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Abstract
In this paper, based on a recent work by McAllister and Floudas who developed a mathematical
optimization model to predict the contacts in transmembrane alpha-helical proteins from a limited
protein data set [1], we have enhanced this method by 1) building a more comprehensive data set
for transmembrane alpha-helical proteins and this enhanced data set is then used to construct the
probability sets, MIN-1N and MIN-2N, for residue contact prediction, 2) enhancing the
mathematical model via modifications of several important physical constraints and 3) applying a
new blind contact prediction scheme on different protein sets proposed from analyzing the contact
prediction on 65 proteins from Fuchs et al. [2]. The blind contact prediction scheme has been
tested on two different membrane protein sets. Firstly it is applied to five carefully selected
proteins from the training set. The contact prediction of these five proteins uses probability sets
built by excluding the target protein from the training set, and an average accuracy of 56% was
obtained. Secondly, it is applied to six independent membrane proteins with complicated
topologies, and the prediction accuracies are 73% for 2ZY9A, 21% for 3KCUA, 46% for 2W1PA,
64% for 3CN5A, 77% for 3IXZA and 83% for 3K3FA. The average prediction accuracy for the
six proteins is 60.7%. The proposed approach is also compared with a support vector machine
method (TMhit [3]) and it is shown that it exhibits better prediction accuracy.

1 Introduction
Protein structure prediction has experienced significant progress during the past years [4, 5,
6, 7]. Various methods, such as comparative modeling [8, 9, 10, 11], fold recognition and
threading [12, 13, 14, 15], first principles prediction with database information [16, 17, 18,
19], and first principles prediction without database information [20, 21, 22, 23] contributed
to this advancement. Most of these methods utilize a multi-step process, which often
includes secondary structure prediction, contact prediction, fragment generation, clustering,
etc.. However, the structure prediction for membrane proteins is less investigated. This is
mainly due to the fact that limited experimental structures are available to researchers and
the phospholipid bilayer environment has to be considered in the modeling process.

Membrane proteins constitute about 30% of all proteins. They play vital roles in all the
organisms, acting like filters between the intra- and extra-cellular domains or between cells,
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transporting small molecules and energy [24, 25, 26]. Due to their vital functions in the
cells, membrane proteins make about 50% of the current drug targets [27], thus providing
high-resolution three dimensional structural information of membrane proteins is of crucial
research and medical interests. However, membrane proteins are difficult to be crystallized
for X-ray analysis, and less than 1% of the protein structures deposited in Protein Data Bank
are membrane proteins [28]. This restricts severely the development of homology-based
structure prediction method since they can not be universally applied to membrane proteins
[26]. A recent study showed that, given an available template and the sequence similarity
between the template and the target is greater than 30%, homology modeling of membrane
proteins can generate comparable structures to water-soluble proteins [29]. Another
difficulty for membrane protein structure prediction is that modeling and predicting
membrane proteins have to include the effect of phospholipid bilayers, thus new energy
functions must be formulated [30] or the appropriate lipid environment needs to be
considered [31]. By using a low-resolution scoring function including an environment score
function, Yore-Yarovoy et al. predicted significant portion of each of 12 test proteins within
4 Å RMSD value by using Rosetta de novo structure prediction method [32]. Zhang et al.
incorporated explicitly a “hydrophilic inside” potential term in TASSER and used this
potential to model the predicted transmembrane regions; and a final model for bovine
rhodopsin predicted by TASSER achieved a RMSD of 4.6 Å [33].

Barth et al. recently developed a method to predict membrane protein structures by
constraining the orientations of transmembrane helical segments and fixing residue-residue
interactions either from predictions or derived from experimental information [26]. It is
concluded that membrane protein structure prediction can reach 4 Å of native structure if
limited information on residue-residue interactions is available. In fact, experimental
techniques such as mutagenesis and cross-linking assays have long been used to study the
structure-function relations in transmembrane proteins [34]. The residue contact information
predicted or derived from experimental data guides the simulation to find the native three
dimensional structures by narrowing down the conformational sampling space. More
recently, Michino et al. developed a protocol for predicting a special class of membrane
proteins in complex with a ligand, GPCRs (G protein-coupled receptors) of class A [35].
This protocol used predicted inter-residue contacts and an all-atom implicit membrane GB
(Generalized Born) force field. The method generated models with 2.0 Å Cα RMSD from
the crystal structure for protein βAR.

Residue-residue contact prediction can not only help membrane protein structure prediction,
but can also facilitate the methods developed for structure prediction of water-soluble
proteins, and help to understand protein folding and stability [36]. Many efforts have been
done in studying residue-residue contact (interactions). Tanaka and Scheraga classified the
residue-residue interactions into short, medium and long range ones and proposed a three-
step protein folding mechanism based on these interactions [37]. By using a protein as an
example, BPTI, Wako and Scheraga developed a method to evaluate the quality of the
residue-residue interaction distances, and even provided an empirical relation between the
ambiguity in the computed conformation and RMSD value of the computed conformation
[38]. In order to facilitate the structure prediction for globular proteins, various research
groups have developed different contact prediction algorithms for globular proteins [39, 40,
41, 42, 50, 51, 52, 53, 54]. They can be broadly classified into three categories: correlated
mutation analysis [40, 55], machine learning methods [50, 53, 56], and mathematical
optimization based methods [39, 42, 43]. Correlated mutation analysis is based on the
observation that two mutations often take place in tandem. The prediction capability of
correlated mutation analysis is relatively low compared with machine learning methods,
such as neural network [53], and support vector machine [50, 57]. Combinations of different
methods are also used for contact prediction in a hope of providing better prediction power.
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Examples are combination of hidden Markov model with support vector machine, or genetic
programming [58]. The third category is optimization based approaches. This approach
showed promising prediction ability [39, 42, 43]. In a recent work by Rajgaria et al., an
optimization model was introduced to predict the hydrophobic to hydrophobic residue
contacts in alpha-helical proteins with an accuracy about 66% [42]. This was extended for
mixed alpha/beta proteins in another work by Rajgaria et al. by including more features and
constraints in the model [43]. An average prediction accuracy of 61% was achieved and the
predicted residue contacts were helpful with the protein three dimensional structure
prediction by first principles protein tertiary structure prediction approach, ASTRO-FOLD
[21, 23, 44, 45, 46, 47, 48, 49]. Note that even though there are false predicted contacts by
these methods, the predicted contacts can still be used to help predicting the three
dimensional structures for proteins. Latek and Kolinski recently showed that using their
CABS force field can suppress the false predicted contacts, thus guiding the simulation to
find the correct structure restrained by the true contacts [58].

Although contact prediction for globular proteins has made great advancement, contact
prediction for membrane proteins is less studied. One reason is that the contact prediction
models for globular proteins can not be simply used in membrane proteins. For example, the
contact prediction model developed by Rajgaria et al. maximizes the sum of hydrophobic
contact energies between the contact residue pairs [42, 43]. This model uses the assumption
that the lowest energy structure corresponds to the native structure, and this assumption can
not be directly applied to membrane proteins.

