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Abstract
Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in
which personal data, such as medical or financial records, are analyzed. We provide general
techniques to produce privacy-preserving approximations of classifiers learned via (regularized)
empirical risk minimization (ERM). These algorithms are private under the ε-differential privacy
definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al.
(2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-
preserving machine learning algorithm design. This method entails perturbing the objective function
before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and
differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy,
and provide generalization bounds for linear and nonlinear kernels. We further present a privacy-
preserving technique for tuning the parameters in general machine learning algorithms, thereby
providing end-to-end privacy guarantees for the training process. We apply these results to produce
privacy-preserving analogues of regularized logistic regression and support vector machines. We
obtain encouraging results from evaluating their performance on real demographic and benchmark
data sets. Our results show that both theoretically and empirically, objective perturbation is superior
to the previous state-of-the-art, output perturbation, in managing the inherent tradeoff between
privacy and learning performance.
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1. Introduction
Privacy has become a growing concern, due to the massive increase in personal information
stored in electronic databases, such as medical records, financial records, web search histories,
and social network data. Machine learning can be employed to discover novel population-wide
patterns, however the results of such algorithms may reveal certain individuals’ sensitive
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information, thereby violating their privacy. Thus, an emerging challenge for machine learning
is how to learn from data sets that contain sensitive personal information.

At the first glance, it may appear that simple anonymization of private information is enough
to preserve privacy. However, this is often not the case; even if obvious identifiers, such as
names and addresses, are removed from the data, the remaining fields can still form unique
“signatures” that can help re-identify individuals. Such attacks have been demonstrated by
various works, and are possible in many realistic settings, such as when an adversary has side
information (Sweeney, 1997; Narayanan and Shmatikov, 2008; Ganta et al., 2008), and when
the data has structural properties (Backstrom et al., 2007), among others. Moreover, even
releasing statistics on a sensitive data set may not be sufficient to preserve privacy, as illustrated
on genetic data (Homer et al., 2008; Wang et al., 2009). Thus, there is a great need for designing
machine learning algorithms that also preserve the privacy of individuals in the data sets on
which they train and operate.

In this paper we focus on the problem of classification, one of the fundamental problems of
machine learning, when the training data consists of sensitive information of individuals. Our
work addresses the empirical risk minimization (ERM) framework for classification, in which
a classifier is chosen by minimizing the average over the training data of the prediction loss
(with respect to the label) of the classifier in predicting each training data point. In this work,
we focus on regularized ERM in which there is an additional term in the optimization, called
the regularizer, which penalizes the complexity of the classifier with respect to some metric.
Regularized ERM methods are widely used in practice, for example in logistic regression and
support vector machines (SVMs), and many also have theoretical justification in the form of
generalization error bounds with respect to independently, identically distributed (i.i.d.) data
(see Vapnik, 1998 for further details).

For our privacy measure, we use a definition due to Dwork et al. (2006b), who have proposed
a measure of quantifying the privacy-risk associated with computing functions of sensitive
data. Their ε-differential privacy model is a strong, cryptographically-motivated definition of
privacy that has recently received a significant amount of research attention for its robustness
to known attacks, such as those involving side information (Ganta et al., 2008). Algorithms
satisfying ε-differential privacy are randomized; the output is a random variable whose
distribution is conditioned on the data set. A statistical procedure satisfies ε-differential privacy
if changing a single data point does not shift the output distribution by too much. Therefore,
from looking at the output of the algorithm, it is difficult to infer the value of any particular
data point.

In this paper, we develop methods for approximating ERM while guaranteeing ε-differential
privacy. Our results hold for loss functions and regularizers satisfying certain differentiability
and convexity conditions. An important aspect of our work is that we develop methods for
end-to-end privacy; each step in the learning process can cause additional risk of privacy
violation, and we provide algorithms with quantifiable privacy guarantees for training as well
as parameter tuning. For training, we provide two privacy-preserving approximations to ERM.
The first is output perturbation, based on the sensitivity method proposed by Dwork et al.
(2006b). In this method noise is added to the output of the standard ERM algorithm. The second
method is novel, and involves adding noise to the regularized ERM objective function prior to
minimizing. We call this second method objective perturbation. We show theoretical bounds
for both procedures; the theoretical performance of objective perturbation is superior to that
of output perturbation for most problems. However, for our results to hold we require that the
regularizer be strongly convex (ruling L1 regularizers) and additional constraints on the loss
function and its derivatives. In practice, these additional constraints do not affect the
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performance of the resulting classifier; we validate our theoretical results on data sets from the
UCI repository.

In practice, parameters in learning algorithms are chosen via a holdout data set. In the context
of privacy, we must guarantee the privacy of the holdout data as well. We exploit results from
the theory of differential privacy to develop a privacy-preserving parameter tuning algorithm,
and demonstrate its use in practice. Together with our training algorithms, this parameter tuning
algorithm guarantees privacy to all data used in the learning process.

Guaranteeing privacy incurs a cost in performance; because the algorithms must cause some
uncertainty in the output, they increase the loss of the output predictor. Because the ε-
differential privacy model requires robustness against all data sets, we make no assumptions
on the underlying data for the purposes of making privacy guarantees. However, to prove the
impact of privacy constraints on the generalization error, we assume the data is i.i.d. according
to a fixed but unknown distribution, as is standard in the machine learning literature. Although
many of our results hold for ERM in general, we provide specific results for classification using
logistic regression and support vector machines. Some of the former results were reported in
Chaudhuri and Monteleoni (2008); here we generalize them to ERM and extend the results to
kernel methods, and provide experiments on real data sets.

More specifically, the contributions of this paper are as follows:

• We derive a computationally efficient algorithm for ERM classification, based on the
sensitivity method due to Dwork et al. (2006b). We analyze the accuracy of this
algorithm, and provide an upper bound on the number of training samples required
by this algorithm to achieve a fixed generalization error.

