Skip to main content
. 2011 Aug 29;6(8):e24005. doi: 10.1371/journal.pone.0024005

Table 1. Optimal model results.

Effects Estimate 95% CI t-value P-value
Fixed
Intercept 6.607 6.271; 6.943 38.568 <0.0001
F 0.349 0.017; 0.681 2.064 0.0392
HP –0.105 –0.496; 0.285 –0.529 0.5966
R 0.406 0.283; 0.529 6.469 <0.0001
SST 0.092 0.055; 0.129 4.911 <0.0001
SF –0.017 –0.020; –0.014 –10.242 <0.0001
Y –0.011 –0.025; 0.002 –1.642 0.1008
F×Y –0.035 –0.054; –0.017 –3.812 0.0001
HP × R –0.299 –0.471; –0.127 –3.416 0.0007
Random (SD)
Intercept (Inline graphic) 0.898 0.738; 1.091 na na
Y (Inline graphic) 0.022 0.013; 0.039 na na
Residual (Inline graphic) 0.737 0.680; 0.800 na na
Correlation structure
align="left" valign="top">Inline graphic 0.717 0.581; 0.814 na na
Inline graphic –0.299 –0.412; –0.177 na na
Variance function
Inline graphic –0.036 –0.057; –0.014 na na

CI: confidence interval; SD: standard deviation; na: not applicable.

Parameter estimates and statistical significance from the optimal mixed-effects model with River as random grouping factor (60 levels). Abbreviations and units are described in the text and Table S3. Note that when dichotomous variables are involved the baseline case for comparison is the absence of farms and hydropower stations.