO release from CysNO, indicating that
a metal-catalyzed breakdown reaction is responsible for NO
liberation from CysNO in HBSS under the assay conditions
used.

To clarify whether NO derived from CysNO degradation
in the medium was responsible for S-nitrosation of cel-
lular proteins, we examined the effect of DETAPAC on
S-nitrosation by CysNO in cells maintained in HBSS.
DETAPAC presence did not affect the extent of S-nitrosation
as evaluated by the DAN assay (Figure 3(b)). Evaluation
of individual proteins by the biotin-switch assay also
demonstrated that DETAPAC failed to inhibit protein S-
nitrosation (Figure 3(c)). Since the peak of NO levels derived
from CysNO was approximately 3 min, some proteins might
transiently undergo S-nitrosation [37] by CysNO through
an NO-dependent mechanism. However, because the S-
nitrosating ability of NO (NOR-3) or NO/O,*~ (SIN-1)
was very poor (Figures 1(a) and 2(b)), the formation of
S-nitrosated proteins by NO derived from CysNO could
be small in number and amount, if any. Meanwhile, for a
majority of S-nitrosated proteins that are stably present after
30 min, the results thus far clearly rule out the involvement of
NO as an intermediate in cellular S-nitrosation by CysNO.

LAT [18, 28, 38] and thiol-containing plasma mem-
brane proteins, including cell surface-associated PDI [20-
22], have been suggested to be involved in S-nitrosation.
The addition of L-leucine (1 mM), a competitive substrate
of LAT [39], inhibited the extent of CysNO-induced S-
nitrosation by more than 60%, as evaluated by the DAN assay
(Figure 3(b)). The biotin-switch assay also demonstrated a
similar inhibitory effect of leucine on S-nitrosation of indi-
vidual proteins (Figure 3(c)). DTNB, due to its hydrophilic
nature, can mask only cell-surface cysteine sulthydryl groups
through the formation of S-S bonds with thionitroben-
zoic acids. Pretreatment with DTNB for 30 min masked
12 nmol cysteine/mg of proteins (data not shown). However,
pretreatment with DTNB had no effect on the extent or
profile of any S-nitrosated proteins (Figures 3(b) and 3(c)).
These results suggest that CysNO-induced S-nitrosation
of cellular proteins is largely mediated by CysNO uptake
through LAT, rather than interactions with or transnitrosa-
tion of cell surface thiol-containing proteins.

To further ascertain LAT involvement in S-nitrosation of
these cells by CysNO, S-nitrosating activity of CysNO stereo-
isomer, S-nitroso-D-cysteine (D-CysNO), was evaluated.
Previous studies have demonstrated that D-CysNO cannot
be incorporated through LAT [39]. The kinetics of NO re-
lease from D-CysNO in HBSS, as measured using a NO elec-
trode, was essentially superimposable on that of L-CysNO
(data not shown). The extent of S-nitrosation induced by D-
CysNO was less than 10% of that induced by the L-isomer
(Figure 3(d)), thus confirming the predominant role of LAT
in CysNO-dependent S-nitrosation in this cell line.
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FIGURE 2: Protein S-nitrosation induced by exposure to potential S-nitrosating agents in intact 3Y1 cells. (a) Comparison of the efficiencies
of potential S-nitrosating agents to S-nitrosate 3Y1 cells. Cells maintained in HBSS were treated with CysNO (200 uM), GSNO (200 uM),
NOR-3 (200 uM), or SIN-1 (1 mM) for 30 min. S-nitrosated proteins were detected by the biotin-switch assay. (b and c) Effects of media on
S-nitrosation efficiency of S-nitrosothiols. Cells cultured in 10% FCS/DMEM and HBSS were treated with GSNO (1 mM) or CysNO (1 mM)
for 30 min, and S-nitrosated proteins were detected by (b) the biotin-switch assay and (c) the DAN assay. The blots shown in (a) and (b)
are representative results from several experiments with similar results. Data in (c) are shown as mean + SEM of three to four independent

assays.

3.4. Transnitrosation of BSA and Competition with Amino
Acids for LAT Are Responsible for the Suppression of CysNO-
Mediated S-Nitrosation in the Cell Culture Medium. CysNO
failed to S-nitrosate cells in the cell culture medium (10%
FCS/DMEM,; Figure 2). Therefore, we next investigated the
mechanism responsible for absence of CysNO-induced S-
nitrosation in the cell culture medium (Figure 4). CysNO-
(200 uM)-induced S-nitrosation in cells maintained in HBSS
was significantly suppressed by the addition of FCS (10%),
suggesting that the serum contains factors that inhibit S-
nitrosation. Since the principal proteinaceous component of
serum is BSA, whose concentration is approximately 3 mg/ml
in 10% serum, its effect was measured. BSA supplementation
(3 mg/ml) in HBSS inhibited CysNO-induced S-nitrosation,
although not as significantly as FCS at this concentration.
BSA has 35 cysteine residues of which 34 are involved in

intramolecular disulfide bridges and half of the one remain-
ing is blocked by a free cysteine via a disulfide bond [40].
To evaluate the role of the free sulthydryl group of BSA in
its suppressive action on S-nitrosation, the effect of NEM-
treated BSA was measured. NEM treatment decreased the
number of free sulthydryl groups in BSA from 0.37 to
less than 0.02 (see Section 2). Interestingly, when the same
concentration of NEM-treated BSA was supplemented in
HBSS, no inhibitory effects were observed, suggesting that
free sulthydryl groups in BSA play a role in the inhibition
of CysNO-dependent S-nitrosation, possibly by receiving the
nitroso group in a transnitrosation reaction.