• We provide a general technique, objective perturbation, for providing
computationally efficient, differentially private approximations to regularized ERM
algorithms. This extends the work of Chaudhuri and Monteleoni (2008), which
follows as a special case, and corrects an error in the arguments made there. We apply
the general results on the sensitivity method and objective perturbation to logistic
regression and support vector machine classifiers. In addition to privacy guarantees,
we also provide generalization bounds for this algorithm.

• For kernel methods with nonlinear kernel functions, the optimal classifier is a linear
combination of kernel functions centered at the training points. This form is inherently
non-private because it reveals the training data. We adapt a random projection method
due to Rahimi and Recht (2007, 2008b), to develop privacy-preserving kernel-ERM
algorithms. We provide theoretical results on generalization performance.

• Because the holdout data is used in the process of training and releasing a classifier,
we provide a privacy-preserving parameter tuning algorithm based on a randomized
selection procedure (McSherry and Talwar, 2007) applicable to general machine
learning algorithms. This guarantees end-to-end privacy during the learning
procedure.

• We validate our results using experiments on two data sets from the UCI Machine
Learning repositories (Asuncion and Newman, 2007) and KDDCup (Hettich and Bay,
1999). Our results show that objective perturbation is generally superior to output
perturbation. We also demonstrate the impact of end-to-end privacy on generalization
error.
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1.1 Related Work
There has been a significant amount of literature on the ineffectiveness of simple
anonymization procedures. For example, Narayanan and Shmatikov (2008) show that a small
amount of auxiliary information (knowledge of a few movie-ratings, and approximate dates)
is sufficient for an adversary to re-identify an individual in the Netflix data set, which consists
of anonymized data about Netflix users and their movie ratings. The same phenomenon has
been observed in other kinds of data, such as social network graphs (Backstrom et al., 2007),
search query logs (Jones et al., 2007) and others. Releasing statistics computed on sensitive
data can also be problematic; for example, Wang et al. (2009) show that releasing R2-values
computed on high-dimensional genetic data can lead to privacy breaches by an adversary who
is armed with a small amount of auxiliary information.

There has also been a significant amount of work on privacy-preserving data mining (Agrawal
and Srikant, 2000; Evfimievski et al., 2003; Sweeney, 2002; Machanavajjhala et al., 2006),
spanning several communities, that uses privacy models other than differential privacy. Many
of the models used have been shown to be susceptible to composition attacks, attacks in which
the adversary has some reasonable amount of prior knowledge (Ganta et al., 2008). Other work
(Mangasarian et al., 2008) considers the problem of privacy-preserving SVM classification
when separate agents have to share private data, and provides a solution that uses random
kernels, but does provide any formal privacy guarantee.

An alternative line of privacy work is in the secure multiparty computation setting due to Yao
(1982), where the sensitive data is split across multiple hostile databases, and the goal is to
compute a function on the union of these databases. Zhan and Matwin (2007) and Laur et al.
(2006) consider computing privacy-preserving SVMs in this setting, and their goal is to design
a distributed protocol to learn a classifier. This is in contrast with our work, which deals with
a setting where the algorithm has access to the entire data set.

Differential privacy, the formal privacy definition used in our paper, was proposed by the
seminal work of Dwork et al. (2006b), and has been used since in numerous works on privacy
(Chaudhuri and Mishra, 2006; McSherry and Talwar, 2007; Nissim et al., 2007; Barak et al.,
2007; Chaudhuri and Monteleoni, 2008; Machanavajjhala et al., 2008). Unlike many other
privacy definitions, such as those mentioned above, differential privacy has been shown to be
resistant to composition attacks (attacks involving side-information) (Ganta et al., 2008). Some
follow-up work on differential privacy includes work on differentially-private combinatorial
optimization, due to Gupta et al. (2010), and differentially-private contingency tables, due to
Barak et al. (2007) and Kasivishwanathan et al. (2010). Wasserman and Zhou (2010) provide
a more statistical view of differential privacy, and Zhou et al. (2009) provide a technique of
generating synthetic data using compression via random linear or affine transformations.

Previous literature has also considered learning with differential privacy. One of the first such
works is Kasiviswanathan et al. (2008), which presents a general, although computationally
inefficient, method for PAC-learning finite concept classes. Blum et al. (2008) presents a
method for releasing a database in a differentially-private manner, so that certain fixed classes
of queries can be answered accurately, provided the class of queries has a bounded VC-
dimension. Their methods can also be used to learn classifiers with a fixed VC-dimension
(Kasiviswanathan et al., 2008) but the resulting algorithm is also computationally inefficient.
Some sample complexity lower bounds in this setting have been provided by Beimel et al.
(2010). In addition, Dwork and Lei (2009) explore a connection between differential privacy
and robust statistics, and provide an algorithm for privacy-preserving regression using ideas
from robust statistics. Their algorithm also requires a running time which is exponential in the
data dimension, which is computationally inefficient.
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This work builds on our preliminary work in Chaudhuri and Monteleoni (2008). We first show
how to extend the sensitivity method, a form of output perturbation, due to Dwork et al.
(2006b), to classification algorithms. In general, output perturbation methods alter the output
of the function computed on the database, before releasing it; in particular the sensitivity
method makes an algorithm differentially private by adding noise to its output. In the
classification setting, the noise protects the privacy of the training data, but increases the
prediction error of the classifier. Recently, independent work by Rubinstein et al. (2009) has
reported an extension of the sensitivity method to linear and kernel SVMs. Their utility analysis
differs from ours, and thus the analogous generalization bounds are not comparable. Because
Rubinstein et al. use techniques from algorithmic stability, their utility bounds compare the
private and non-private classifiers using the same value for the regularization parameter. In
contrast, our approach takes into account how the value of the regularization parameter might
change due to privacy constraints. In contrast, we propose the objective perturbation method,
in which noise is added to the objective function before optimizing over the space classifiers.
Both the sensitivity method and objective perturbation result in computationally efficient
algorithms for our specific case. In general, our theoretical bounds on sample requirement are
incomparable with the bounds of Kasiviswanathan et al. (2008) because of the difference
between their setting and ours.

