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Abstract

We have developed a portable library for automated detection of melanoma termed SkinScan©
that can be used on smartphones and other handheld devices. Compared to desktop computers,
embedded processors have limited processing speed, memory, and power, but they have the
advantage of portability and low cost. In this study we explored the feasibility of running a
sophisticated application for automated skin cancer detection on an Apple iPhone 4. Our results
demonstrate that the proposed library with the advanced image processing and analysis algorithms
has excellent performance on handheld and desktop computers. Therefore, deployment of
smartphones as screening devices for skin cancer and other skin diseases can have a significant
impact on health care delivery in underserved and remote areas.
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1. INTRODUCTION

In recent years, cellular phones have made the transition from simple dedicated telephony
devices to being small, portable computers with the capability to perform complex, memory-
and processor-intensive operations. These new devices, generally referred to as
smartphones, provide the user with a wide array of communication and entertainment
options that until recently required many independent devices. Given the recent advances in
medical imaging, smartphones can provide an attractive vehicle for delivering image-based
diagnostic services at a low cost.

The focus of our research over the last 10 years has been the automated detection of skin
cancer via analysis of dermoscopic images. We have previously developed a desktop
application [1] that provides end-to-end processing of skin cancer images, including
preprocessing, segmentation, feature extraction, analysis, and classification, culminating in
the calculation of the probability of the lesion is malignant. The system is built using Matlab
(The MathWorks Inc., Natick, MA) and requires a desktop computer to run. With the advent
of smartphones, it is now possible to port the application on a portable device.

To that end, we have developed a C/C++ based library that implements the main portions of
the desktop application in a form that is suitable for use on a smartphone in quasi-real time.
The library is well suited for Apple i0S-based devices (iPhone, iPad, and iPod Touch) as
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well as Android based devices. However, in this paper we present an iPhone 4
implementation only. In particular, we compare the desktop application against the
smartphone implementation in terms of computational speed and demonstrate that the
library is light enough to be used on off-the-shelf smart devices.

2. METHODS

2.1. Dataset

We have recently developed an automated procedure for lesion classification [1] based on
the well known bag-of-features framework [2]. The main steps in the entire procedure are
lesion segmentation, feature extraction, and classification.

The application can process images taken either with the iPhone camera or taken with an
external camera and uploaded to the image library on the phone. In this study, we use
images from a large library of skin cancer images [3] that were uploaded to the phone. A
total of 1300 artifact free images are selected: 388 were classified by histological
examination as melanoma and the remaining 912 were classified as benign. All images were
segmented manually by one of the authors to provide a ground truth against which the
automated techniques employed by our application are compared. Prior to processing, the
images are converted from color to 256 level greyscale.

2.2. Image segmentation

In addition to the lesion, images typically include relatively large areas of healthy skin, so it
is important to segment the image and extract the lesion to be considered for subsequent
analysis. To reduce noise and suppress physical characteristics, such as hair in and around
the lesion that affect segmentation adversely, a fast two-dimensional median filtering [4] is
applied to the greyscale image. The image is then segmented using three different
segmentation algorithms, namely ISODATA (iterative self-organizing data analysis
technique algorithm) [5], fuzzy c-means [6] [7], and active contour without edges [8]. The
resulting binary image is further processed using morphological operations, such as opening,
closing, and connected component labeling [9]. When more than one contiguous region is
found, additional processing removes all regions except for the largest one. The end result is
a binary mask that is used to separate the lesion from the background.

2.3. Feature extraction

Among the criteria employed by dermatologists to detect melanoma, as described by
Menzies rules [10] and the 7-point list [11], texture analysis is of primary importance, since,
among other things, malignant lesions exhibit substantially different texture patterns from
benign lesions. Elbaum et al. [12] used wavelet coefficients as texture descriptors in their
skin cancer screening system MelaFind® and our previous work [1] has demonstrated the
effectiveness of wavelet coefficients for melanoma detection. Therefore, our library includes
a large module dedicated to texture analysis.

