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Abstract

Radial sampling in multidimensional NMR experiments offers greatly decreased acquisition times
while also providing an avenue for increased sensitivity. Digital resolution remains concern and
depends strongly upon the extent of sampling of individual radial angles. Truncated time domain
data leads to spurious peaks (artifacts) upon FT and 2D FT. Linear prediction is commonly
employed to improve resolution in Cartesian sampled NMR experiments. Here, we adapt the
linear prediction method to radial sampling. Significantly more accurate estimates of linear
prediction coefficients are obtained by combining quadrature frequency components from the
multiple angle spectra. This approach results in significant improvement in both resolution and
removal of spurious peaks as compared to traditional linear prediction methods applied to radial
sampled data. The ‘averaging linear prediction’ (ALP) method is demonstrated as a general tool
for resolution improvement in multidimensional radial sampled experiments.
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Introduction

Sparse sampling of multidimensional NMR experiments has proven useful for studies of
biopolymers in many contexts [1-7]. Radial sampling is particularly appealing because of
the predictability of the resulting artifacts, the ability to collect a minimal data set to extract
the information of interest without regard to processing artifacts and the statistical nature of
the data. This sampling scheme allows for a simultaneous optimization of both acquisition
time and resolution, while in principle retaining information equivalent to a traditional
Cartesian sampled experiment [8, 9]. Further if the appropriate criteria are met an increase in
signal-to-noise of the final spectrum is achievable [9]. The advantages of radial sampling
result from the circumvention of the strict orthogonal sampling requirements imposed by
traditional Cartesian sampling. In the case of a three-dimensional NMR experiment, radial
sampling is achieved by simultaneously evolving the two indirect time domains such that t;

© 2011 Elsevier Inc. All rights reserved.
" To whom correspondence should be addressed. Professor A. J. Wand Department of Biochemistry & Biophysics telephone:
215-573-7288 University of Pennsylvania facsimile: 215-573-7290 905 Stellar-Chance Laboratories wand@mail.med.upenn.edu 422
Curle Blvd. Philadelphia, PA 19104-6059.

13.G and VK contributed equally to this work
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Gledhill et al.

Results

Page 2

is sampled at 7 cos(e) and t is sampled at zsin(a), where a is a selected angle between the
two orthogonal time domains and z is a common incremented time [10]. The directly
acquired dimension is sampled traditionally resulting in a 2D plane of data points for each
angle sampled. An important result of the radial sampling scheme is the fact that the
underlying frequency components are underdetermined, which results in artifactual ridges of
intensity in the spectrum when processed with either projection reconstruction [10] or the
direct multidimensional Fourier transform [11-13].

The details of radial sampling artifacts have been extensively analyzed and a variety of
schemes have been developed to remove them [6, 10, 14]. Two commonly preferred
methods for generating a final spectrum are the lower value (magnitude) algorithm, which
strives to remove the ridges, and the additive back projection algorithm, which attempts to
enhance the signal while still retaining the artifacts. Both approaches exploit the fact that the
ridge artifacts vary in a known way as a function of the sampling angle. The lower
magnitude algorithm compares the individual angle spectra and retains the minimum
absolute value at each frequency pair to generate a spectrum free of ridge artifacts. The
additive back projection method simply sums equivalent points from the angle spectra which
results in a final spectrum containing ridge artifacts at a fraction of the intensity of the
authentic peaks.

The success of radial sampling primarily depends upon the set of angles employed. In the
case of the lower magnitude algorithm artifacts are only removed if baseline is present at the
equivalent chemical shifts of the ridge in at least one angle spectrum. In the case of additive
back projection, artifact peaks are reinforced if artifact ridges intersect in multiple sampling
angle spectra. Appropriate angle selection minimizes these intersections. We have
previously presented a methodology for optimized angle selection and have shown that
angle selection can often be dependent upon the effective line width of the peaks in the
spectrum [15]. Thus, it is essential to obtain the narrowest possible effective linewidth. As
with classic multidimensional NMR spectra, the true linewidth is often never reached in the
explicitly sampled time domain. In this context, the forward-backward linear prediction
method [16] is routinely used to extend the experimentally sampled time domain data where
independent coefficients are determined for forward and backward application of linear
prediction and averaged respectively. Here we extend these ideas in an effort to reduce
linewidths of radial sampled data. This is accomplished by exploiting the redundancy of
radial sampled data to more accurately determine linear prediction coefficients.