Our approach to privacy-preserving tuning uses the exponential mechanism of McSherry and
Talwar (2007) by training classifiers with different parameters on disjoint subsets of the data
and then randomizing the selection of which classifier to release. This bears a superficial
resemblance to the sample-and-aggregate (Nissim et al., 2007) and V-fold cross-validation,
but only in the sense that only a part of the data is used to train the classifier. One drawback is
that our approach requires significantly more data in practice. Other approaches to selecting
the regularization parameter could benefit from a more careful analysis of the regularization
parameter, as in Hastie et al. (2004).

2. Model
We will use ‖x‖, ‖x‖∞, and ‖x‖ℋ to denote the ℓ2-norm, ℓ∞-norm, and norm in a Hilbert space
ℋ, respectively. For an integer n we will use [n] to denote the set {1,2,…,n}. Vectors will
typically be written in boldface and sets in calligraphic type. For a matrix A, we will use the
notation ‖A‖2 to denote the L2 norm of A.

2.1 Empirical Risk Minimization
In this paper we develop privacy-preserving algorithms for regularized empirical risk
minimization, a special case of which is learning a classifier from labeled examples. We will
phrase our problem in terms of classification and indicate when more general results hold. Our
algorithms take as input training data = {(xi,yi) ∈ × : i = 1,2,…,n} of n data-label pairs.
In the case of binary classification the data space = ℝd and the label set = {−1,+1}. We
will assume throughout that is the unit ball so that ‖xi‖2 ≤ 1.

We would like to produce a predictor f : →  We measure the quality of our predictor on
the training data via a nonnegative loss function ℓ : × → ℝ.

In regularized empirical risk minimization (ERM), we choose a predictor f that minimizes the
regularized empirical loss:

(1)
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This minimization is performed over f in an hypothesis class ℋ. The regularizer N(·) prevents
over-fitting. For the first part of this paper we will restrict our attention to linear predictors and
with some abuse of notation we will write f(x) = fTx.

2.2 Assumptions on Loss and Regularizer
The conditions under which we can prove results on privacy and generalization error depend
on analytic properties of the loss and regularizer. In particular, we will require certain forms
of convexity (see Rockafellar and Wets, 1998).

Definition 1 A function H(f) over f ∈ ℝd is said to be strictly convex if for all α ∈ (0,1), f,
and g,

It is said to be λ-strongly convex if for all α ∈ (0,1), f, and g,

A strictly convex function has a unique minimum (Boyd and Vandenberghe, 2004). Strong
convexity plays a role in guaranteeing our privacy and generalization requirements. For our
privacy results to hold we will also require that the regularizer N(·) and loss function ℓ(·, ·) be
differentiable functions of f. This excludes certain classes of regularizers, such as the ℓ1-norm
regularizer N(f) = ‖f‖1, and classes of loss functions such as the hinge loss ℓSVM(fT x, y) = (1
− yfT x)+. In some cases we can prove privacy guarantees for approximations to these non-
differentiable functions.

2.3 Privacy Model
We are interested in producing a classifier in a manner that preserves the privacy of individual
entries of the data set that is used in training the classifier. The notion of privacy we use is
the ε-differential privacy model, developed by Dwork et al. (2006b) (see also Dwork (2006)),
which defines a notion of privacy for a randomized algorithm . Suppose  produces a
classifier, and let  be another data set that differs from in one entry (which we assume is
the private value of one person). That is,  and have n − 1 points (xi, yi) in common. The
algorithm provides differential privacy if for any set  the likelihood that  ∈ is close
to the likelihood ) ∈  (where the likelihood is over the randomness in the algorithm).
That is, any single entry of the data set does not affect the output distribution of the algorithm
by much; dually, this means that an adversary, who knows all but one entry of the data set,
cannot gain much additional information about the last entry by observing the output of the
algorithm.

The following definition of differential privacy is due to Dwork et al. (2006b), paraphrased
from Wasserman and Zhou (2010).

Definition 2 An algorithm ℬ) taking values in a set provides εp-differential privacy if

(2)

where the first supremum is over all measurable ⊆  the second is over all data sets 
and  differing in a single entry, and μ(·|ℬ) is the conditional distribution (measure) on 
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induced by the output ℬ) given a data set ℬ. The ratio is interpreted to be 1 whenever the
numerator and denominator are both 0.

Note that if is a set of measure 0 under the conditional measures induced by and , the
ratio is automatically 1. A more measure-theoretic definition is given in Zhou et al. (2009). An
illustration of the definition is given in Figure 1.

The following form of the definition is due to Dwork et al. (2006a).

Definition 3 An algorithm provides εp-differential privacy if for any two data sets and 
that differ in a single entry and for any set 

(3)

where  (resp. )) is the output of on input (resp. ).

We observe that an algorithm that satisfies Equation 2 also satisfies Equation 3, and as a
result, Definition 2 is stronger than Definition 3.

From this definition, it is clear that the  that outputs the minimizer of the ERM objective
(1) does not provide εp-differential privacy for any εp. This is because an ERM solution is a
linear combination of some selected training samples “near” the decision boundary. If and

 differ in one of these samples, then the classifier will change completely, making the
likelihood ratio in (3) infinite. Regularization helps by penalizing the L2 norm of the change,
but does not account how the direction of the minimizer is sensitive to changes in the data.

Dwork et al. (2006b) also provide a standard recipe for computing privacy-preserving
approximations to functions by adding noise with a particular distribution to the output of the
function. We call this recipe the sensitivity method. Let g : (ℝm)n → ℝ be a scalar function of
z1,…, zn, where zi ∈ ℝm corresponds to the private value of individual i; then the sensitivity of
g is defined as follows.

Definition 4 The sensitivity of a function g : (ℝm)n → ℝ is maximum difference between the
values of the function when one input changes. More formally, the sensitivity S(g) of g is defined
as:

To compute a function g on a data set = {z1,…, zn}, the sensitivity method outputs g(z1,
…,zn) + η, where η is a random variable drawn according to the Laplace distribution, with

mean 0 and standard deviation . It is shown in Dwork et al. (2006b) that such a procedure
is εp-differentially private.

