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Abstract

Mannich reactions between aldehydes and N-p-methoxyphenyl-protected α-imino ethyl glyoxylate
have been performed using (S)-pipecolic acid as catalyst. The reactions give both syn- and anti-
products (dr = 1.4–2:1) with high enantioselectivities (>98% ee). In contrast, (S)-proline-catalyzed
reactions give mainly syn-products with high enantioselectivities. Computational studies reveal
that the energetic preference between the transition structures involving the s-cis-enamine and the
s -trans-enamine is smaller for the pipecolic acid as compared to proline, yielding the (2S,3R)-
anti- and the (2S,3S)-syn Mannich product, in nearly equal amounts.

Preformed enamines of both five-membered pyrrolidine and six-membered piperidine rings
have been used as nucleophiles in many reactions.1,2 For the reactions involving in situ-
generated enamines, pyrrolidine-based catalysts have been extensively examined.3,4,5 One
of the most effective routes for the synthesis of enantiomerically enriched α- and β-amino
acid derivatives is pyrrolidine derivative-catalyzed Mannich-type reactions of an aldehyde
donor. (S)-Proline and various (S)-proline-derivatives give the syn-product (2S,3S)-1 as the
major product with high diastereo- and enantioselectivity (Scheme 1).4 The six-membered
analog, pipecolic acid, has received little attention as a catalyst for asymmetric reactions,
and has proven ineffective for aldol reactions involving acetone as donor.3a,6 Here we report
the experimental and computational investigation of (S)-pipecolic acid-catalyzed Mannich
reaction between aldehydes and N-p-methoxyphenyl (N -PMP)-protected α-imino ethyl
glyoxylate.4

Pipecolic acid catalyzed Mannich reactions provide both the syn-product 1 and anti-product
2 in good yields (Table 1). The reaction rates were similar to that of proline-catalyzed
reactions under the same conditions. The enantioselectivities of the syn-product (2S,3S)-14
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and anti-product (2S,3R)-24,6 were both typically greater than 98% ee. The diastereomeric
ratio of syn-product 1 to anti-product 2 ranged from 2:1 to 1:1, regardless of the bulkiness of
the aldehyde substituent (Table 1). The insensitivity of the diastereoselectivity to steric bulk
is in sharp contrast to the proline-catalyzed reactions, in which a bulky R groups often led to
excellent enantio- and diastereoselectivity.4 (S)-Pipecolic acid catalysis provides a route to
highly enantiomerically pure products of both diastereomers.

This unusual change in diastereoselectivity upon increase in the ring size of the catalyst
caused us to investigate these reactions computationally. The enamine of propionaldehyde,
N-PMP-protected α-imino methyl gloxylate and the transition structures leading to the four
possible stereoisomeric products for both proline and pipecolic acid were calculated at the
HF level of theory with 6-31G(d) basis set.7 We have previously used density functional
theory to study related organocatalytic reactions.8 However, HF/6-31G(d) was used over
B3LYP/6-31G(d) in this study for rapidly computing the stereoselectivity.

The s-cis- or s-trans-enamine attack on the re or si face of the imine acceptor is the stereo-
and rate-determining step of this reaction. Four possible diastereomeric transition structures
are possible that allow for intramolecular proton transfer. The four lowest energy transition
structures involving (S)-proline and (S)-pipecolic acid are shown in Figure 1.

The syn-product 1 arises from the s-trans-si transition state and the anti-product 2 from the
s-cis-si. The conformations of the proline enamine were previously discussed as anti- and
syn-enamine. 8 These notations are changed to s-trans- and s-cis-enamine, respectively, in
this work to distinguish from anti and syn diastereoselective products. In the proline-
catalyzed reaction, the computed energy difference between these transition structures, TS-
(S,S)-4 and T S - (R,S)-6, is 1.0 kcal/mol. The corresponding energy difference for the
pipecolic acid-catalyzed reaction between TS-(S,S)-8 and TS-(R,S)-10 is only 0.2 kcal/mol.
This decrease in energetic difference reflects the experimentally observed decrease in
diastereoselectivity for the pipecolic acid-catalyzed reaction.

The computed selectivities arising from the relative energies for all transition structures are
summarized in Table 2. There is an excellent agreement between the computed
stereoselectivity and the observed product ratios.

The facial re or si selectivity of the imine acceptor is governed by the necessity for
intramolecular proton transfer and minimization of steric interactions between the imine and
the reactive enamine. The (E)-imine is more stable than the (Z)-imine. Combined with the
observation that transition structures involving intramolecular proton transfer are favored,
the re-face attacks necessitate substantial eclipsing of the imine and enamine (TS-(S,R)-3,
TS-(S,R)-7, TS-(R,R)-5, and TS-(R,R)-9, Figure 1). Consequently, as shown in Figure 1,
the s-trans-re and s-cis-re transition structures are higher in energy by >1 kcal/mol than the
s-trans-si or s-cis-si transition structure, for both proline and pipecolic acid.

The re or si attack on the enamine is determined by whether the s-cis or s-trans enamine
conformer is favored in the transition state. In the case of proline, the transition structures
involving the s-trans-enamine are favored over those that involve the s-cis-enamine. The
latter involves distortions of the developing iminium from planarity to accommodate proton
transfer. Thus proline provides the syn-product (2S,3S)-1 as the major product.8

This differentiation is weakened in the case of pipecolic acid. The piperidine ring has
different steric interactions with the s-trans- or s-cis-enamines than the pyrrolidine ring of
proline. The relatively rigid piperidine ring holds the carboxylic acid more rigidly than the
more flexible pyrrolidine. This alters electrostatic interactions with the ester of the
iminoglyoxylate and with the protonated imine. These differences allow the imine to react
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via both the s-trans- and s-cis-enamine, giving rise to roughly equal amounts of both syn-
product (2S,3S)-1 and anti-product (2S,3R)-2.

The (S)-pipecolic acid-catalyzed Mannich reactions of aldehydes affords ready access to
both syn- and anti-products with high enantioselectivities. In contrast, proline-catalyzed
reactions yield primarily the syn product. Work is under way to further develop anti-
selective Mannich catalysts based on these discoveries.9,10
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Figure 1.
Transition structures for the C-C bond formation of the (S)-proline and (S)-pipecolic acid-
catalyzed Mannich reaction between propionaldehyde and N-PMP-protected α-imino methyl
gloxylate. S-trans-si transition structures TS-(S,S)-4 and TS-(S,S)-8 give rise to product 1a,
while TS-(R,S)-6 and TS-(R,S)-10 gives rise to 2a.
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Scheme 1.
Mechanism of the (S)-proline-catalyzed Mannich reaction of aldehydes with α-imino ethyl
glyoxylate.
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Table 2

Comparison of the experimentally observed product ratios involving reaction of propionaldehyde with N-
PMP-protected α-imino ethyl glyoxylate with computed stereoselectivities based on transition state theory
predictions involving N-PMP-protected α-imino methyl glyoxylate.

Entry Catalyst Type dr
syn(1):anti(2)

ee (%)
syn (anti)

1 Proline Exp. 3:1 >99

2 Proline Computed 3.5:1 97

3 Pipecolic acid Exp. 2:1 >99 (>99)

4 Pipecolic acid Computed 1.4:1 93 (96)
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