Few attempts have been made for predicting the contacts in transmembrane helical proteins.
Fuchs et al. developed a neural network method for predicting the inter-helical contacts in
transmembrane proteins [2]. This is claimed to be the first published contact prediction
method for membrane proteins, even though McAllister and Floudas (2008) presented an
optimization based approach earlier [1]. The method by Fuchs et al. incorporates membrane
protein specific features such as number of transmembrane helical segments, their positions
and orientations into different neural network models. The best prediction accuracy achieved
by the different neural networks is about 26% given a contact defined as the minimal
distance between side chain or backbone heavy atoms is less than 5 Å. This method has been
compared with several other contact prediction methods designed for globular proteins, and
it is concluded that the prediction methods for globular proteins are not able to predict
contacts with a comparable accuracy within transmembrane helical segments [2].

A support vector machine model for residue contact prediction of membrane proteins was
recently developed by Lo et al. [3], and these predicted contacts are further used by the
model to predict the interacting pair of helices. A residue prediction accuracy of 44.8% was
achieved on an independent test set of proteins. It is reported that when at least three residue
contacts are used for inferring a helical pair interaction, the prediction accuracy for the
interacting helical pairs is 56%. A similar work by Nugent and Jones also relied on support
vector machine for predicting the transmembrane helix packing through the use of residue
contacts and a force directed algorithm [59]. The model is claimed to predict helix-helix
interaction with up to 65% accuracy when tested by cross-validation on a non-redundant set.

In December 2008, McAllister and Floudas introduced a mixed integer programming (MIP)
optimization based contact prediction model for transmembrane alpha-helical proteins [1].
This model assumes that some specific residues have higher probabilities of forming an
inter-helical contact than other residues. By building pairwise (PAIRWISE) and three-
residue (TRIPLET) contact probability sets based on a data set of transmembrane alpha-
helical proteins, the approach successfully predicted residues contact for several
transmembrane alpha-helical proteins, including a seven helical bundle protein, bovine
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rhodopsin [1]. Two different optimization models, PAIRWISE and TRIPLET, together with
four different probability sets, were used to predict the inter-helical contacts in this work.
Data from a limited number of available transmembrane alpha-helical proteins (26 proteins
and 42 chains) were used.

Using an enlarged set of transmembrane alpha-helical proteins in PDB, we enhance the
model by building new probability sets to satisfy the demand of high quality inter-helical
contact predictions in transmembrane proteins. The new probability sets in this article are
based on a combined data set from three different membrane protein data banks, Membrane
Protein Topology Database (MPTopo) [60], Membrane Protein Data Bank (MPDB) [61] and
Protein Data Bank of Transmembrane Proteins (PDBTM) [62].

The work in this article aims to firstly improve the model by constructing the enhanced
probability sets and modifications of several physical constraints. Secondly, it aims to
provide a method to predict residue contacts for blind predictions. In the original work, the
evaluation of the predictions for a single run was based on the best average contact distances
(the smallest average contact distance of all iterations during a run is defined as the best
average contact distance). Because the distance information of a protein for a blind
prediction is unknown, providing a systematic procedure to predict the best inter-helical
contact prediction is of significance. The models are firstly applied to 65 test proteins which
are collected from the paper by Fuchs et al. [2], and later by analyzing the effect of different
parameters on the prediction accuracy, we developed a protocol for transmembrane helical
residue contact prediction. The protocol has been applied on two additional test sets of
proteins: the first set of five proteins is selected from the training protein set used for
building the probability sets. They are carefully chosen so as to represent various topologies.
An independent set of six non-redundant proteins is built from proteins released after Feb.
2009 in the membrane protein data banks PDBTM and MPDB. These six proteins are all
subject to a sequence similarity check (35%) by PISCES [65]. Average accuracy of 56% is
obtained for the first set of five proteins and average accuracy of 60.7% is obtained for the
second set of six independent proteins. A comparison with a support vector machine
method, TMhit [3], shows that the proposed approach produces better results when tested on
the set of six proteins.

2 Material and Methods
2.1 Enhanced Probability Sets

In the previous work by McAllister and Floudas (2008), the inter-helical contact prediction
for membrane proteins was achieved by building two mixed integer programing
optimization models, namely PAIRWISE and TRIPLET [1]. The models predict the residue
contacts between different transmembrane helical segment by maximizing the occurrence of
the most probable residue pairs. A data set consisting of 26 unique helical membrane
proteins (42 chains) was compiled from MPTopo [60]. Based on this data set, the
PAIRWISE and TRIPLET inter-helical contact probabilities (namely, MIN-1 and MIN2)
were developed. For the probability construction, a PAIRWISE inter-helical contact is
defined as if two amino acids in two different transmembrane helical segments are within 4
to 10 Å; a TRIPLET inter-helical contact is defined for three amino acids with one amino
acid in a transmembrane helical segment (MAIN residue) contacting with two other amino
acids (SECONDARY residues) in the corresponding contacting transmembrane helical
segment, and a TRIPLET contact happens if the average distance between MAIN residue
and SECONDARY residues is between 4 to 10 Å. It should be noted that there were two
other probability sets, AL-P (pairwise contact probability set) derived from the work of
Adamian and Liang [63], and AL-T (triplet contact probability set) derived from Adamian et
al. [64].
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In this paper, the AL-T and AL-P probability sets used are adopted directly from Ref. [1].
Two new probability sets (MIN-1N and MIN-2N) are build based on an enhanced
transmembrane helical protein data set. The probability sets of MIN-1N and MIN-2N are
listed in supplementary material from Table 1 to Table 9. This data set combines all the
transmembrane alpha-helical membrane proteins in Membrane Protein Topology Database
(MPTopo) [60], Membrane Protein Data Bank (MPDB) [61] and Protein Data Bank of
Transmembrane Proteins (PDBTM) [62]. The alpha-helical membrane protein list of each
data bank is first culled through an online server PISCES to get a non-redundant list [65].
PISCES determines sequence identities by a combination of Combinatorial Extension (CE)
structural alignment and PSI-BLAST sequence alignment [65, 66]. The culling parameters
used for PISCES server are: Maximum percentage identity: 35%; Skip non-X-ray entries?
No; Skip CA-only entries? No; with other threshold values set as default.

The Membrane Protein Topology Database (MPTopo) includes membrane proteins with
experimentally validated transmembrane segments, and is maintained by the Stephen White
laboratory at University of California, Irvine [67]. The 3D_Helix set are helical membrane
proteins with known three dimensional structures and thus are used for probability
construction. After culling the highly similar sequences by PISCES [65], an inspection was
performed in order to exclude the proteins with only one alpha-helical segment, or with
more than one but no clear helical contacts between different the transmembrane alpha-
helical segments. A final list of 26 unique proteins (42 chains) were obtained [1]. Since
MPTopo has not been updated since Aug. 2007, and McAllister and Floudas downloaded
the data set on Sep. 2007, the protein list used in their work are simply adopted here [67].

Protein Data Bank of Transmembrane Proteins (PDBTM) [62] is a membrane protein data
bank which collects all the membrane proteins from the official Protein Data Bank by using
an automated algorithm TMDET [62]. TMDET scans the newly released structures in
Protein Data Bank every week and identifies the membrane proteins with a discrimination
power greater than 98%. Thus, it provides a more complete and up-to-date membrane
protein data set than MPTopo. PMDET also identifies the location of the lipid bilayer that is
relative to the coordinate system and assigns transmembrane character for each membrane
protein in Protein Data Bank. As of Feb 22, 2009, 187 non-redundant transmembrane helical
proteins (255 unique chains) exist in PDBTM and this list is downloaded from PDBTM
website. The downloaded list of proteins is subject to the culling server PISCES to remove
the redundant or highly-similar structures. 90 unique proteins (113 unique chains) were left
after the culling process.