3. Privacy-preserving ERM
Here we describe two approaches for creating privacy-preserving algorithms from (1).

3.1 Output Perturbation: The Sensitivity Method
Algorithm 1 is derived from the sensitivity method of Dwork et al. (2006b), a general method
for generating a privacy-preserving approximation to any function A(·). In this section the norm
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‖·‖ is the L2-norm unless otherwise specified. For the function A(  = argminJ(f, , Algorithm
1 outputs a vector A(  + b, where b is random noise with density:

(4)

where α is a normalizing constant. The parameter β is a function of εp, and the L2-sensitivity
of A(·), which is defined as follows.

Definition 5 The L2-sensitivity of a vector-valued function is defined as the maximum change
in the L2 norm of the value of the function when one input changes. More formally,

The interested reader is referred to Dwork et al. (2006b) for further details. Adding noise to
the output of A(·) has the effect of masking the effect of any particular data point. However, in
some applications the sensitivity of the minimizer argminJ(f,  may be quite high, which would
require the sensitivity method to add noise with high variance.

Algorithm 1

ERM with output perturbation (sensitivity)

Inputs: Data = {zi}, parameters εp,Λ.

Output: Approximate minimizer fpriv.

Draw a vector b according to (4) with 

Compute fpriv = argminJ(f,  + b.

3.2 Objective Perturbation
A different approach, first proposed by Chaudhuri and Monteleoni (2008), is to add noise to
the objective function itself and then produce the minimizer of the perturbed objective. That
is, we can minimize

where b has density given by (4), with β = εp. Note that the privacy parameter here does not
depend on the sensitivity of the of the classification algorithm.

Algorithm 2

ERM with objective perturbation

Inputs: Data = {zi}, parameters εp, Λ, c.

Output: Approximate minimizer fpriv.
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.

 .

Draw a vector b according to (4) with .

 .

The algorithm requires a certain slack, , in the privacy parameter. This is
due to additional factors in bounding the ratio of the densities. The “If” statement in the
algorithm is from having to consider two cases in the proof of Theorem 9, which shows that
the algorithm is differentially private.

3.3 Privacy Guarantees
In this section, we establish the conditions under which Algorithms 1 and 2 provide εp-
differential privacy. First, we establish guarantees for Algorithm 1.

3.3.1 PRIVACY GUARANTEES FOR OUTPUT PERTURBATION—Theorem 6 If N(·)
is differentiable, and 1-strongly convex, and ℓ is convex and differentiable, with |ℓ′(z)| ≤ 1 for
all z, then, Algorithm 1 provides εp-differential privacy.

The proof of Theorem 6 follows from Corollary 8, and Dwork et al. (2006b). The proof is
provided here for completeness.

Proof From Corollary 8, if the conditions on N(·) and ℓ hold, then the L2-sensivity of ERM

with regularization parameter Λ is at most . We observe that when we pick ‖b‖ from the
distribution in Algorithm 1, for a specific vector b0 ∈ ℝd, the density at b0 is proportional to

. Let and  be any two data sets that differ in the value of one individual. Then, for
any f,

where b1 and b2 are the corresponding noise vectors chosen in Step 1 of Algorithm 1, and g
(f|  (g(f| ) respectively) is the density of the output of Algorithm 1 at f, when the input is 
(  respectively). If f1 and f2 are the solutions respectively to non-private regularized ERM
when the input is and , then, b2 − b1 = f2 − f1. From Corollary 8, and using a triangle
inequality,
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Moreover, by symmetry, the density of the directions of b1 and b2 are uniform. Therefore, by

construction, . The theorem follows.

The main ingredient of the proof of Theorem 6 is a result about the sensitivity of regularized
ERM, which is provided below.

Lemma 7 Let G(f) and g(f) be two vector-valued functions, which are continuous, and
differentiable at all points. Moreover, let G(f) and G(f) + g(f) be λ-strongly convex. If f1 =
argminf G(f) and f2 = argminf G(f) + g(f), then

Proof Using the definition of f1 and f2, and the fact that G and g are continuous and
differentiable everywhere,

(5)

As G(f) is λ-strongly convex, it follows from Lemma 14 of Shalev-Shwartz (2007) that:

Combining this with (5) and the Cauchy-Schwartz inequality, we get that

The conclusion follows from dividing both sides by λ‖f1 − f2‖.

Corollary 8 If N(·) is differentiable and 1-strongly convex, and ℓ is convex and differentiable

with |ℓ′(z)| ≤ 1 for all z, then, the L2-sensitivity of J(f,  is at most .

Proof Let = {(x1,y1),…, (xn, yn)} and  be two data sets that differ
in the value of the n-th individual. Moreover, we let G(f) = J(f, , g(f) = J(f, ) − J(f, , f1 =

argminfJ(f, , and f2 = argminfJ(f, ). Finally, we set  .

We observe that due to the convexity of ℓ, and 1-strong convexity of N(·), G(f) = J(f,  is Λ-
strongly convex. Moreover, G(f) + g(f) = J(f, ) is also Λ-strongly convex. Finally, due to the
differentiability of N(·) and ℓ, G(f) and g(f) are also differentiable at all points. We have:

As yi ∈ [−1,1], |ℓ′(z)| ≤ 1, for all z, and ‖xi‖ ≤ 1, for any f,

. The proof now follows by an application of
Lemma 7.
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3.3.2 PRIVACY GUARANTEES FOR OBJECTIVE PERTURBATION—In this section,
we show that Algorithm 2 is εp-differentially private. This proof requires stronger assumptions
on the loss function than were required in Theorem 6. In certain cases, some of these
assumptions can be weakened; for such an example, see Section 3.4.2.

Theorem 9 If N(·) is 1-strongly convex and doubly differentiable, and ℓ(·) is convex and doubly
differentiable, with |ℓ′(z)| ≤ 1 and |ℓ″(z)| ≤ c for all z, then Algorithm 2 is εp-differentially
private.

