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 Introduction 

 Increasing evidence has suggested that rare and gener-
ally deleterious genetic variants might have a strong im-
pact on the risk of not only rare Mendelian diseases, but 
also many common human diseases and related traits  [1, 
2] . Because genome-wide association studies are ineffi-
cient in identifying rare variants that predispose to com-
mon diseases, whole-genome and whole-exome sequenc-
ing in families or individuals with extreme traits have 
been proposed to identify the disease-causing variants of 
these diseases  [3] .

  Simulated datasets have been used to explore the role 
of genetic variants in human genetic diseases and to eval-
uate the performance of statistical methods that are de-
signed to detect these variants  [4, 5] . Under the Common 
Disease/Many Rare Variants hypothesis  [1, 4–8] , a com-
mon disease might be caused by multiple rare variants 
that are under relatively strong selection pressures. A re-
alistic selection model that reflects the distribution of 
random fitness effects among newly arising mutations is 
therefore important for simulating rare variants. Unfor-
tunately, existing coalescent-based simulation programs 
can only simulate neutral alleles (e.g. ms  [9] ) or natural 
selection on a single locus (e.g. SelSim  [10] ), and existing 
forward-time simulation programs only focus on a fixed 
number of mutations that are under selection  [11] , simu-
late sequences as independent nucleotides that are under 
selection  [5] , or use simple selection models with random 
fitness effects  [12–14] .
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 Abstract 

  Objective:  Simulated samples have been widely used in the 
development of efficient statistical methods identifying ge-
netic variants that predispose to human genetic diseases. Al-
though it is well known that natural selection has a strong 
influence on the number and diversity of rare genetic varia-
tions in human populations, existing simulation methods 
are limited in their ability to simulate multi-locus selection 
models with realistic distributions of the random fitness ef-
fects of newly arising mutants.  Methods:  We developed a 
computer program to simulate large populations of gene se-
quences using a forward-time simulation approach. This 
program is capable of simulating several multi-locus fitness 
schemes with arbitrary diploid single-locus selection mod-
els with random or locus-specific fitness effects. Arbitrary 
quantitative trait or disease models can be applied to the 
simulated populations from which individual- or family-
based samples can be drawn and analyzed.  Results:  Using 
realistic demographic and natural selection models estimat-
ed from empirical sequence data, datasets simulated using 
our method differ significantly in the number and diversity 
of rare variants from datasets simulated using existing meth-
ods that ignore natural selection. Our program thus provides 
a useful tool to simulate datasets with realistic distributions 
of rare genetic variants for the study of genetic diseases 
caused by such variants.  Copyright © 2011 S. Karger AG, Basel 
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  We developed the computer program srv (Simulator of 
Rare Variants) to simulate large populations of gene se-
quences using an evolutionary process with realistic de-
mographic, mutation and multi-locus selection models 
with random fitness effects. The simulated populations 
can be used to study the impact of demographic and nat-
ural selection models on the number and frequencies of 
mutants (i.e. derived alleles), and, more importantly, gen-
erate samples for the development of statistical gene map-
ping methods for detecting rare variants that predispose 
to human genetic diseases.

  Methods 

 Our method simulates one or more chromosomal regions that 
represent genes on the human genome. During a long evolution-
ary process, single nucleotide mutants are introduced to these 
genes and cause changes in the fitness of individuals who carry 
these mutants. The number and frequency of these mutants in the 
simulated population are affected by mutation, natural selection, 
and population demography. A gene typically spans from 10,000 
to 100,000 base pairs. Although genetic recombination is usually 
negligible in such short regions, recombination at a constant rate 
(per base pair per generation) can be used to recombine parental 
chromosomes before they are transmitted to offspring.