Using the averaging concept inherent to forward-backward linear prediction, linear
prediction methodology is extended for application to radial sampled NMR data here by
exploiting the fact that multiple angle data sets are collected to generate a final spectrum.
While conventional linear prediction can be applied to the multiple angle data sets
independently, the coefficients obtained from different sampling angles are not directly
comparable. Here we develop a means to combine the coefficients of data from multiple
sampling angles by estimating and averaging the underlying frequency components. This
allows a set of coefficients with improved accuracy to be generated. The approach is
outlined in Fig. 1. The mathematical basis of linear prediction is well known [17, 18] and
only those details needed for optimizing linear prediction of radial sampled data are
recapitulated here.

In the case of a three-dimensional NMR experiment with radial sampling of the two
indirectly sampled time domains, the time series for the co-evolved indirect dimension may
be written as:
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Where i and j are quaternion numbers, o1y and oo are the frequency components in t; and
t, indirect time domains, respectively, and M is the total number of frequency components.
R12 and Ry, are the effective transverse relaxation rates in t; and t, indirect time domains,
respectively. The acquisition dimension of the experiment is treated traditionally and will be
excluded from this analysis.

Consistent with Eq. (1), four quadrature components are collected and stored independently.
Previously, the individual quadrature components have been combined according to the
quadrature rules of projection reconstruction and linear prediction was used to extend the
projection data [10]. Alternatively, linear prediction could be applied to each of the four
components separately and then combine the terms subsequently to reconstitute the signal
before any final processing. As we will show below, treating the four quadrature
components independently is necessary to appropriately model the underlying frequency.
Additionally, treating the components independently further exploits the inherent
redundancy of radial sampled data. Therefore, the linear prediction coefficients are
calculated in parallel for the four quadrature components of each sampling angle using the
forward linear prediction approach (step I of Fig. 1). Forward linear prediction is commonly
represented as:

M
Xn= Z A Xn—k
k=1

(2)

where ay are the linear prediction coefficients, x,,_i are the existing data points, x,, are future
data points and M is the number of prediction coefficients. Among the various methods
available to solve for the linear prediction coefficients single value decomposition (SVD) is
used here to determine the set of coefficients because of its optimal noise handling [19].

Once a set of coefficients are determined for quadrature components of each angle, they are
utilized independently to generate a characteristic polynomial describing the time series for

each component. The polynomial, described in Eq. (3), is a function of the arbitrary variable
z and ay are the coefficients defined in the previous step.

M

P@)=z" - ) a™*
= @)

The polynomial is equated to zero and factored to determine the roots of the equation in
parallel for each angles quadrature set (step Il of Fig. 1). In the present case, we have found
that the factoring is efficiently performed by generating a companion matrix and solving for
the eigenvalues [20].

From Eq. (1) the roots for each of the quadrature components for each of the M coefficients
can be modelled as:

R, =Ak cos (w1 T cos (@) cos (wik T sin (@) (4a)
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R, =A cos (wix T cos (@) sin(wyx Tsin (@) (4a)
Ry, =Aj sin (wix T cos (@) cos (wx 7 sin (@) (4¢)
Ry, =Ay sin (wix 7 cos (@) sin (wix 7 sin (@) (4d)

The roots of each of the four quadrature components of the radial sampled data are modelled
as functions of frequencies w1k, ok, Sampling angle, o, and amplitudes Ay. It is important to
note that Egs. (4a-d) are models of the roots. The two frequencies used in the model are
apparent frequencies defined by the model and not the actual frequency values inherent to
the data. The four root components arising from the four quadrature components are
designated by whether the time domains are modulated with respect to cosine or sine for
either time domain t; or tp. Unlike forward-backward linear prediction, where the roots are
averaged to calculate a new set of coefficients, variation of the sampling angles used in the
data sets requires that the model frequency components be determined prior to comparison
(step 111 of Fig. 1). Model frequencies w1k and wyk are determined independently by solving
the appropriate ratios of the corresponding roots. At this point, the combination of all four
quadrature components also provides a means to reduce the noise in the model frequency
calculation. The expressions for m1x and myk are written as:

arctan (RS(‘J; /RL'(‘.A ) +arctan (RSS.L /R('S.I\)
2 1cos (@) (5a)

Wik=

arctan (RAm /Rw) +arctan (R(.H /R(“)
2 7sin(a) (5b)

Wik=

Correspondingly, Ay is given by:

A= \[R2, 4R 4R +R?

cck T hesk sk ssk (6)