Proof Consider an fpriv output by Algorithm 2. We observe that given any fixed fpriv and a
fixed data set  there always exists a b such that Algorithm 2 outputs fpriv on input  Because
ℓ is differentiable and convex, and N(·) is differentiable, we can take the gradient of the
objective function and set it to 0 at fpriv. Therefore,

(6)

Note that (6) holds because for any f, ∇ℓ(fT x) = ℓ′(fT x)x.

We claim that as ℓ is differentiable and  is strongly convex, given a data set =
(x1,y1),…, (xn, yn), there is a bijection between b and fpriv. The relation (6) shows that two
different b values cannot result in the same fpriv. Furthermore, since the objective is strictly
convex, for a fixed b and  there is a unique fpriv; therefore the map from b to fpriv is injective.
The relation (6) also shows that for any fpriv there exists a b for which fpriv is the minimizer,
so the map from b to fpriv is surjective.

To show εp-differential privacy, we need to compute the ratio g(fpriv| /g(fpriv| ) of the
densities of fpriv under the two data sets and . This ratio can be written as (Billingsley,
1995)

where J(fpriv → b| , J(fpriv → b| ) are the Jacobian matrices of the mappings from fpriv to
b, and μ(b|  and μ(b| ) are the densities of b given the output fpriv, when the data sets are 
and  respectively.

First, we bound the ratio of the Jacobian determinants. Let b(j) denote the j-th coordinate of
b. From (6) we have

Given a data set  the (j, k)-th entry of the Jacobian matrix J(f → b|  is
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where 1(·) is the indicator function. We note that the Jacobian is defined for all fpriv because
N(·) and ℓ are globally doubly differentiable.

Let and  be two data sets which differ in the value of the n-th item such that = {(x1,y1),
…, (xn−1,yn−1), (xn,yn)} and . Moreover, we define
matrices A and E as follows:

Then, J(fpriv → b|  = −A, and J(fpriv → b| ) = −(A + E).

Let λ1(M) and λ2(M) denote the largest and second largest eigenvalues of a matrix M. As E has
rank at most 2, from Lemma 10,

For a 1-strongly convex function N, the Hessian ∇2N(fpriv) has eigenvalues greater than 1
(Boyd and Vandenberghe, 2004). Since we have assumed ℓ is doubly differentiable and convex,

any eigenvalue of A is therefore at least nΛ + nΔ; therefore, for .
Applying the triangle inequality to the trace norm:

Then upper bounds on |yi|, ‖xi‖, and |ℓ″(z)| yield

Therefore, |λ1(E)| · |λ2(E)| ≤ c2, and

We now consider two cases. In the first case, Δ = 0, and by definition, in that case,

. In the second case, Δ > 0, and in this case, by definition of Δ,

.

Next, we bound the ratio of the densities of b. We observe that as |ℓ′(z)| ≤ 1, for any z and |yi|,
‖xi‖ ≤ 1, for data sets and  which differ by one value,
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This implies that:

We can write:

where surf(x) denotes the surface area of the sphere in d dimensions with radius x. Here the
last step follows from the fact that surf(x) = surf(1)xd−1, where surf(1) is the surface area of
the unit sphere in ℝd.

Finally, we are ready to bound the ratio of densities:

Thus, Algorithm 2 satisfies Definition 2.

Lemma 10 If A is full rank, and if E has rank at most 2, then,

where λj(Z) is the j-th eigenvalue of matrix Z.

Proof Note that E has rank at most 2, so A−1E also has rank at most 2. Using the fact that
λi(I + A−1E) = 1 + λi(A−1E),

3.4 Application to Classification
In this section, we show how to use our results to provide privacy-preserving versions of logistic
regression and support vector machines.

3.4.1 LOGISTIC REGRESSION—One popular ERM classification algorithm is regularized

logistic regression. In this case, , and the loss function is ℓLR(z) = log(1 + e−z).
Taking derivatives and double derivatives,

Note that ℓLR is continuous, differentiable and doubly differentiable, with . Therefore,
we can plug in logistic loss directly to Theorems 6 and 9 to get the following result.
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Corollary 11 The output of Algorithm 1 with , ℓ = ℓLR is an εp-differentially private

approximation to logistic regression. The output of Algorithm 2 with , and ℓ
= ℓLR, is an εp-differentially private approximation to logistic regression.

We quantify how well the outputs of Algorithms 1 and 2 approximate (non-private) logistic
regression in Section 4.

3.4.2 SUPPORT VECTOR MACHINES—Another very commonly used classifier is L2-

regularized support vector machines. In this case, again, , and

Notice that this loss function is continuous, but not differentiable, and thus it does not satisfy
conditions in Theorems 6 and 9.

There are two alternative solutions to this. First, we can approximate ℓSVM by a different loss
function, which is doubly differentiable, as follows (see also Chapelle, 2007):

As h → 0, this loss approaches the hinge loss. Taking derivatives, we observe that:

Moreover,

Observe that this implies that  for all h and z. Moreover, ℓs is convex, as 
for all z. Therefore, ℓs can be used in Theorems 6 and 9, which gives us privacy-preserving
approximations to regularized support vector machines.

Corollary 12 The output of Algorithm 1 with , and ℓ = ℓs is an εp-differentially
private approximation to support vector machines. The output of Algorithm 2 with

, and ℓ = ℓs is an εp-differentially private approximation to support vector
machines.
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The second solution is to use Huber Loss, as suggested by Chapelle (2007), which is defined
as follows:

(7)

Observe that Huber loss is convex and differentiable, and piecewise doubly-differentiable, with

. However, it is not globally doubly differentiable, and hence the Jacobian in the proof of
Theorem 9 is undefined for certain values of f. However, we can show that in this case,

Algorithm 2, when run with  satisfies Definition 3.

Let G denote the map from fpriv to b in (6) under ℬ =  and H denote the map under ℬ = . By
definition, the probability ℙ(fpriv ∈ | ℬ =  = ℙb(b ∈ G( ).