MPDB refers to Membrane Protein Data Bank, and it is updated weekly in parallel with
Protein Data Bank and maintained by Raman et al. [61]. MPDB contains not only structural
but also functional information of integral, anchored and peripheral membrane proteins. The
membrane protein selection procedure consists mainly of manual inspection on the PDB
entries containing ’membrane’. Ambiguous data are retrieved from the source literature and
related database. MPDB provides different criteria to search the transmembrane proteins.
Through a customized search (http:www.mpdb.ul.ie/customseach.asp), a total of 530 alpha-
helical transmembrane proteins are downloaded. This list is again culled against PISCES so
that the highly similar ones are eliminated. A total of 75 unique proteins (152 unique chains)
is obtained. The options used for downloading the transmembrane alpha-helical proteins
from MPDB are: Membrane disposition: Transmembrane (Polytopic: crosses the membrane
more than once); Secondary structure of transmembrane domain: alpha-helical; Number of
membrane crossings: Minimum=2 and Maximum=50 (default); Publication year high: 2009;
with other threshold values set as default.
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At a later stage, the three separately obtained data sets of MPDB, PDBTM and MPTopo are
combined together, and redundant proteins are excluded from the combined set with 180
proteins remaining in the list. The 180 proteins are culled by PISCES to eliminate the
highly-similar proteins. The final data set contains 98 unique proteins (181 unique chains).
After culling, this combined protein set is inspected manually to delete the chains which
have only one transmembrane helix or no clear formation of a α-helical bundle. The final
data set consists of 84 unique proteins (133 chains) ranging from 44 amino acid long to 1246
amino acid long. This is three times the size of the data set used by McAllister and Floudas
[1]. The full list of proteins is listed in Table 1.

In order to determine the orientation of the two contacting helices for the construction of
parallel and antiparallel probability sets, four planes are defined for each helix. They are
formed by amino acid triplets (assuming amino acids i, i+3, i+4, i-3 and i-4 belong to helix
m and amino acid j belongs to helix n), (i, j, i+3), (i, j, i+4), (i, j, i-3) and (i, j, i-4). Normal
vectors of the planes formed by (i, j, i+3) and (i, j, i+4) are added together to form a new
vector, and this new vector in perfect case should be normal to helix m and vector drawn
from i to j. Similarly, another vector is formed for planes (i, j, i-3) and (i, j, i-4). A total of
four vectors are generated for the helical pair and the orientation of the helical pair is
determined by the angles between different combinations of the four vectors [68].

2.2 Mathematical Models
2.2.1 PAIRWISE contact prediction model—A two level formulation is used for the
PAIRWISE prediction model. Level one predicts the PRIMARY contacts while level two
focuses on the prediction of WHEEL contacts given the PRIMARY contacts. A PRIMARY
contact forms between residue i and residue j on two different helices; while given a
PRIMARY contact between residue pair (i,j), a WHEEL contact is a contact formed
between residue i+3 or i+4 and residue j-3 or j-4 if these two helices form an anti-parallel
contact, or between residue i+3 or i+4 and residue j+3 or j+4 for two parallel contacting
helical pairs.

Level one maximizes the probability of the sum of residue-residue contacts as follows:

(1)

where m and n are indices for helices;  is a binary variable, representing an anti-
parallel (parallel) contact between helices m and n if ;  is a binary variable,

denoting a contact between residue i on helix m and residue j on helix n for ; 
is the PRIMARY contact probability that a residue pair (i,j) an anti-parallel (parallel)
contact.

The constraints for this model are separated into five categories, including basic model
constraints, geometrical constraints, model complexity, membrane protein observations and
model features.

Basic model constraints: Eq. 2 specifies that a residue-residue contact binary variable 
can only be active when the two helices contact either in parallel or anti-parallel. On the
other hand, when the sum of the binary variable  is greater or equal to one, then one of
the the variables  and  is allowed to be active; otherwise, if the sum of  is zero,
then both  and  should be disallowed. This is specified in Eq. 3.

Wei and Floudas Page 6

Chem Eng Sci. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2)

(3)

Geometrical constraints: Firstly, a helical pair can only interact either in anti-parallel or
parallel fashion, and this is expressed in Eq. 4.

(4)

Realizing that for the proteins with even number of helical segments (greater than 2), the
first and last helices must contact in anti-parallel if they contact with each other; for the case
of odd number of helices (greater than 2), the first and last helices should contact in parallel
if a contact takes place between them. However, Eq. 7 in the paper by McAllister and
Floudas only enforces the desired behavior for the case of subtract = 0, where subtract is a
parameter used to limit the total number of helical contacts in the model. Thus, if a protein
has 7 helices, there must be at most 6 anti-parallel contacts and if a protein has 6 helices,
there must be at most 6 anti-parallel contacts. While valid, it does not produce the desired
relationships for non-zero subtract values [1]. This equation is rewritten as two separate
equations, Eq. 5 and Eq. 6, to impose the correct contacts between the first and last helices.
In these two equations, N is the total number of helices. Eq. 5 disallows the parallel contact
between the first and last helices if N is even, but is not enforced if N is odd; Eq. 6 disallows
the anti-parallel contact between the first and last helices if N is odd, but is not enforced if N
is even.

(5)

(6)

Kinks are prevented by Eq. 7. This equation says if residue pairs (i,j) and (k,l) both form a
contact on a given helical pair m and n, the number of residues between residue i and k on
helix m is required to be within three residues of the number between residue j and l on helix
n, thus reducing the kinks.

(7)

Eq. 8 expresses that if helices hm and hn are predicted to be parallel with a contact (i,j), with
i from helix hm and j from hn,  and  are both allowed to be active (k > i). This is true
only when the condition ‘∀(i, j, k)|l > j, |(|diff(i, k)| − |diff(j, l)|)| < 3’ holds; otherwise, only
one is allowed to be active. Similarly, for helices m and n contacting in anti-parallel fashion,
Eq. 9 imposes this constraint.
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(8)

(9)

Another geometrical constraint considers the situation when a small helix is contacting a
longer helix, in this case the end of the first helix can not contact with the beginning of the
second helix given the loop is few residue long. Eqs. 11 and 12 of McAllister and Floudas
(2008) impose this constraint [1].

Model complexity constraints: The first model complexity constraint deals with the fact
that there is a maximum number of contacts allowed between a helical pair m and n, this is
written in Eq. 10.

(10)

For almost all proteins, counth(m) is set to 2, and for rare cases when a helix can not have 2
contacts, this parameter is set to 1.

Similarly, for a residue on a given helix m, only one contact is allowed between residue i on
helix m and other residues on another helix n, as shown in Eq. 11.

(11)

Membrane protein observations: This model aims at predicting the most general
topologies and most of transmembrane helices contacts in anti-parallel fashion for
consecutive ones. Thus, the parallel contacts between neighboring transmembrane helices
are disallowed as expressed in Eq. 12

(12)

Another constraint in this category says that the PRIMARY contact between two helices is
disallowed if the overlap between the two helices is less than 90% of the shorter helix. This
is based on the observation that transmembrane helices tend to line up in a similar fashion to
form a bundle, see Eqs. 16 and 17 of McAllister and Floudas (2008) [1].