Typically the calculation of frequencies using linear prediction is avoided because of the
inaccuracy of the determined frequency components. The inaccuracies arise in the first step
of linear prediction when the coefficients are determined and are propagated in all
subsequent steps. Therefore, the accuracy of the model frequency values determined in Egs.
(5a,b) are directly dependent on both the signal-to-noise of the data and the linewidth
variation as a function of the sampling angle[10]. The data noise causes the model
frequencies error to vary according to the noise distribution intensity. Accordingly, the
errors of the model frequencies increase as the linewidths increase. The linewidths increase
as a function of cos(a) and sin(o) for w1 and o, respectively. The same model is used for all
angle data sets and therefore the model frequency and amplitude values are directly
comparable across the entire data set and are averaged (step 1V of Fig. 1). Averaging across
multiple angle data sets increases the accuracy of the estimated frequencies, by reducing the
noise related error of the frequency according to the variance sum law. The accuracy of the
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final model frequency components is further increased by accounting for the linewidth
related error by weighting the average according to 1/sin(co;) and 1/cos(a) for the m1 and w,
components respectively. The new roots are calculated for each quadrature component using
Eqgs. (4a-d) (step V of Fig. 1). Finally, the new improved sets of coefficients for each
sampling angle, are calculated from the new roots by using the characteristic polynomial
which can be formulated from the new roots (step VI of Fig. 1).

M
P@=[](z-&)
k=1

(7)

The polynomial utilizes the improved roots, R'x. This method for calculating coefficients
from the roots using the characteristic polynomial is opposite of that of calculating roots
from coefficients using the polynomial described in Eq. (3). The improved set of coefficients
evaluated by expanding Eq. (7) are the coefficients terms of the polynomial z,, where i
belongs to [0, M — 1]. The improvement in the accuracy of the linear prediction coefficients
versus the number of radial sampling angle data sets is demonstrated for generated data in
Fig. 2. This test was performed by generating a noise free radial sampled data set according
to Eq. (2) composed of 40 increments. Subsequently, this data set was truncated to 24
increments and random noise was added. Linear prediction coefficients were calculated
using forward, forward-backward or the new averaging linear prediction. Using the
calculated linear prediction coefficients an additional 16 increments were generated and
compared to the corresponding points from the original untruncated data set. This procedure
was repeated to determine the standard deviation of the predicted points from the actual
values. Inspection of the figure demonstrates that the error in prediction decreases
exponentially as the number of angles increases.

The final step of extending the data using linear prediction applies the new improved
coefficients to Eq. (2) in step V11 of Fig. 1. Ideally, the number of predicted points should be
less than or equal to half the number of data points in order to be accurately solved using
SVD, provided the number of coefficients used is greater than or equal to the number of
frequency components. Here, using averaging linear prediction we stretch this limit by
predicting more than half the number of data points used and demonstrate the advantage of
this method over both forward and forward-backward LP in the upper limits of the number
of points that can be accurately predicted.

To illustrate the improvement in resolution achieved by averaged linear prediction (ALP),
we collected a (3,2) radial sampled HNCA with 24 quaternion data points for each of 17
angles spanning 5° through 85°. A comparison of the various linear prediction methods is
shown in Fig. 3 using a perpendicular slice through the radial sampled dimension of the
+25° ridge spectrum As evident in the figure, average linear prediction produces superior
resolution for equivalent data. The improvement in resolution is a direct result of increased
accuracy of the linear prediction coefficients which is clearly indicated by increasing the
number of angle data sets averaged from 8 to 17. Further, the figure also demonstrates the
increased performance of the lower value algorithm to resolve all of the peaks in a final
spectrum when the peaks are appropriately resolved in the component spectra.

Discussion and Conclusion

Radial sampling has shown tremendous potential for overcoming the sampling limitations of
multidimensional NMR experiments. Efficient application of radial sampling depends on the
optimal angle selection and collection of high quality angle plane data in order to generate

an accurate final spectrum [15]. We have previously presented means to optimally determine
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a set of sampling angles. Here, we have presented the means to enhance the quality of the
sampling angle data. A novel linear prediction method, averaging-LP, is introduced and its
application to radial sampled data has been tested. Averaging-LP exploits the inherent
redundancy of radial sampled data sets and results in increased accuracy of linear prediction
coefficients which in turn decreases the linewidths and truncation artifacts, which manifest
themselves as a ripple pattern in the component angle spectra [8]. The advantages of a
decreased linewidth are at least two-fold. First, the decreased linewidth directly affects the
efficient generation of a final spectrum when either additive back-projection or lower value
methods are used. Second, the decreased linewidth indirectly affects the number of
increments necessary to obtain a suitable linewidth which in turn, allows for the collection
of more angles per unit time. The availability of additional angles serves to aid in the
reduction of reconstruction artifacts. Although tested in the context of the direct two-
dimensional Fourier transform and the lower value comparison, averaging-LP is apparently
applicable to any method capable of processing radial sampled data. Finally, it is noted that
the fundamental limitations of traditional linear prediction also apply to averaging-LP. The
presence of a large number of frequency components or poor sensitivity in a particular
vector of the indirect dimension constrains the applicability of averaging-LP to radial
sampled data.