Corollary 13 Let fpriv be the output of Algorithm 2 with ℓ = ℓHuber, , and .
For any set of possible values of fpriv, and any pair of data sets   which differ in the private
value of one person (xn, yn),

Proof Consider the event fpriv ∈  Let = G(  and  = H( . Because G is a bijection, we
have

and a similar expression when ℬ = .

Now note that  is only non-differentiable for a finite number of values of z. Let be the
set of these values of z.

Pick a tuple (z, (x,y)) ∈ × ( ∪ ). The set of f such that yfT x = z is a hyperplane in ℝd. Since
∇N(f) = f/2 and ℓ′ is piecewise linear, from (6) we see that the set of corresponding b’s is also
piecewise linear, and hence has Lebesgue measure 0. Since the measure corresponding to b is
absolutely continuous with respect to the Lebesgue measure, this hyperplane has probability
0 under b as well. Since is a finite union of such hyperplanes, we have ℙ(b ∈ G( ) = 0.

Thus we have ℙb( | ℬ =  = ℙb(G(  | ℬ = , and similarly for . From the definition of
G and H, for f ∈ 

since f ∉  this mapping shows that if ℙb(G( \  | ℬ =  = 0 then we must have ℙb(H( \ 
| ℬ =  = 0. Thus the result holds for sets of measure 0. If has positive measure we can
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calculate the ratio of the probabilities for fpriv for which the loss is twice-differentiable. For
such fpriv the Jacobian is also defined, and we can use a method similar to Theorem 9 to prove
the result.

Remark: Because the privacy proof for Algorithm 1 does not require the analytic properties
of 2, we can also use Huber loss in Algorithm 1 to get an εg-differentially private approximation
to the SVM. We quantify how well the outputs of Algorithms 1 and 2 approximate private
support vector machines in Section 4. These approximations to the hinge loss are necessary
because of the analytic requirements of Theorems 6 and 9 on the loss function. Because the
requirements of Theorem 9 are stricter, it may be possible to use an approximate loss in
Algorithm 1 that would not be admissible in Algorithm 2.

4. Generalization Performance
In this section, we provide guarantees on the performance of privacy-preserving ERM
algorithms in Section 3. We provide these bounds for L2-regularization. To quantify this
performance, we will assume that the n entries in the data set are drawn i.i.d. according to a
fixed distribution P(x,y). We measure the performance of these algorithms by the number of
samples n required to acheive error L* + εg, where L* is the loss of a reference ERM predictor
f0. This resulting bound on εg will depend on the norm ‖f0‖ of this predictor. By choosing an
upper bound ν on the norm, we can interpret the result as saying that the privacy-preserving
classifier will have error εg more than that of any predictor with ‖f0‖ ≤ ν.

Given a distribution P the expected loss L(f) for a classifier f is

The sample complexity for generalization error εg against a classifier f0 is number of samples
n required to achieve error L(f0) + εg under any data distribution P. We would like the sample
complexity to be low.

For a fixed P we define the following function, which will be useful in our analysis:

The function J̄(f) is the expectation (over P) of the non-private L2-regularized ERM objective
evaluated at f.

For non-private ERM, Shalev-Shwartz and Srebro (2008) show that for a given f0 with loss L
(f0) = L*, if the number of data points satisfies

for some constant C, then the excess loss of the L2-regularized SVM solution fsvm satisfies L
(fsvm) ≤ L(f0) + εg. This order growth will hold for our results as well. It also serves as a reference
against which we can compare the additional burden on the sample complexity imposed by the
privacy constraints.
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For most learning problems, we require the generalization error εg < 1. Moreover, it is also
typically the case that for more difficult learning problems, ‖f0‖ is higher. For example, for

regularized SVM,  is the margin of classification, and as a result, ‖f0‖ is higher for learning
problems with smaller margin. From the bounds provided in this section, we note that the
dominating term in the sample requirement for objective perturbation has a better dependence

on ‖f0‖ as well as ; as a result, for more difficult learning problems, we expect objective
perturbation to perform better than output perturbation.

4.1 Output Perturbation
First, we provide performance guarantees for Algorithm 1, by providing a bound on the number
of samples required for Algorithm 1 to produce a classifier with low error.

Definition 14 A function g(z) :ℝ → ℝ is c-Lipschitz if for all pairs (z1, z2) we have |g(z1) − g
(z2)| ≤ c|z1 − z2|.

Recall that if a function g(z) is differentiable, with |g′(z)| ≤ r for all z, then g(z) is also r-Lipschitz.

Theorem 15 Let , and let f0 be a classifier such that L(f0) = L*, and let δ > 0. If ℓ
is differentiable and continuous with |ℓ′(z)| ≤ 1, the derivative ℓ0 is c-Lipschitz, the data is
drawn i.i.d. according to P, then there exists a constant C such that if the number of training
samples satisfies

(8)

where d is the dimension of the data space, then the output fpriv of Algorithm 1 satisfies

Proof Let

and fpriv denote the output of Algorithm 1. Using the analysis method of Shalev-Shwartz and
Srebro (2008) shows

(9)

We will bound the terms on the right-hand side of (9).

For a regularizer  the Hessian satisfies ‖∇2N(f)‖2 ≤ 1. Therefore, from Lemma 16,
with probability 1 − δ over the privacy mechanism,
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Furthermore, the results of Sridharan et al. (2008) show that with probability 1 − δ over the
choice of the data distribution,

The constant in the last term depends on the derivative of the loss and the bound on the data
points, which by assumption are bounded. Combining the preceeding two statements, with
probability 1 − 2δ over the noise in the privacy mechanism and the data distribution, the second
term in the right-hand-side of (9) is at most:

(10)

By definition of frtr, the difference (J̄(frtr) − J̄(f0)) ≤ 0. Setting  in (9) and using (10),
we obtain

Solving for n to make the total excess error equal to εg yields (8).

Lemma 16 Suppose N(·) is doubly differentiable with ‖∇2N(f)‖2 ≤ η for all f, and suppose
that ℓ is differentiable and has continuous and c-Lipschitz derivatives. Given training data

 let f* be a classifier that minimizes J(f,  and let fpriv be the classifier output by Algorithm
1. Then

where the probability is taken over the randomness in the noise b of Algorithm 1.

