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Abstract

A convergent synthesis of (+)-SCH 351448 (1), a monosodium salt of a C2-symmetric
macrodiolide, is described. Our approach is based on a [4+2] annulation with a chiral allyl silane
(anti-5c) to assemble the pyran subunits. Homodimerization was carried out in a stepwise fashion;
initial esterification at C29′ followed by macrocyclization at C29 afforded the desired
macrodiolide.

In 2000, Hedge and coworkers reported the bioassay-guided isolation of a microbial
metabolite, named SCH 351448 (1), from the organic extract of Micromonospora sp.1 SCH
351448 is a novel activator (ED50 = 25 μM) for low-density lipoprotein receptor promoter,
which is important for the treatment of hypercholesterolemia.2

The structure of SCH 351448 (1) was determined by single-crystal X-ray analysis, and
exhibited a hepta-coordinated sodium ion positioned in the interior cavity of the
hydrophobic skeletal array.1 Its structure consisted of a 28-membered macrodiolide
comprised of two identical hydroxy carboxylic acid monomeric subunits. The intriguing
structure and unique bioactivity of 1 has led to several total synthesis programs being
initiated by the synthetic community.3

Our retrosynthetic analysis of this target (Figure 1) began with a disconnection of the C29/
C29′ ester bonds to yield the monomeric subunit 2. The latter was envisioned to come from
an olefin cross metathesis of fragments 3 and 4. Fragment 3 could arise from an asymmetric
allylation and crotylation of the cis-2,6-dihydropyran core, which would be formed from a
[4+2] annulation reaction4 of allylsilane anti-5c with aldehyde 6a. Similarly, fragment 4
would be derived from silane anti-5c and aldehyde 6b.

We have previously reported a highly diastereo- and enantio-selective [4+2] annulation
between aldehydes and syn allylsilanes.4 However, early experiments at applying the
annulation to form dihydropyran products 7 from silanes syn-5b/syn-5c and aldehyde 6a
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(Scheme 1, eq 1) gave inconsistent results and thus were not synthetically useful.
Previously, Roush had reported the construction of cis-2,6-disubstituted dihydropyrans using
anti-allylsilanes derived from the asymmetric γ-silyl allylboration of an aldehyde.5 In that
report, the favored pathway was thought to proceed via a boat-like TS-A which fashioned
the cis-isomer as the major product, while the trans-isomer was suggested to form via the
unfavored chair-like TS-B (Scheme 1). In that context, we have observed that anti-silanes
such as 5, participate in a [4+2]-annulation with aldehydes to produce 2,6-cis dihydropyrans
7; the results are summarized in Table 1. One proposed mechanism that accounts for the
stereochemical course of the annulation involves the equilibration between a twist boat-like
TS-C and a chair-like TS-D, where TS-C avoids the steric destabilizing trans-diaxial
orientation versus TS-D (Scheme 1, eq 4 and eq 5).

Synthesis of the C1-C13 fragment began with the known α,α′-dimethyl aldehyde 6a6

(Scheme 2). Annulation of silane anti-5c and aldehyde 6a proceeded smoothly in the
presence of TMSOTf to afford the desired dihydropyran 8 in 83% yield (dr 13:1).
Hydrogenation of 8 afforded a primary alcohol which was later oxidized to aldehyde 9 in
80% yield over two steps. Further oxidation under Pinnick oxidation conditions7 and
protection afforded benzyl ester 10. An SN2 displacement of the mesitylate in compound 10
with NaCN followed by Raney-nickel mediated partial reduction8 of the resulting nitrile
afforded aldehyde 11 in 60% yield, after hydrolysis of the intermediate imine. Asymmetric
allylation of 11 using Brown's protocol 9 furnished the desired secondary homoallylic
alcohol, which was subsequently protected as benzyl ether 12. Oxidative cleavage of alkene
12 followed by asymmetric crotylation of the resulting aldehyde using Brown's (E)-crotyl
borane10 afforded the anti-homoallylic alcohol, which was protected as its TBS ether to
provide olefin 3 as one of the coupling partners in 60% yield over three steps.