  We assume a multi-stage demographic model where a popula-
tion of size  N  t  at stage  t  expands exponentially or reduces instant-
ly to size  N  t   + 1  in  G  t  generations ( t  = 0, ...,  m  – 1, where  m  is num-
ber of stages). More complex demographic models can be approx-
imated with finer stages (e.g. exact population size at each 
generation). Optionally, the population can be split into several 
subpopulations with given proportions at a specified generation. 
An island model is used to migrate individuals between the re-
sulting subpopulations.

  We use two diallelic mutation models to mutate alleles at all 
nucleotides at a fixed mutation rate. A finite-sites model is used 
by default in which all mutations such as forward, recurrent and 
back mutations are allowed. A mutation event can happen at a lo-
cus with existing mutant, and will mutate a wild-type allele to a 
mutant allele, and vice versa  [12] . Alternatively, a pseudo-infinite-
sites model can be used to mimic an infinite-sites mutation mod-
el by relocating a mutant if it hits a locus with existing mutants. 
Although the latter model is less realistic, datasets simulated in 
this model have the property that all mutants in the simulated 
population can be traced back to single mutation events.

  The fitness effect of a mutant at locus  i  is modeled by fitness 
values 1, 1 –  h  i  s  i , and 1 –  s  i  for individuals with 0, 1 and 2 mutants 
at this locus, respectively. Although the selection coefficients  s  i  
are usually positive, zero or negative values can be used to simu-
late neutral loci or loci under positive selection. The dominance 
coefficient  h  i  is frequently set to 0.5 for an additive model, or 0 for 
a recessive model. The selection and dominance coefficients at 
each locus are usually drawn from a random distribution but lo-
cus-specific coefficients can be specified using user-provided 
functions. This program incorporates multiple sets of selection 
parameters estimated from human genome data using different 

demographic models  [5, 15–17] . For example, using a mixed gam-
ma distribution, a mutant can have a selection coefficient of zero 
(neutral alleles) or a random number drawn from a gamma dis-
tribution ranging from 0.00001 to 0.1  [5] .

  Instead of simulating each locus separately  [5] , we assign an 
overall fitness value to an individual if he or she carries mutants 
at more than one locus. Either an exponential ( f  = exp � (1 –  f  i ), 
where  f  i  is the fitness value at locus  i , and  f  is the overall fitness 
value), a multiplicative (  f   =  �   f  i ), or an additive (  f   = max[0, 1 –  � (1 
–  f  i )]) model can be used. Although these models are different 
from the models used in SFS_CODE where the fitness effect of 
multiple mutants (not genotypes) are combined either additively 
or multiplicatively  [12] , the differences between these models are 
small when  s  i  is small and  h  i  = 0.5 for all loci.

  Our program produces several output files, including a mu-
tant file that contains mutants of all individuals, and a map file 
that contains the location, frequency, and selection and domi-
nance coefficients of each mutant. Mutation events that happened 
during the evolutionary process can also be saved and used to 
trace the age of mutants. The simulated population can be post-
processed to generate samples for particular studies. For example, 
a quantitative trait model can be applied to the simulated popula-
tions from which individuals with extreme trait values can be 
sampled. Pedigree samples can be generated by evolving the sim-
ulated population for one or more generations while keeping pa-
rental genotype information. Examples on how to generate such 
samples are provided in the program website.

  Results 

 As a demonstration, we evolved initial populations of 
8,100 individuals with 63,000 base pairs for 81,000 gen-
erations and expanded them to 900,000 individuals in 
370 generations after a short bottleneck of 7,900 individ-
uals. This model reflects one of the demographic models 
of the European population  [5] . We used a neutral model 
and an exponential multi-locus selection model for non-
synonymous mutations, where fitness values of new mu-
tants were drawn from a gamma distribution with a shape 
parameter of 0.184 and a scale parameter of 0.320  [16] . A 
finite-sites mutation model with a mutation rate of 1.8  !  
10 –8  per generation per base pair was used. We drew 700 
random individuals from the simulated population and 
obtained the number of SNPs for each mutant frequency 
class [a class  i  SNP means there are  i  copies of mutants 
(derived allele) on the site, 0  !   i   !  1,400].