Note that when ℓ is doubly differentiable, c is an upper bound on the double derivative of ℓ,
and is the same as the constant c in Theorem 9.

Proof Let = {(x1,y1),…, (xn,yn)}, and recall that ‖xi‖ ≤ 1, and |yi| ≤ 1. As N(·) and ℓ are
differentiable, we use the Mean Value Theorem to show that for some t between 0 and 1,

(11)

where the second step follows by an application of the Cauchy-Schwartz inequality. Recall
that
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Moreover, recall that ∇J(f*,  = 0, from the optimality of f*. Therefore,

(12)

Now, from the Lipschitz condition on ℓ, for each i we can upper bound each term in the
summation above:

(13)

The third step follows because ℓ′ is c-Lipschitz and the last step follows from the bounds on |
yi| and ‖xi‖. Because N is doubly differentiable, we can apply the Mean Value Theorem again
to conclude that

(14)

for some f″ ∈ ℝd.

As 0 ≤ t ≤ 1, we can combine (12), (13), and (14) to obtain

(15)

From the definition of Algorithm 1, fpriv − f* = b, where b is the noise vector. Now we can

apply Lemma 17 to ‖fpriv − f*‖, with parameters k = d, and . From Lemma 17, with
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probability 1 − δ, . The Lemma follows by combining this with
Equations 15 and 11.

Lemma 17 Let X be a random variable drawn from the distribution Γ(k,θ), where k is an
integer. Then,

Proof Since k is an integer, we can decompose X distributed according to Γ(k, θ) as a summation

where X1,X2,…,Xk are independent exponential random variables with mean θ. For each i we
have ℙ(Xi ≥ θ log(k/δ)) = δ/k. Now,

4.2 Objective Perturbation
We now establish performance bounds on Algorithm 2. The bound can be summarized as
follows.

Theorem 18 Let , and let f0 be a classifier with expected loss L(f0) = L*. Let ℓ be
convex, doubly differentiable, and let its derivatives satisfy |ℓ′(z)| ≤ 1 and |ℓ″(z)| ≤ c for all z.
Then there exists a constantC such that for δ > 0, if the n training samples in are drawn i.i.d.
according to P, and if

then the output fpriv of Algorithm 2 satisfies

Proof Let

and fpriv denote the output of Algorithm 1. As in Theorem 15, the analysis of Shalev-Shwartz
and Srebro (2008) shows

(16)
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We will bound each of the terms on the right-hand-side.

If , than , so from the definition of  in Algorithm 2,

where the last step follows because log(1 + x) ≤ x for x ∈ [0,1]. Note that for these values of

Λ we have .

Therefore, we can apply Lemma 19 to conclude that with probability at least 1 − δ over the
privacy mechanism,

From Sridharan et al. (2008),

By definition of f*, we have J̄(frtr) − J̄(f0) ≤ 0. If Λ is set to be , then, the fourth quantity

in Equation 16 is at most . The theorem follows by solving for n to make the total excess
error at most εg.

The following lemma is analogous to Lemma 16, and it establishes a bound on the distance
between the output of Algorithm 2, and non-private regularized ERM. We note that this bound

holds when Algorithm 2 has , that is, when Δ = 0. Ensuring that Δ = 0 requires an additional
condition on n, which is stated in Theorem 18.

Lemma 19 Let . Let f* = argminJ(f, , and let fpriv be the classifier output by Algorithm
2. If N(·) is 1-strongly convex and globally differentiable, and if ℓ is convex and differentiable
at all points, with |ℓ′(z)| ≤ 1 for all z, then

where the probability is taken over the randomness in the noise b of Algorithm 2.

Proof By the assumption , the classifier fpriv minimizes the objective function

, and therefore
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First, we try to bound ‖f* − fpriv‖. Recall that ΛN(·) is Λ-strongly convex and globally
differentiable, and ℓ is convex and differentiable. We can therefore apply Lemma 7 with G(f)

= J(f,  and  to obtain the bound

Therefore by the Cauchy-Schwartz inequality,

Since ‖b‖ is drawn from a  distribution, from Lemma 17, with probability 1 − δ,

. The Lemma follows by plugging this in to the previous equation.

4.3 Applications
In this section, we examine the sample requirement of privacy-preserving regularized logistic

regression and support vector machines. Recall that in both these cases, .

Corollary 20 (Logistic Regression) Let training data be generated i.i.d. according to a
distribution P and let f0 be a classifier with expected loss L(f0) = L*. Let the loss function ℓ =
ℓLR defined in Section 3.4.1. Then the following two statements hold:

1. There exists a C1 such that if

then the output fpriv of Algorithm 1 satisfies

2. There exists a C2 such that if

then the output fpriv of Algorithm 2 with  satisfies

Proof Since ℓLR is convex and doubly differentiable for any z1, z2,
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for some z* ∈ [z1,z2]. Moreover, , so ℓ′ is . The corollary now follows
from Theorems 15 and 18.

For SVMs we state results with ℓ = ℓHuber, but a similar bound can be shown for ℓs as well.

Corollary 21 (Huber Support Vector Machines) Let training data be generated i.i.d.
according to a distribution P and let f0 be a classifier with expected loss L(f0) = L*. Let the
loss function ℓ = ℓHuber defined in (7). Then the following two statements hold:

1. There exists a C1 such that if

then the output fpriv of Algorithm 1 satisfies

2. There exists a C2 such that if

then the output fpriv of Algorithm 2 with  satisfies

Proof The Huber loss is convex and differentiable with continuous derivatives. Moreover,

since the derivative of the Huber loss is piecewise linear with slope 0 or at most , for any
z1, z2,

so  is . The first part of the corollary follows from Theorem 15.