Model features: This model aims to predict the most important contacts between helices,
thus it is necessary to impose a constraint on the maximum number of contacts allowed to be
predicted for a helical pair. In Eq. 13, max_contact is the parameter to limit the total allowed
contacts between two helices. It is often chosen as either 1 or 2 for different proteins. A
smaller max_contact gives less predicted contacts from the model, however, they are more
likely the most important contacts.
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(13)

Besides the limit on the allowed contacts for two helices, a parameter subtract is introduced
to limit the total number of possible helix-helix contacts in a protein. This is expressed in
Eq. 14.

(14)

Since for most of proteins, counth(m) takes a value of 2, a subtract value of zero value
allows the maximum number of inter-helical contacts to be the number of helices. A non-
zero subtract reduces the total number of predicted helical contacts, thus resulting in looser
helix packing.

The model also allows to generate a rank-ordered list of solutions, which is achieved using
integer cuts which exclude previously found solutions from the feasible solution space [69].
The solution of each iteration is a unique set of binary variables ( ,  and )
including active variables and inactive variables. Thus, the best solution of previous iteration
(inactive and active , ,  variables) is eliminated from the feasible solution space.

Level two formulation optimizes the WHEEL contact probability based on the PRIMARY
contact predicted. This level formation can distinguish the PRIMARY contacts with same
objective function values from level one optimization. The formulation expresses the
objective function as follows:

(15)

(16)

(17)

(18)

(19)

where  is a binary variable denoting the presence of a WHEEL contact between k and l

given a PRIMARY contact between i and j on helices m and n respectively. 
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represents the probability of forming a WHEEL contact between k and l given a PRIMARY
contact between i and j on two helices interacting in anti-parallel (parallel) fashion.

Note that the original model by McAllister and Floudas (2008) allows only for the contacts
between the neighboring helices to be predicted. This restricts the prediction ability for
proteins with more complicated topology. For example, the helical contacts (topology) of
calcium-transporting ATPase are very complicated, and non-neighboring transmembrane
helices contact frequently. In this topology, helix 2 and helix 4 form a contact, helix 1 and
helix 3 form a contact, helix 5 and helix 8 form a contact, etc. [63]. This restriction is
changed in the proposed model here allowing n to n+2 helical contact to be predicted.

It should also be noted that the original model used subsets of residue space and subsets that
connect the helices to reduce the computational costs. So instead of using i, j to refer
residues, subi, subj are introduced. A parameter CONN is introduced denoting the subset of
possible contact helical pairs. In the original model, CONN includes only the consecutive
helical pairs, thus only neighboring helical contacts are allowed. For example, CONN=1
means possible contact between helices 1 and 2, CONN=2 means possible contact between
helices 2 and 3. CONN=N (N is the number of helices) means possible contact between the
first and last helices allowed to be predicted. Subi and subj are the sub spaces of i and j, and
they are related by CONN value. For example, CONN=1, subi=5, subj=28 simply denotes
that the residue 5 on helix 1 and residue 28 on helix 2 are in contact. This reduces the
computational costs, however, it limits the capability of the model for predicting more
complicated topologies, and every equation and constrain has to be expressed consistently
with this subset definition. This modification to the model aims to enhance the model such
that more difficult topologies of transmembrane helical proteins could be predicted.

2.2.2 TRIPLET contact prediction model—Similar to the PAIRWISE model, the
TRIPLET model maximizes the sum of the TRIPLET contact probability to predict the
TRIPLET contacts between helices allowed by the constraints. The objective function is
expresses as,

(20)

In the above equation,  is a binary variable representing a TRIPLET contact formed
between residue i (a MAIN residue) on helix m, residue j (the first SECONDARY residue)
on helix n and a third residue (the second SECONDARY residue) on helix n if t=1;
otherwise, the contact is formed between residue i (the first SECONDARY residue) on helix
m, residue j (a MAIN residue) on helix n and a third residue on helix m (the second
SECONDARY residue) for the case t =2. Thus t is used to define the position of the second

SECONDARY residue.  is the probability that an anti-parallel (parallel) TRIPLET
contact is formed between i, j and k where k is defined by the value of t.

The constraints for the TRIPLET model are mostly similar to those of the PAIRWISE
model. These constraints are also grouped into five categories, basic model constraints,
geometrical constraints, model complexity constraints, membrane protein observation
related constraints and model feature constraints. A full description of these constraints is
presented in the supplementary material and the paper by McAllister and Floudas [1].

The main difference between formulating the PAIRWISE and TRIPLET models is that the
introduction of t to define the position of the second SECONDARY residue in the contact
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binary variable . This affects the formulation of all the constraints affected by the
position of the second SECONDARY residue. Especially, the second model complexity
constraint is affected mostly. This constraint basically states that a residue can mostly
contact with one other residue on a specific helix. In order to have the similar constraint as
in Eq. 11 for the PAIRWISE model, three rules are established. The first rule states that a
MAIN residue in a TRIPLET contact can not serve either as a MAIN or SECONDARY
residue in another TRIPLET contact; the second rule says two SECONDARY residues of a
TRIPLET contact can not participate in TRIPLET contacts with multiple residues; the third
rule states that a SECONDARY residue is disallowed to form more than two contacts. These
rules are implemented through several constraints in the following.

The first rule is constrained by the following three equations, Eqs 21, 22 and 23.

(21)

This equation expresses the restriction that if residue j or j+1 serves as a MAIN residue on
helix n in a TRIPLET contact between helix n and helix p, j or j+1 can not serve as a
SECONDARY residue in another TRIPLET contacts.

(22)

Eq. 22 basically states that if j serves as a MAIN residue of a TRIPLET contact, it can not
serves as another MAIN residue in a second TRIPLET contact. That is  if

; and  if .

Equation 23 has the similar effect as Eq. 21. It states that if residue j or j-1 serves as a MAIN
residue on helix n in a TRIPLET contact between helix n and helix m, j or j-1 can not serve
as a SECONDARY residue in another TRIPLET contacts.

(23)

Eq. 24 is used to impose the second rule. It states that if residue j and its neighbor residue
serve as SECONDARY residues in a TRIPLET contact, then they can not participate in
other TRIPLET contact as a SECONDARY residue pair.

(24)

The final rule is implemented in Eq. 25. This limits the overlapping TRIPLETs on one helix.
This equation says if residue j is a SECONDARY residue on helix n of a TRIPLET between
helix m and n, only one of its neighbor residue, j+1 or j-1, can participate in a TRIPLET
contact.

(25)
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Note that both the PAIRWISE and TRIPLET models are nonlinear, special care has to be
taken to reformulate the objective functions from nonlinear form to linear. See the
supplementary information of the paper by McAllister and Floudas [1] and the book by C.
A. Floudas [69].

For additional information about the model, the readers are referred to the paper by
McAllister and Floudas [1].