Feature extraction works as follows: for a given image, the binary mask created during
segmentation is used to restrict feature extraction to the lesion area only. After placing an
orthogonal grid on the lesion, we repeatedly sample patches of size KxK pixels from the
lesion, where K is user defined. Large values of K lead to longer algorithm execution time,
while very small values result in noisy features. Each extracted patch is decomposed using a
3-level Haar wavelet transform [13] to get 10 sub-band images. We extract texture features
by computing statistical measures, like mean and standard deviation, on each sub-band
image, which are then are put together to form a vector that describes each patch.
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2.4. Image classification

Our classification approach closely follows the one outlined in [2]. A support vector
machine (SVM) is trained using a subset (training set) of the total images available, and the
resulting classifier is used to determine whether the rest of the images (test set) are
malignant or benign.

2.5. Overall procedure

The overall procedure for training and testing of the classifier proceeds as follows:

2.5.1. Training
1. For each image in the training set,

a. Segment the input image to extract the lesion.

b. Select a set of points on the lesion using a rectangular grid of size M
pixels.

c. Select patches of size KxK pixels centered on the selected points.
d. Apply a 3-level Haar wavelet transform on the patches.

e. For each sub-band image compute statistical measures, namely mean and
standard deviation, to form a feature vector Fj = {my, sdy, my, sdo,...}.

2. For all feature vectors F; extracted, normalize each dimension to zero mean and
unit standard deviation.

3. Apply the K-means clustering [14] to all feature vectors F; from all training images
to obtain L clusters with centers C = {Cq, Cy, ...,C }.

4. For each training image build a L-bin histogram. For feature vector F;, increment
the j bin of the histogram such that min ; IC; — Fjll.

5. Use the histograms obtained from all the training images as the input to a SVM
classifier to obtain a maximum margin hyperplane that separates the histograms of
benign and malignant lesions.

The value of parameter M is a trade-off between accuracy and computation speed. Small
values of M lead to more accurate classification results, but computation time increases
accordingly. When the algorithm runs on the smartphone device we want to reduce
computation time, so we choose M = 10 for grid size, K = 24 for patch size, and L = 200 as
the number of clusters in the feature space. By exhaustive parameter exploration in our
previous studies [1], we found that these parameters are reasonable settings for the dataset
used in this paper. Figure 1 summarizes in graphical form the feature extraction and
classification steps of the proposed procedure.

2.5.2. Testing—Each test image is classified using the following steps:

1. Read the test image and perform Steps 1(a)—(e) and 2 in the training algorithm, to
obtain a feature vector F; that describes the lesion.

2. Build an L-bin histogram for the test image. For all feature vectors F; extracted
from the image, increment the j™ bin of the histogram, such that min; IC; - Fill,
where this time the cluster centers C; are the centers identified in Step 3 of the
training procedure.

3. Submit the resulting histogram to the trained SVM classifier to classify the lesion.
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For test images, likelihood of malignancy can be computed using the distance from the SVM
hyperplane. Training of the SVM classifier was performed off-line on a desktop computer,
while testing is performed entirely on the smartphone device.

3. RESULTS

3.1. iPhone 4 implementation

The iPhone 4 is a smartphone developed by Apple, Inc., and features an Apple A4 ARM
processor running at 1 GHz, 512 MB DDR SDRAM, up to 32 GB of solid state memory, a 5
MPixel builtin camera with LED flash, and 3G/Wi-Fi/Bluetooth communication networks.
Thus, it has all the features, computational power, and memory needed to run the complete
image acquisition and analysis procedure in quasi real time. There is lot of potential for such
a device in medical applications, because of its low cost, portability, ease of use, and
ubiquitous connectivity.

We have developed a menu based application that implements the automated procedure
outlined in the previous sections, as shown is Figure 2. The user can take a picture of a
lesion or load an existing image from the phone photo library. The image is then analyzed
on the phone in quasi real time and the results of classification are displayed on the screen.

3.2. Comparison of the three segmentation methods

To assess the performance of the proposed application we compare the automatic
segmentation with manual segmentation. For each image we calculate an error defined [15]
as the ratio of the non-overlapping area between automatic and manual segmentation
divided by the sum of the automatic and manually segmented images. The error ratio is zero
when the results from automatic and manual segmentation match exactly, and 100 percent
when the two segmentations do not overlap. Thus the error is always between zero and 100
percent, regardless of the size of the lesion. An earlier study found that when the same set of
images was manually segmented by more than one expert, the average variability was about
8.5 percent [15]. We used the same figure and included an additional tolerance of 10 percent
error to account for the large number of images in our dataset. Therefore, we set the cutoff
for error ratio to 18.5 percent, considering that a lesion is correctly segmented by the
automated procedure if the error ratio is less than 18.5 percent.