Recombinant ubiquitin was prepared as described [21]. NMR data was collected on a 1
mM 13C, 15N uniformly labeled sample of human ubiquitin at 25°C on a Bruker Avance |11
500 MHz NMR spectrometer equipped with a 5 mm triple resonance TCI cryogenic probe.
The sample was prepared in 50 mM potassium phosphate buffer pH 5.5 with 50 mM NaCl
and 0.04% sodium azide in 90% H,0/10% D,0. Data was collected using a standard HNCA
[22] or a modified version for radial sampling, such that t; = t; cos() and to = t1 (swy/
sw»)sin(e). The Cartesian experiment was collected using 36 complex points in both of the
indirect dimensions for a total of 5184 FIDs. Each FID was the average of 4 transients and
contained 512 complex points requiring approximately 6 hours of measurement time. The
spectral width was set to 12, 27 and 35 ppm for proton, nitrogen and carbon respectively.
The carriers for each dimension were set to 7.73, 117.98 and 54 p.p.m. for proton, nitrogen
and carbon respectively. The maximum acquisition times for the nitrogen and carbon
dimensions were 0.0264 and 0.0082 seconds, respectively. In the case of radial sampling all
experimental parameters, excluding the incremented times, were set to equivalent values as
the Cartesian experiment. All of the radial sampled experiments utilized 24 quatrion data
points, requiring 4 quadrature components per data point. Each sampling angle plane
required 6.5 minutes of measurement time. The angle spectra were processed independently
using a direct 2D Fourier transform. Prior to Fourier transforming, the data was linear
predicted and apodized with cosine squared function to remove truncation artifacts.
Following processing, individual angle spectra were compared using the lower value
(magnitude) algorithm to remove the ridge artifacts [10]. The Cartesian sampled data was
processed with corresponding apodization and zero filling. The fast Fourier transform was
used in place of the direct 2D Fourier transform. All processing was done using an in-house
program to be described elsewhere and visualized using Sparky [23].
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A general overview of the average linear prediction algorithm. The algorithm works by
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calculating a set of linear prediction coefficients in parallel for each radial sampling angle
data set quadrature component. The coefficients are then used to solve for the characteristic

polynomial roots, which in turn are combined to estimate the underlying amplitude and

frequency components. The frequency components are averaged across all angle data sets.

Finally, an improved set of coefficients are back-calculated. The improved set of
coefficients can be used to predict additional data points with improved accuracy.
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The improvement in linear prediction coefficient accuracy is assessed through generated
data. A radial sampled data set was generated according to Eq. (1). The noise free data
contained 10 peaks using 40 quaternion data points. This data set was truncated to 24
quarternion points and random noise was then added. Using 10 coefficients for each of
forward, forward-backward or averaging linear prediction with an increasing number of
angles, an additional 16 quarternion points were generated. The newly generated 16 points
were compared to the noiseless points. The procedure was repeated to generate a standard
deviation from the actual values, each time with varying random noise.
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Demonstration of the advantage of averaged linear prediction in processing radial sampled
NMR data. Panel A shows the two-dimensional indirect frequency plane of a linear
predicted (ALP) radial sampled HNCA sampled at 25°. The equivalent peaks from the
traditionally sampled Cartesian spectrum are overlaid to indicate the authentic intensity. The
overlaid dashed line indicates the vector perpendicular to the artifact ridges, the intensity
along which is indicated as a projection outside the spectrum. Panel B compares the same
spectrum slice from each of the spectra processed with the noted type of linear prediction. It
is clear that average linear prediction accurately increases the resolution of all of the peaks
in the spectrum resolves all of the peaks in the spectra when 17 sampling angles are used.
Panels C and D demonstrate the advantage of applying averaging linear prediction to
generate a final spectrum using the lower value comparison. Panel C shows the indirect
plane processed without any linear prediction while Panel D shows the equivalent plane
processed with average linear prediction. In all cases the data was linear predicted from 24
quaternion data points to 40 quaternion points using 10 linear prediction coefficients.
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