3 Results and Discussion
The calculation of accuracy depends on the definition of contact used. In this paper we use a
threshold value (DisCutoff) of 14 Å to define a true contact, that is if the distance between
two Cα atoms of a predicted contact is less than 14 Å this contact is classified as a true
contact, otherwise it is a false contact. The accuracy is then calculated as the number of true
contacts divided by total predicted contacts. A more frequently used contact definition is to
use 8 Å as the threshold value between Cβ atoms of two amino acids [53, 70, 71]. Other
definitions are also used, for example, Fuchs et al. defined a contact if the minimal distance
between side chain or backbone heavy atoms is less than 5.5 Å [2]. Since the contact
predictions will be used as distance restraints in our protein tertiary structure method,
ASTRO-FOLD [23], we maintain the DisCutoff value of 14 Å for analysis. In order to
include the false contacts with a small violation of DisCutoff value 14 Å, we also analyzed
the accuracy for DisCutoff = 15 Å.

For the case when a protein in the test set is also in the data set used for constructing the
probability set, a leave-one-out cross validation is used to exclude this protein from the
training set for probability development. The test set is divided into three parts for analysis,
proteins with three to five transmembrane helical segments, proteins with six to eight
transmembrane helical segments and proteins with ten or more transmembrane helical
segments. These three parts are referred to as TM3-5 proteins, TM6-8 proteins, and TM10
proteins, respectively.

3.1 Calculation of Accuracy
The accuracy is calculated for every parameter set. A parameter set consists of several
parameters that can affect the prediction accuracy for a protein. The probability set (PROB)
used in prediction is one parameter, and others include subtract (SUBT) and max_contact
(MXCT) parameters. MXCT (max_contact) is the maximum number of allowed contacts
between a transmembrane helical pair in the PAIRWISE and TRIPLET models, and is often
chosen as 1 or 2 since the models aim at predicting the most probable amino acid interaction
pairs. SUBT is an integer representing how many (m) to (n) helical contacts to remove from
the maximal helical packing solution. A larger SUBT value leads to looser helical packing.
A SUBT value of 0 or 1 is chosen for the prediction. PROB is the probability set, and takes
one of the four probability sets, MIN-1N, MIN-2N, AL-P and AL-T. These four sets are
described in Materials and Methods section. For simplicity, the parameter set is written as
{PROB (probability set), MXCT (max_contact), SUBT (subtract)}. For example, a contact
prediction for protein 2K73A includes the 16 different runs resulting from different
combinations of parameter sets: {PROB=MIN-1N; MXCT=1; SUBT=0}, {PROB=MIN-1N;
MXCT=1; SUBT=1}, {PROB=MIN-1N; MXCT=2; SUBT=0}, {PROB=MIN-1N;
MXCT=2; SUBT=1}, {PROB=MIN-1N; MXCT=1; SUBT=0}, {PROB=MIN-2N;
MXCT=1; SUBT=1}, {PROB=MIN-2N; MXCT=2; SUBT=0}, {PROB=MIN-2N;
MXCT=2; SUBT=1}, {PROB=MIN-2N; MXCT=1; SUBT=0}, {PROB=AL-P; MXCT=1;
SUBT=1}, {PROB=AL-P; MXCT=2; SUBT=0}, {PROB=AL-P; MXCT=2; SUBT=1},
{PROB=AL-P; MXCT=1; SUBT=0}, {PROB=AL-T; MXCT=1; SUBT=1}, {PROB=AL-
T; MXCT=2; SUBT=0}, and {PROB=AL-T; MXCT=2; SUBT=1}.
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For each parameter set, the prediction accuracy for DisCutoff is obtained through the
following steps:

Step 1. Consider the predicted contacts in all iterations and calculate their
frequencies (number of times predicted). This is based on the assumption that that
the most essential inter-helical contacts in proteins have higher probabilities to be
predicted.

Step 2. Take the top three most frequent predicted contacts for each helical pairs as
the predicted contacts. If less than three contacts are predicted for a helical pair,
take all the predicted contacts for this pair. Discard the predicted contact whose
frequency is one. For the PAIRWISE model using the MIN-1N probability set, the
prediction is analyzed separately for WHEEL and PRIMARY contacts.

Step 3. Calculate the prediction accuracy for this parameter set. If the predicted
contact has an actual distance in the real structure below DisCutoff, this contact is a
true prediction, otherwise, it is a false prediction. Prediction accuracy is defined as
the total number of true predictions divided by the total predictions.

3.2 Effect of Probability Set on Accuracy
Comparing the average prediction accuracy for different probability sets allows to analyze
the performance of different probability sets, and the average is calculated over the different
parameter sets whose probability is the same. The average prediction accuracy is calculated
for each probability set using different DisCutoff values (14 and 15 Å). For MIN-1N
probability set, the PRIMARY and WHEEL contacts are analyzed separately. For example,
for 2K73A, the average prediction accuracy for AL-P and DisCutoff = 14 Angstrom is
calculated over four different parameter combinations: {PROB=AL-P, MXCT=1,
SUBT=0}, {PROB=AL-P, MXCT=1, SUBT=1}, {PROB=AL-P, MXCT=2, SUBT=0}, and
{PROB=AL-P, MXCT=2, SUBT=1}. The analysis is done separately for three groups of
proteins, TM3-5, TM6-8 and TM10.

TM3-5 proteins—Table 2 presents the average prediction accuracy of different probability
sets for TM3-5 proteins. The data show that the TRIPLET model outperforms the
PAIRWISE model consistently. The TRIPLET model using the MIN-2N probability set has
an average accuracy 55%, about 6% higher than that (48%) of primary contact of the
corresponding the PAIRWISE model using the MIN-1N probability set (MIN-2N
outperforms the accuracy for wheel contact using MIN-1N by a smaller margin of 2%). The
TRIPLET model using the AL-T probability set shows a similar trend, that is the
PAIRWISE model using AL-P is 3% lower in average accuracy. For each prediction model
(PAIRWISE or TRIPLET), the probability sets developed show the advantage in prediction
accuracy over the probability sets derived from the work by Adamian and Liang [63] and the
work by Adamian et al. [64]. For example, the average prediction accuracy for MIN-2N
using the TRIPLET model is 5% higher than the AL-T probability set using the same
TRIPLET model; For the PAIRWISE model, although the MIN-1N probability set has an
accuracy for PRIMARY contact of 48%, which is only 2% higher than the AL-P probability
set, the average accuracy for WHEEL contact using MIN-1N is 6% higher than AL-P. The
overall performance of the developed probability sets, MIN-1N and MIN-2N, is better than
AL-P and AL-T for this group of proteins. The analysis of the accuracies for a DisCutoff
value of 15 Å draws to the same conclusion as 14 Å. And it shows an average 5.4% increase
in the average prediction accuracy compared with 14 Å, which means about 5.4% predicted
contacts are between 14 to 15 Å in the real structure.

For some proteins, our prediction accuracy is even above 90%, including 1JB0L using
MIN-2N, AL-P and MIN-1N for WHEEL contact, 2BL2A using MIN-2N and AL-T and
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MIN-1N for PRIMARY contact. 1JB0L is a three transmembrane helical protein with three
helices contacting with each other in anti-parallel fashion forming a very compact structure.
2BL2A has four transmembrane helices with consecutive helices contacting in anti-parallel
fashion and helices 1 and 4 positioning at the opposite corners of the bundle. Our enhanced
model allows the contact prediction between helix i and helix i+2, a prediction run with
parameter set {MIN-1N; MXCT=2; SUBT=1} correctly predicted the contacts between
helix 2 and helix 4, and between helix 1 and 3. However, for a protein with a rare topology,
it is difficult for our model to predict. An example is four transmembrane helical protein
2A79B. Instead of forming a helical bundle, the four helices form a mostly planar structure
with helix 1 and helix 2 from a parallel contact and helices 1 and 2 are far away from helices
3 and 4. Since our model assumes the anti-parallel contact between neighboring helices and
maximizes the contact probability, the prediction accuracy of our model was low.