  As a comparison, we also simulated sequences with 
the same neutral model described above using ms  [9] . 
With 10,000 replicates, we compared the average num-
bers of SNPs for each mutant frequency class obtained 
from the three simulations. The results obtained with srv 
and ms under the neutral model were very similar, except 
the number of singletons of srv was slightly smaller than 
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that of ms ( fig. 1 ). The difference may partly be due to the 
different models employed by the two methods. srv uses 
the default finite-sites model for mutations and simulates 
individuals in discrete time (generation), whereas ms 
uses an infinite-sites model for mutations and the contin-
uous-time coalescent approximation for simulation. 
Compared with the neutral models, the mutants under 
the selection model showed dramatic reductions in the 
total number of mutants and a proportional concentra-
tion of extremely rare variants, as expected ( fig. 1 ).

  Although the distribution of allele frequencies of se-
quences with linked loci (nucleotides) is difficult to de-
rive, a computer program (prfreq  [16] ) has been developed 
to estimate the distribution of allele frequencies of a nu-
cleotide locus using numerical integration, effectively giv-
ing us a distribution of allele frequencies of unlinked loci 
under certain demographic and genetic assumptions. To 
validate our simulation method against theoretical esti-
mates, we simulated a constant-size population of 8,100 
individuals with 10,000 base pairs for 81,000 generations, 
using an infinite-sites mutation model with a mutation 
rate of 1.8  !  10 –8  per generation per base pair. We used a 
multiplicative multi-locus selection model for non-synon-
ymous mutations, with fitness values of new mutants 
drawn from a gamma distribution with a shape parameter 
of 0.184 and a scale parameter of 0.320  [16] .

  We drew 10 random individuals from the simulated 
population and obtained the number of SNPs for each 
mutant frequency class. We compared the average num-
ber of each SNP class to the expectations obtained from 

the prfreq program with the same demographic model 
and selection coefficient distribution ( fig.  2 ). Although 
prfreq obtains the expectations assuming independent 
nucleotide sites in contrast to our assumption of a non-
recombined DNA strand, the means of the simulation re-
sults fit reasonably well to prfreq’s expectations, which 
suggests that the marginal distribution of each nucleotide 
in our simulation is similar to that of an independent site.
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  Fig. 1.  Comparison of three simulation re-
sults of the numbers of the first ten mutant 
(derived allele) frequency classes (1  ̂    i   ̂   
10). Means  8  SD are shown, which were 
obtained from the three sets of simula-
tions, each with 10,000 replicates. 
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  Fig. 2.  Comparison of srv simulation results (columns) with 
 prfreq expectations (squares)  [16] . Histograms and error bars 
show the mean  8  SD of the simulation results by srv with 10,000 
replicates. prfreq expections = the expected SNP spectrum calcu-
lated by prfreq. 
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  Discussion 

 Due to the stochastic nature of the evolutionary pro-
cess, the number, location, and frequency of mutants vary 
from population to population. A random realization of 
this evolutionary process requires a long evolution time 
(for example a long period of constant population size). If 
multiple replicates of the same evolutionary scenario are 
simulated, a population that is under mutation and selec-
tion equilibrium can be simulated in advance and used as 
the founder population for replicate simulations. Simi-
larities between populations simulated in this manner 
(e.g. sharing of mutants from the founder population) can 
be controlled by evolving the founder populations for ad-
ditional generations.