Synthesis of the C14-C29 fragment (Scheme 3) began with aryl triflate 13,11 which was
subjected to a Sonogashira cross-coupling to afford propargylic alcohol 14 in 85% yield.
Catalytic hydrogenation of alkyne 14 in the presence of Pd/C followed by PCC oxidation
provided aldehyde 6b. Annulation between aldehyde 6b and silane anti-5c furnished the
desired dihydropyran, which was hydrogenated to give 15 in 70% yield over two steps.
Subsequent SN2 displacement of the mesitylate in 15 yielded an iodide, which was further
converted to acetate 16 in 60% yield over two steps. A Sc(OTf)3 catalyzed hydrolysis12 of
acetate 16 provided primary alcohol 17 in 91% yield, which was then subjected to a Swern
oxidation, followed by a Julia-Kociénski olefination3e with sulfone 18,13 to give alkene 19
in 80% yield. Opening of the dioxinone ring in 19 afforded the intermediate phenol, which
was converted to the β-silyl ester 4.

With advanced intermediates 3 and 4 available in useful amounts, we were now positioned
to investigate methods for their union. Cross metathesis between 3 and 4 (Scheme 4)
proceeded smoothly using the Grubbs-Hoveyda second generation catalyst,14 which
delivered the (E)-olefin. This material was then subjected to diimide reduction3a to afford
advanced intermediate 20. Deprotection of 20 provided seco acid 2, which was poised for
the homodimerization experiments.

A synthetic strategy to construct the C2-symmetrical macrodiolide core of cycloviracin B1
has been described by Furstner. 15 It involved a template-directed macrodilactonization
reaction promoted by 2-chloro-1,3-dimethylimidazolinium chloride (DMC). 16 Inspired by
this work, we investigated a similar strategy for macrodiolide formation. Unfortunately,
treatment of seco acid 2 with DMC/DMAP and suitable additives17 only led to the undesired
14-membered lactone 23 18 without formation of dimeric product 22. After these
disappointments, we evaluated a stepwise pathway to complete the synthesis, as illustrated
in Scheme 5.
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The reaction sequence that ultimately proved successful utilized Lee's method of
esterification, 3a which was facilitated by dioxinone ring-opening. Cross metathesis between
19 and 3 afforded the intermediate alkene, which was reduced with diimide to deliver
dioxinone 24. TBS deprotection of 20 gave alcohol 21 in 91% yield (Scheme 4).
Deprotonation of alcohol 21 with NaHMDS and addition of dioxinone 24 led to the desired
mono-ester product, which was protected to afford 25 in 60% yield over two steps.
Deprotection of the monoester provided the seco acid, which was subjected to a DMC/
DMAP-promoted esterification16 reaction to achieve mycrocycle 22 in 50% yield over two
steps. Lastly, deprotection followed by work up with 4 M HCl saturated with NaCl, 3a

delivered SCH 351448 (1) as its monosodium salt in 70% yield. The spectral data for our
synthetic material matched those reported for the natural product.3

In summary, we have described a convergent, enantioselective total synthesis of (+)-SCH
351448 with a 2.3% overall yield from readily available allylsilane anti-5c. Synthetic
highlights of our route include a [4+2] annulation strategy using silane anti-5c to ultimately
construct the tetrahydropyran ring systems in fragments 3 and 4. Olefin cross metathesis was
utilized in the union of two advanced fragments to generate the monomeric subunit. A
metal-template directed macrodilactonization strategy proved unsuccessful. Thus, the
macrodiolide was assembled through a two-step sequence involving dioxinone ring-opening
with concomitant esterification followed by DMC/DMAP-mediated macrocyclization.
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Figure 1. Retro synthetic analysis of SCH 351448 (1)
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Scheme 1. Possible transition states for the [4+2] annulation
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Scheme 2. Synthesis of C1-C13 fragment
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Scheme 3. Synthesis of C14-C29 fragment
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Scheme 4. Attempted template-directed macrodimerization
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Scheme 5. Assemly of 1 by dioxinone ring-opening and macrocyclization
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