TM6-8 proteins—Table 3 shows the average accuracy for the TM6-8 proteins. Compared
with the proteins in Table 2, these proteins have higher topological complexity, thus making
the contact prediction more difficult. It can be seen from comparing Table 2 and Table 3 that
the prediction accuracies of TM6-8 proteins for different probability sets are lower than the
corresponding prediction accuracies of TM3-5 proteins. The average accuracy of TM6-8
proteins over all the probability sets is 43.8 %. Compared with 49.8 % of TM3-5 proteins,
the prediction accuracy has dropped by 6% for a DisCutoff value of 14 Å. The accuracies of
MIN-1N and AL-P are 40% and 38%, respectively, both of which are dropped by 8%
compared with those of TM3-5 proteins. The TRIPLET model shows a smaller decrease in
prediction accuracy. The accuracies of the probability sets MIN-2N and AL-T are 49% and
48%, only reduced by 5% and 1%, respectively. It is surprising that AL-T probability set
performs well for TM6-8 proteins. Some of the conclusions for TM3-5 proteins are still
valid for TM6-8 proteins. For example, the TRIPLET model using the MIN-2N and AL-T
probability sets perform better than the PAIRWISE model using the MIN-1N and AL-P
probability sets; and the probability sets MIN-1N and MIN-2N outperforms the AL-P and
AL-T probability sets, although the accuracy for MIN-2N is only 1 % higher than AL-T.
Also the accuracies for DisCutoff = 15 Å have the same tendency as 14 Å.

The best prediction is for 1M0KA using the AL-T probability set with an accuracy of 94%.
This protein is a seven transmembrane helical bundle and is the K intermediate of
bacteriorhodopsin [72]. The model with parameter set {AL; MACT=2; SUBT=1}
successfully predicted the contacts between helix 3 and helix 5 as well as many other
contacts. Only one false contact between 14A and 207L is predicted as can be seen from
Fig. 1. 14A and 207L are on the opposite side of helix 1 and helix 7. The contact prediction
for 2NWLA is least successful, with 20% for the TRIPLET model using both the MIN-2N
and AL-T probability sets. 2NWLA is a eight transmembrane helical protein containing two
helical membrane loops in the center of the protein which makes transmembrane helical
segments to spread out. Helix 5 is even between helix 1 and helix 2. This complexity makes
2NWLA have an irregular topology.

TM10 proteins—While the TM6-8 proteins already showed great topological
complexities, the greatest challenge for testing the prediction ability of our models and the
probability sets comes with the proteins that have even more transmembrane helical
segments. Since there are no nine transmembrane helical membrane proteins in the test set
from Fuchs et al. [2], all the proteins in Table 4 have at least 10 transmembrane helical
segments. Out of the 18 proteins in Table 4, seven proteins have 10 transmembrane helical
segments, two proteins have 11 transmembrane helical segments, eight proteins have 12
transmembrane helical segments, and one protein has 13 transmembrane helical segments.
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It is shown in Table 4 that MIN-2N has a prediction accuracy 40%, which is 1% higher than
the MIN-1N probability set for the PRIMARY contact. However, a claim can not be made
that MIN-2N is better than MIN-1N especially when considering the average accuracy of
MIN-1N combining PRIMARY and WHEEL contacts. AL-T indeed shows better prediction
ability than AL-P; and in fact AL-T is the best among all the probability sets for TM10
proteins. For example, by using the TRIPLET model with the AL-T probability set, an
accuracy of 86% is achieved for protein 2GSMA. 2GSMA is a 12 transmembrane helical
bundle with the consecutive helices interacting in an anti-parallel pattern and the last helix
form a contact with the first helix. Since our models predict the n to n+1 and n to n+2 helical
contacts, the prediction accuracies for this protein is high. For the proteins with irregular
topologies, the prediction accuracy is reduced. For example, the accuracy of 2A65A is less
than 24% for all the probability sets, and the transmembrane helices in 2A65A have
irregular pattern caused by the big tilt angles.

A surprising finding in Table 4 is that the prediction accuracies for the TRIPLET model has
been decreased more than PAIRWISE model, compared with the accuracies for TM6-8
proteins. MIN-2N has the largest drop in prediction accuracy, 9% from 49% for TM6-8
proteins to 40% for TM10 proteins. The second largest drop is for the AL-T probability set,
5%. However, the probabilities sets for the PAIRWISE model show a slight decrease,
ranging from 1% to 2 %. This drop in prediction accuracy for the TRIPLET model brings
the prediction performance for the TRIPLET and PAIRWISE models closer.

The overall performance of the TRIPLET model across all the test proteins is better than the
PAIRWISE model. Which probability set should be used for the TRIPLET model depends
on the complexity of the system studied. While for proteins with easy topology (see Table
2), MIN-2N outperforms the AL-T probability set; as the complexity of the system
increases, the prediction ability of the MIN-2N is decreasing faster than AL-T. For TM10
proteins with greatest complexity, AL-T performs better than MIN-2N, thus should be used.
For TM6-8 proteins, MIN-2N is slightly preferred than AL-T by 1%.

3.3 Effect of MXCT Parameter on Accuracy
A MXCT value of 2 allows the model to predict more contacts between helices. But how
does MXCT value affect the contact prediction accuracy? Further analysis focuses on the
effect of MXCT parameter on the average prediction accuracy. This analysis is important
since for a blind prediction when the three dimensional structure is unknown, an optimal
prediction using different parameters should be chosen such that the expected prediction
accuracy is maximum.

The average prediction accuracy is calculated over two runs sharing the same MXCT value
but different SUBT values for MIN-2N and AL-T probability sets. These two probability
sets were chosen because they outperform other probability sets. The calculation of accuracy
uses the DisCutoff value 14 Å.

In Table 5, the accuracy of MXCT=2 using the AL-T probability set is the same as that of
MXCT=1 for the first two groups of proteins. For TM3-5 membrane proteins and TM6-8
proteins, the accuracies are 49% and 48%, respectively. For proteins with more
transmembrane helices, using MXCT=2 generates a slightly higher accuracy than using
MXCT=1 for AL-T probability sets. On the other hand, for the MIN-2N probability set,
using parameter MXCT=2 uniformly results in better prediction accuracies than using
MXCT=1 for all three groups of proteins with different complexities.

The results in Table 5 also agree with the analysis of the effect of probability sets on
prediction accuracy. MIN-2N is a better choice for proteins with easy topologies for both
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MXCT values, and AL-T performs better for proteins with greatest complexities (i.e., with
ten or more transmembrane helices) for both MXCT values. For the proteins with six to
eight transmembrane helices, MIN-2N with MXCT=2 has an accuracy of 49 %, slightly
favored over AL-T with MXCT=2 (48 %).

In conclusion, using MXCT=2 is a better choice for the MIN-2N probability set; MXCT=2
and MXCT=1 show the same effect on the prediction accuracy for the AL-T probability set
(only 1% difference in prediction accuracy is observed for TM10 proteins).