  In order to simulate samples that resemble real-world 
genetic data, our program provides an option to import 
alleles from an existing sample (e.g. the HapMap dataset 
 [18] ) during evolution. These alleles are usually intro-
duced before rapid population expansion. Because com-
mon alleles will most likely remain common during rap-
id population expansion  [19] , manually inserted common 
variants will remain common in the simulated popula-
tion, but at the same time blend nicely with new mutants 
that are introduced during the population expansion 
stage. Such datasets provide an ideal tool to study the 
power of genome-wide association studies of diseases 
that are caused by rare and unobserved variants  [4] .

  srv allows the use of a pseudo-infinite-sites mutation 
model in which mutations only happen at nucleotide loci 
without existing mutants. Whereas a mutant will be con-

sidered new in a coalescent-based simulation if it does not 
appear in individuals in the coalescent tree, our model 
requires that no mutant at the same locus exists in the 
whole population. Because large populations of short se-
quences may become saturated so that every locus has 
existing mutants, an infinite-sites model should not be 
used if the number of segregation sites in the simulated 
population is close to the length of sequences.

  If the underlying evolutionary process can be suffi-
ciently approximated by a Wright-Fisher model, a scaling 
technique can be used to speed up a forward-time simu-
lation  [20, 21] . Compared to a regular simulation that 
evolves a population of size  N  for  t  generations, a scaled 
simulation with a scaling factor  �  evolves a smaller popu-
lation of size  N / �  for  t / �  generations with magnified 
(multiplied by  � ) mutation, recombination, and selection 
forces. However, because this scaling technique might 
not be applicable to all supported selection models, and 
will result in a final population of size  N / �  instead of  N , 
this technique should be used with caution.

  A number of computer programs are available to sim-
ulate sequences for genetic epidemiological studies.  Ta-
ble 1  lists some of the popular coalescent-based programs 
and forward-time simulation programs that support nat-
ural selection on multiple loci. More complete surveys of 
such software are provided by Liu et al.  [22]  and Carvajal-
Rodriguez  [23] . srv differs from these programs in its 
ability to simulate diploid and site-specific selection 
models, to use an infinite-sites in addition to a finite-sites 
mutation model, and to introduce alleles from empirical 
data.

Table 1. P opular applications that simulate genome sequences using a coalescent or forward-time approach

Program Method Selection Recombination Mutation models Disease model Ref.

ms coalescent no uniform infinite sites no 9
GENOME coalescent no varying1 infinite sites no 25
SelSim coalescent single-locus varying diallelic for selected site no 10
ForSim forward based on phenotype uniform diallelic yes 26
GenomePop forward random2 varying 2- or 4-allele models no 13
FREGENE forward random3 varying finite sites, diallelic yes 14
SFS_CODE forward random4 varying finite sites, diallelic no 12

1  User can define multiple consecutive fragments of the 
sequence, the recombination only occurs between fragments but 
not within the fragments.

2 Multiplicative multi-locus model with selection coefficients 
drawn from a gamma distribution.

3 Additive multi-locus selection model with selection and 
dominance coefficients drawn from a mixture of two Gaussian 
distributions.

4 Additive or multiplicative multi-mutant selection model with 
scaled selection coefficients drawn from a random distribution.
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  Perhaps the most distinguishing feature of srv is that 
it is implemented using a general-purpose forward-time 
population genetics simulation environment (simuPOP 
 [24] ) and can take full advantage of the processing power 
of this software. For example, a single python script can 
be used to simulate multiple populations using srv, apply 
different disease or quantitative trait models, draw popu-
lation- or pedigree-based samples, and use different sta-
tistical methods to analyze them. Because of the scripting 
language design, it is relatively easy to modify srv to re-
veal details of the evolutionary process or use alternative 
demographic or genetic models. srv can be executed from 
a graphical user interface, a command line in batch mode, 
or called as a function from another script. It takes around 
10 min to simulate 90,000 sequences of 63,000 base pairs 
on a reasonably configured PC using a demographic 
model with a long constant population size followed by 
rapid population expansion, and an exponential multi-

locus selection model with selection coefficients drawn 
from a gamma distribution. srv is freely available at the 
‘Complete Script’s section of the simuPOP online cook-
book at http://simupop.sourceforge.net/cookbook. Sev-
eral examples are provided to demonstrate features of 
this program.
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