The dataset of 1300 skin lesion images was segmented using the three segmentation
techniques mentioned previously. Table 1 shows the number of images correctly segmented,
and the mean and standard deviation of error for all images. The active contour method was
found to be the most accurate, as it had the highest number of images segmented correctly
and least mean error ratio. ISO-DATA and Fuzzy c-Means, in that order, followed the active
contour method in accuracy. Figure 3 shows the error distribution of three segmentation
methods, where the number of images is plotted against the error ratio. The threshold of
18.5% is marked as the vertical dotted line. Of the 1300 images examined, 754 images had
error ratio below 8.5% (variability of error among domain experts), 1147 images had error
ratio below 18.5% (threshold for correct segmentation), and 153 images with error ratio
above 18.5%. This seemingly high error is due to the fact that manual lesion segmentation
yields a smooth boundary, while automatic segmentation detects fine edges on the border.

3.3. Classification accuracy

We performed 10 trials of 10-fold cross validation on the set of 1300 images. We divided
the dataset into 10 folds, nine folds with 39 melanoma and 92 benign lesions and the
remaining fold with 37 melanoma and 87 benign lesions. Of the 10 folds, we used nine for
training and one for test. We performed 10 rounds of validation where we chose each fold
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for testing, to get 10x10 = 100 experiments. We averaged over these 100 experiments and
found 80.76% sensitivity and 85.57% specificity.

Figure 4 shows the receiver operating characteristic (ROC) curve of classification computed
from testing data [16], whereby the area under the curve is 91.1%. We choose the threshold
to maximize the mean of sensitivity and specificity on the training set. We estimated the
95% confidence interval on testing data using a binomial distribution for sensitivity to be
[77.1%, 83.9%] and for specificity to be [83.5%, 87.4%]. The classification accuracy is
same on the desktop computer and iPhone 4 smartphone.

3.4. Execution time

We compare the time taken for active contour segmentation and classification on the Apple
iPhone 4 smartphone and a typical desktop personal computer (2.26 GHz Intel Core 2 Duo
with 2GB RAM). The classification time includes time taken for feature extraction. The
average image size in the dataset is 552x825 pixels. Table 2 shows computation time in
seconds for both platforms. For the largest image in the dataset which has dimensions
1879%1261 pixels, segmentation takes 9.71 sec and classification takes 2.57 sec on the
iPhone. Thus, the whole analysis procedure takes under 15 sec to complete. This proves that
the library is light enough to run on a smartphone which has limited computation power.

4. CONCLUSIONS AND DISCUSSION

In this study we presented the SkinScan®© library, which implements several image
processing and image analysis algorithms for melanoma detection, and evaluated whether
these algorithm can run on processors used on smartphone devices, which typically have
lower computing power and memory. The library is written in C/C++ and it is therefore well
suited for Apple i0S-based devices (iPhone, iPad, and iPod Touch) as well as Android-
based devices. However, in this paper we tested only an iPhone 4 implementation.

In particular, we showed that the most computational intensive and time consuming
algorithms of the library, namely image segmentation and image classification, can achieve
accuracy and speed of execution comparable to a desktop computer. These findings
demonstrate that it is possible to run sophisticated biomedical imaging applications on
smartphones and other handheld devices, which have the advantage of portability and low
cost, and therefore they can make a significant impact on health care delivery as assistive
devices in underserved and remote areas.
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Fig. 1.

Lesion classification: select a patch from the lesion, apply a 3-level Haar wavelet transform,
extract texture features, build a histogram using the cluster centers obtained during training,
and input histogram to trained SVM classifier to classify the lesion.
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Fig. 2.
SkinScan application on Apple iPhone™ device
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Error ratio distribution of three segmentation methods on the dataset of 1300 skin lesion
images. The red dotted line marks the threshold for correct segmentation.
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Fig. 4.
ROC curve for lesion classification.
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Table 1

Performance of the segmentation techniques.

ISODATA | Fuzzy c-Means | Active Contour
Images correctly
segmented 883 777 1147
Images incorrectly
segmented 417 523 153
Mean error 19.46% 20.40% 9.69%
Standard deviation
error 2241 19.80 6.99
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Table 2

Computation time on the iPhone 4 and desktop computer

Mean time (sec)

Apple iPhone 4

Desktop computer

Segmentation

3.4838

2.1752

Classification

1.3438

0.2418
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