3.4 Effect of SUBT Parameter on Accuracy
This part focuses on the effect of the SUBT parameter on the contact prediction accuracy for
the proteins with different topological complexities. Average accuracy is calculated over
two runs sharing the same SUBT value and the same probability set but different MXCT
values (MXCT=1 and MXCT=2). Following similar analysis as for the MXCT parameter,
only accuracies for MIN-2N and AL-T probability sets were calculated since they provide
higher contact prediction accuracy compared to other probability sets.

Table 6 shows the average prediction accuracy for SUBT=1 and SUBT=0 (in parenthesis).
We can observe that using parameter SUBT=0 generates higher (or even) prediction
accuracies for all the cases except for proteins with three to five transmembrane helices for
the MIN-2N probability set. The MIN-2N probability set using SUBT=1 has an average
accuracy of 56%, which is 4% more than the accuracy by using SUBT=0. Thus, SUBT=1 is
a better choice than SUBT=2 for TM3-5 proteins. For TM6-8 proteins, using SUBT=0
results in higher prediction accuracies than that of using SUBT=1. On the other hand, for
proteins with ten or more transmembrane helices, there is no difference in prediction
accuracy between those of using SUBT=1 and SUBT=0; however, since using SUBT=0
allows more contacts to be predicted, it is a preferred choice.

3.5 Summary of Contact Predictions
In summary, the number of transmembrane helices of the protein determines which
probability sets should be used. For TM3-5 proteins, the MIN-2N probability set out-
performs other probability sets in terms of the average prediction accuracy. For TM6-8
proteins, the MIN-2N probability set is a slightly better choice than the AL-T probability set,
both of which generated higher prediction accuracies compared to the PAIRWISE
probability sets. TM10 proteins have the greatest complexity in topology. The probability
sets for the TRIPLET model generated higher prediction accuracies than those for the
PAIRWISE model. The AL-T probability set is preferred to use for contact prediction than
the MIN-2N probability set.

After the probability set is chosen, other parameters should be selected to use for the contact
prediction. Based on the analysis, a parameter value of MXCT=2 should be used when the
MIN-2N probability is used. For the case when the AL-T probability set is used, different
values of MXCT (1 or 2) have same effect on prediction accuracies, however, due to the fact
that using MXCT=2 lead into more predicted contacts, MXCT=2 is preferred. The
parameter value SUBT=1 should be used when the MIN-2N probability set is used in the
contact prediction for TM3-5 proteins. For all other situations, SUBT=0 should be used
since it allows more contacts to be predicted while the same or even higher prediction
accuracy than that of SUBT=1 are achieved.

Combining the analysis of probability sets, the MXCT and SUBT parameter values, it is
suggested that the following should be used for different proteins with different topological
complexities. The contact prediction of TM3-5 proteins should use the parameter set
{MIN-2N; MXCT=2; SUBT=1}. For TM6-8 proteins, {MIN-2N; MXCT=2; SUBT=0} is a
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better choice; and {AL-T; MXCT=2; SUBT=0} is the best choice for contact prediction in
TM10 proteins.

3.6 Predictions with Known Transmembrane Helical Information
Five proteins are chosen as a first test set of the proposed method for contact prediction. The
PDB codes for the five proteins are, 2K73A, 1YEWC, 3EMLA, 1H2SA, 1F88A. If the test
protein already exists in the training protein set, this protein is excluded for building the
probability sets. The transmembrane helical information is obtained from PDBTM [62].
2K73A and 1YEWC are four transmembrane helical proteins, and the other three are seven
transmembrane helical proteins. According to the proposed method, {MIN-2N; MXCT=2;
SUBT=1} is used for 2K73A and 1YEWC ; while {MIN-2N; MXCT=2; SUBT=0} is used
for 3EMLA, 1H2SA and 1F88A.

The contact prediction accuracies obtained for these proteins are, 1YEWC: 25%, 2K73A:
54%, 3EMLA: 61%, 1H2SA: 77% and 1F88A 62 %. The average accuracy of the five
proteins is 56%. 1YEWC is a membrane protein that catalyses the biological oxidation of
methane to methanol and the knowledge of how this process happens can help to develop an
alternative energy source [73]. The reason for this low prediction accuracy is that the
topology of 1YEWC is a four helical bundle, with helix 1 and helix 4 interacting in the
opposite corners of the bundle, and helix 2 and helix 3 being separated by helix 4. This
topology causes all the predicted contacts between helix 2 and helix 3 to be false contacts,
and leads into low prediction accuracy.

The best contact prediction is for protein 1H2SA. 1H2SA is a sensory rhodopsin with seven
transmembrane helices [74]. The contacts predicted for 1H2SA from the parameter set
{MIN-2N; MXCT=2; SUBT=0} are listed in Table 7. The prediction accuracy of 1H2SA is
77%. Note in the table the contact between 12A and 49V happens twice, this is because this
contact is predicted by two different TRIPLET contacts. After subtracting 1 from the total
number of contacts, the prediction accuracy for 1H2SA is 76%. The average distance for
true contact prediction is 9.32 Å and while the average distance for false contact prediction
is 15.85 Å. Figure 2 shows the correct predicted contacts and false contacts in this protein.

1F88A and 3EMLA are also seven transmembrane helical bundle proteins. 1F88A is bovine
rhodopsin and is well-studied [75]; 3EMLA is human A2A adenosine receptor recently
resolved by Jaakola et al. [76]. For these two proteins, the prediction accuracies are close to
each other, 62% and 61%, respectively.

3.7 Predictions with Unknown Transmembrane Helical Information
One of the goals of contact prediction is to provide the useful distance constraints for
helping determine the three dimensional structure of a protein. The second set of test
proteins used in this section is released later than Feb 22, 2009 in MPDB [61] and in
PDBTM [62]. To avoid the sequence similarity between the proteins for building the
probability set and the proteins for testing, PISCES [65] is used to ensure the non-
redundancy of testing proteins against the training set (maximum allowable sequence
identity of 35% was used for all of the comparisons). Each of the downloaded proteins is
subject to the similarity check and 42 non-redundant proteins are obtained from these two
membrane protein data banks.

In true blind predictions no information is known for transmembrane helical segments and
their contacts. The transmembrane helical information for these proteins is predicted by
MEMSAT3 [77]. MEMSAT3 predicts transmembrane protein topology using neural
networks and the method is found to predict both the correct topology and the locations of
transmembrane segments for 80% of the test proteins [77]. It is also important to study the
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contact prediction of proteins with difficult topologies, thus proteins with less than 3
transmembrane helices are excluded. Six out of the 42 non-redundant proteins have more
than three transmembrane helices: 2ZY9A (5 helices, 427 amino acids), 2W1PA (6 helices,
263 amino acids), 3CN5A (6 helices, 237 amino acids), 3KCUA (7 helices, 252 amino
acids), 3IXZA (10 helices, 998 amino acids) and 3K3FA (10 helices, 332 amino acids). The
MEMSAT3 predicted transmembrane helical segments and PDBTM obtained
transmembrane helical segments are listed in Tables 10 and 11 of the supplementary
material.