In the absence of FCS, CysNO can weakly S-nitrosate cells
in DMEM, although the extent of this was less than 10% of
that observed in HBSS (Figure 4), suggesting that the DMEM
basal medium also contains inhibitory factors. However,
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FiGurek 3: Effects of DETAPAC, DTNB, and L-leucine on CysNO-induced S-nitrosation in 3Y1 cells. (a) NO release from S-nitrosothiols in
HBSS. CysNO or GSNO was diluted in HBSS to a final concentration of 200 yuM without or with DETAPAC (0.5 mM). NO concentration
in the medium was aerobically monitored at 37°C using an NO electrode. The trace shown is a representative result. (b and c) Effects of
DETAPAC, DTNB, and L-leucine on CysNO-induced S-nitrosation in 3Y1 cells. Cells in HBSS were treated with CysNO (200 yuM) for 30 min
in the absence or presence of DETAPAC (0.5 mM), L-leucine (1 mM), and DTNB (100 uM), which were added 20 min before the addition of
CysNO. Protein S-nitrosation was detected using (b) the DAN assay and (c) the biotin-switch assay. The blot shown is a representative result.
(d) The efficiency of CysNO- and D-CysNO-induced S-nitrosation, each at 200 yM, was measured by the DAN assay as in (b). S-nitrosothiol
levels in cells treated with CysNO alone (labeled “none” in (b)) were taken as 100% (12 + 2 nmol SNO/mg protein), and the values are
expressed as the mean + SEM of six to eight independent experiments in (b) and from three independent experiments in (d). *P < 0.001.

when cells were treated with a high CysNO concentration
(1mM), the suppressive effect of DMEM decreased by 50%
(data not shown), indicating the competitive nature of
inhibition. These results suggest that the suppression of S-
nitrosation in 10% FCS/DMEM was due to the presence
of neutral amino acids in the basal medium that act as
competitive substrates for LAT, in addition to the interaction
of CysNO with free cysteine residues in BSA.

3.5. Implication for the Mechanism of S-Nitrosation by CysNO.
CysNO is widely used as an “NO donor” to S-nitrosate cells
[5, 6, 14, 15], although S-nitrosation was not associated
with the action of NO under our assay conditions. Among
various the mechanisms for S-nitrosation by extracellular S-
nitrosothiols [17, 18, 20-23, 28, 38, 41], Hogg et al. [17, 18,
41] and Whorton et al. [28, 38] have shown that in several
cell types, including erythrocytes, endothelial cells, smooth
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FIGURE 4: Effects of FCS, BSA, and NEM-BSA on CysNO-mediated
S-nitrosation in 3Y1 cells. Cells maintained in HBSS or DMEM in
the absence or presence of FCS (10%), BSA (3 mg/ml), or NEM-
treated BSA (3mg/ml) were treated with CysNO (200uM) for
30 min. The levels of S-nitrosated proteins were measured by the
DAN assay, and the value for cells treated with CysNO in HBSS
alone (none) was taken as 100% (12 + 2 nmol/mg protein). Values
are mean = SEM of three to four independent assays. *P < 0.001
versus none; *P < 0.001 versus BSA.

muscle cells, and epithelial cells, S-nitrosation of cellular
proteins involves LAT-mediated CysNO uptake. Through
this study, we add embryonic fibroblast 3Y1 cells to this
growing cell inventory. With regard to this, absence of S-
nitrosation by GSNO is consistent with the role of LAT as
the primary route for S-nitrosothiol uptake in this cell line.
The present results, along with previous results reported by
the above-mentioned authors [18, 28, 38, 41], warn that
cautious interpretation is necessary for results that indicate
cellular S-nitrosation by CysNO. Specifically, if CysNO can
cause S-nitrosation in some cell types in a general cell
culture medium [5, 6, 14, 15], some parts of the mechanism
may be NO-dependent, such as the formation of N,O3 and
DNIC as intermediates, because LAT-mediated uptake could
be suppressed under these conditions. In fact, the amount
of NO released from CysNO in 10% FCS/DMEM was
attenuated, but it persisted possibly due to transnitrosation
of Cys residue in serum albumin (data not shown). However,
when cellular S-nitrosation is induced in a simple buffered
saline solution, the primary mechanism could largely depend
on LAT-mediated cellular uptake. Therefore, the use of D-
CysNO is probably preferable when CysNO is employed as
the NO donor to nitrosate cells.

3.6. Conclusion. The present study demonstrates that in
buffered saline only CysNO can cause significant levels of
protein S-nitrosation in rat 3Y1 cells when exposed for
a short period of time. The mechanism is not driven by
the actions of NO derived from CysNO degradation in the
medium, but by the incorporation of CysNO through LAT.
However, in the cell culture medium, LAT-mediated CysNO
uptake is almost completely prevented by the presence of

competitive amino acids and transnitrosation of serum albu-
min. Care should be taken when interpreting the biological
effects of CysNO in cells because some of its effects may be
due to NO donation and others by protein S-nitrosation and
that the overall effect seen will depend to some extent on the
particular cell type studied and the incubation conditions.
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