Based on the number of transmembrane helices, {MIN-2N; MXCT=2; SUBT=0} is used for
predicting the inter-helical residue contacts of proteins 2W1PA, 3KCUA and 3CN5A. The
parameter set {AL-T; MXCT=2; SUBT=0} is used for protein 3IXZA and 3K3FA. The
parameter set {MIN-2N; MXCT=2; SUBT=1} is used for protein 2ZY9A. The prediction
accuracies obtained are, 2ZY9A: 73%, 3KCUA: 21%, 2W1PA: 46%, 3CN5A: 64%, 3IXZA:
77% and 3K3FA: 83%. The average prediction accuracy for the six proteins is 60.7%. The
detailed residue contacts predicted for protein 3IXZA are shown in Table 8, and predicted
contacts for other proteins are listed in Tables 12-16 of the supplementary material.

The highest accuracies are obtained for proteins 3IXZA (77%) and 3K3FA(83%) even
though they have a much more complicated topology (10 transmembrane helices). 3IXZA is
an proton pump responsible for generating a proton gradient across the gastric membrane.
Its structure is resolved at 6.5 A resolution by electron crystallography [78]. The predicted
contacts of 3IXZA are shown in Table 8. As shown in Table 8, the proposed method is able
to predict some important short-range contacts, such as 839G-940G of 2.9 Å, 71A-118G of
3.9 Å, 111I-278A of 3.7 Å. The worst false predictions are for 70L-972L, 73G-972L,
71A-972L and 74L-972L (all above 30 Å). These correspond to the residue contact pairs of
helix 1 and helix 10. Helix 1 and helix 10 do not form a contact and are separated far away
from each other which causes the false predictions for 70L-972L, 73G-972L, 71A-972L and
74L-972L.

The lowest prediction accuracy is obtained for protein 3KCUA. This is partially due to the
poor transmembrane helical segment prediction from MEMSAT3. From the membrane
protein data bank PDBTM, seven transmembrane helical segments exist for protein 3KCUA,
they are 8Y-31T, 35P-55V, 87L-113A, 118G-151V, 165F-176A, 182S-198F and
217L-241L (the amino acid IDs are renumbered so that the ID 1 corresponds to the first
amino acid in the PDB structure); on the other hand, however, MEMSAT3 predicted 6
transmembrane helical segments for 3KCUA: 8Y-31T, 40K-64S, 85N-109E, 125A-148C,
163K-187F and 220M-244L. Clearly there is one transmembrane helix missing (helix 6:
182S-198F) in the prediction. This causes all the predictions between helix 5 and helix 6 to
be wrong, for example contact 168V-241L with a distance of 19.70 Å, contact 175V-233G
with a distance of 15.5 Å.

By using predicted transmembrane helical information, our proposed contact prediction
method performed with an average contact accuracy of 60.7% on the six non-redundant
transmembrane proteins with complex topologies. Testing on these six proteins is far from
enough to conclude that our method is robust, however, it does show some potential, and
this method will benefit from the growing number of membrane proteins released each year.

3.8 Comparison with a Support Vector Machine Method: TMhit
This section compares the performance of our method with a support vector machine
method, TMhit [3]. TMhit is an online server and can predict residue contacts and helical
pair interactions using support vector machine. An average accuracy of 44.8% was reported
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for TMhit when tested on an independent protein set (Table 1 in Ref. [3]). However a direct
comparison of these two methods could provide more relevant and valuable information.

TMhit method was evaluated on the same six proteins used in the above section. These six
proteins are released after Feb. 2009 and each of them was subject to a non-redundancy
check against the training set of proteins [65]. Given that the training set of proteins is a very
comprehensive and non-redundant, and TMhit was trained on the proteins released before
Feb. 2009, these six proteins are independent proteins to TMhit training proteins.

The comparison results are shown in Table 9. The average prediction accuracy over the six
proteins is 60.7% for our proposed approach, which is better than the highest accuracy
41.9% of TMhit. The best prediction accuracy for TMhit method is for L/5, 41.9%, slightly
lower than the accuracy 44.8% reported in Table 1 of Ref. [3]. Although our method only
uses residue contact propensities and TMhit uses many other features as input to its support
vector machine (such as evolutionary profile), our model outperforms TMhit on average.
However, TMhit performs better for proteins 2ZY9A and 2W1PA than our method,
especially for 2ZY9A. TMhit predicts residue contacts for 2ZY9A with an accuracy of
100% for both L/5 and Top20 predicted residue contacts. On the other hand, our method
performs much better for membrane proteins with complex topologies, such as proteins
3IXZA and 3K3FA, both having 10 transmembrane helical segments. Protein 3KCUA has
the lowest prediction accuracy for both our method and TMhit method. This is due to the
poor prediction of transmembrane helical segments by MEMSAT3 [77]. Both methods
could benefit from an improved prediction power of helical segments for transmembrane
proteins. The TMhit predicted residue contacts are listed in Tables 17-23 of the
supplementary material.

In terms of computational cost, it takes about 2 minutes on average (for the 6 test cases) to
receive the result from TMhit server. The proposed method takes about 5 minutes on
average to predict the contact for a protein (CPU: Intel(R) Core(TM)2 Quad 2.83GHz (one
core is used)).

4 Conclusions
Contact prediction for globular proteins has helped protein structure prediction in various
ways, however the three dimension structure prediction for membrane proteins are relatively
limited either by the limited experimental data in Protein Data Bank or by the difficulty to
model or consider the surroundings around membrane proteins. This work is based on two
mixed integer linear programing optimization models which focus on the contact prediction
in transmembrane alpha-helical membrane proteins, and aims to predict high-quality amino
acid contact constraints between transmembrane helical segments that can be used for three
dimensional structure prediction for membrane proteins. In order to do so, a new enhanced
data set has been built and the several important modifications were made to the PAIRWISE
and TRIPLET contact prediction models. These modifications allows the model to predict
more important contacts between transmembrane helices.

A strategy was proposed to predict the inter-helical contacts by which different parameter
sets are used for different transmembrane alpha-helical proteins with different topological
complexities. In order to test our models on blind cases, six non-redundant proteins with
complicated topologies are used. By using MEMSAT3 to predict the transmembrane helical
information for the proteins, our model was able to predict the contacts for all of the proteins
with an average prediction accuracy of 60.7%. This outperforms on average a support vector
machine method, TMhit [3]. The presented residue contact prediction method for membrane
proteins shows great potential and it can help structure prediction of membrane proteins.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A cartoon illustrating the residue contact prediction for 1M0KA. Blue lines show the correct
predictions while the red dotted line represents the false prediction between 207L (pink) and
14A (blue).
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Figure 2.
A cartoon illustrating the residue contact prediction for 1H2SA. Blue lines show the correct
predictions while the red dotted lines represent the false predictions.
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Table 5

The average prediction accuracy for proteins with different complexities using MXCT=2. The numbers in
parenthesis are average prediction accuracies for MXCT=1. The calculation of accuracy uses DisCutoff=14 Å.

Proteins MIN-2N AL-T

TM3-5 0.54(0.53) 0.49(0.49)

TM6-8 0.49(0.48) 0.48(0.48)

TM10 0.42(0.38) 0.44(0.43)
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Table 6

The average prediction accuracy for proteins with different complexities by using SUBT=1. The numbers in
parenthesis are average prediction accuracies for SUBT=0. The calculation of accuracy uses DisCutoff=14 Å.

Proteins MIN-2N AL-T

TM3-5 0.56(0.52) 0.49(0.50)

TM6-8 0.48(0.49) 0.47(0.49)

TM10 0.40(0.40) 0.43(0.43)
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