For the second part of the corollary, we observe that from Corollary 13, we do not need ℓ to
be globally double differentiable, and the bound on |ℓ″(z)| in Theorem 18 is only needed to

ensure that ; since ℓHuber is double differentiable except in a set of Lebesgue measure 0,

with , the corollary follows by an application of Theorem 18.
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5. Kernel Methods
A powerful methodology in learning problems is the “kernel trick,” which allows the efficient
construction of a predictor f that lies in a reproducing kernel Hilbert space (RKHS) ℋ
associated to a positive definite kernel function k(·, ·). The representer theorem (Kimeldorf and
Wahba, 1970) shows that the regularized empirical risk in (1) is minimized by a function f(x)
that is given by a linear combination of kernel functions centered at the data points:

(17)

This elegant result is important for both theoretical and computational reasons.
Computationally, one releases the values ai corresponding to the f that minimizes the empirical
risk, along with the data points x(i); the user classifies a new x by evaluating the function in
(17).

A crucial difficulty in terms of privacy is that this directly releases the private values x(i) of
some individuals in the training set. Thus, even if the classifier is computed in a privacy-
preserving way, any classifier released by this process requires revealing the data. We provide
an algorithm that avoids this problem, using an approximation method (Rahimi and Recht,
2007, 2008b) to approximate the kernel function using random projections.

5.1 Mathematical Preliminaries
Our approach works for kernel functions which are translation invariant, so k(x,x′) = k(x − x
′). The key idea in the random projection method is from Bochner’s Theorem, which states that
a continuous translation invariant kernel is positive definite if and only if it is the Fourier
transform of a nonnegative measure. This means that the Fourier transform K(θ) of translation-
invariant kernel function k(t) can be normalized so that K̄(θ) = K(θ)/‖K(θ)‖1 is a probability
measure on the transform space Θ. We will assume K̄ (θ) is uniformly bounded over θ.

In this representation

(18)

where we will assume the feature functions ϕ(x;θ) are bounded:

A function f ∈ ℋ can be written as

To prove our generalization bounds we must show that bounded classifiers f induce bounded
functions a(θ). Writing the evaluation functional as an inner product with k(x, x′) and (18)
shows
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Thus we have

This shows that a(θ) is bounded uniformly over Θ when f(x) is bounded uniformly over  The

volume of the unit ball is  (see Ball, 1997 for more details). For large d this

is  by Stirling’s formula. Furthermore, we have

5.2 A Reduction to the Linear Case
We now describe how to apply Algorithms 1 and 2 for classification with kernels, by
transforming to linear classification. Given {θj}, let R : → ℝD be the map that sends x(i) to
a vector v(i) ∈ ℝD where vj(i) = ϕ(x(i);θj) for j ∈ [D]. We then use Algorithm 1 or Algorithm
2 to compute a privacy-preserving linear classifier f in ℝD. The algorithm releases R and f ̃. The
overall classifier is fpriv(x) = f ̃(R(x)).

As an example, consider the Gaussian kernel

The Fourier transform of a Gaussian is a Gaussian, so we can sample θj = (ω,ψ) according to
the distribution Uniform[−π,π] × 0,2γId) and compute νj = cos(ωT x + ψ). The random phase
is used to produce a real-valued mapping. The paper of Rahimi and Recht (2008a) has more
examples of transforms for other kernel functions.

Algorithm 3

Private ERM for nonlinear kernels

Inputs: Data {(xi, yi) : i ε [n]}, positive definite kernel function k(·, ·), sampling function K̄(θ), parameters εp, Λ, D

Outputs: Predictor fpriv and pre-filter {θj : j ε [D]}.

Draw {θj : j = 1,2,…,D} iid according to K̄ (θ).

Set  for each i.

Run Algorithm 1 or Algorithm 2 with data {(v(i), y(i))} and parameters εp, Λ.
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5.3 Privacy Guarantees
Because the workhorse of Algorithm 3 is a differentially-private version of ERM for linear
classifiers (either Algorithm 1 or Algorithm 2), and the points {θj : j ∈ [D]} are independent
of the data, the privacy guarantees for Algorithm 3 follow trivially from Theorems 6 and 9.

Theorem 22 Given data {(x(i),y(i)) : i = 1,2,…,n} with (x(i),y(i)) and ‖x(i)‖ ≤ 1, the outputs
(fpriv,{θj : j ∈ [D]}) of Algorithm 3 guarantee εp-differential privacy.

The proof trivially follows from a combination of Theorems 6, 9, and the fact that the θj’s are
drawn independently of the input data set.

5.4 Generalization Performance
We now turn to generalization bounds for Algorithm 3. We will prove results using objective
perturbation (Algorithm 2) in Algorithm 3, but analogous results for output perturbation
(Algorithm 1) are simple to prove. Our comparisons will be against arbitrary predictors f0
whose norm is bounded in some sense. That is, given an f0 with some properties, we will choose
regularization parameter Λ, dimension D, and number of samples n so that the predictor fpriv
has expected loss close to that of f0.

In this section we will assume  so that N(·) is 1-strongly convex, and that the loss
function ℓ is convex, differentiable and |ℓ′(z)| ≤ 1 for all z.

Our first generalization result is the simplest, since it assumes a strong condition that gives
easy guarantees on the projections. We would like the predictor produced by Algorithm 3 to
be competitive against an f0 such that

(19)

and |a0(θ)| ≤ C (see Rahimi and Recht, 2008b). Our first result provides the technical building
block for our other generalization results. The proof makes use of ideas from Rahimi and Recht
(2008b) and techniques from Sridharan et al. (2008); Shalev-Shwartz and Srebro (2008).

Lemma 23 Let f0 be a predictor such that |a0(θ)| ≤ C, for all θ, where a0(θ) is given by (19),
and suppose L(f0) = L*. Moreover, suppose that ℓ′(·) is c-Lipschitz. If the data is drawn i.i.d.
according to P, then there exists a constant C0 such that if

(20)

then Λ and D can be chosen such that the output fpriv of Algorithm 3 using Algorithm 2 satisfies

Proof Since |a0(θ)| ≤ C and the K̄(θ) is bounded, we have (Rahimi and Recht, 2008b, Theorem
1) that with probability 1 − 2δ there exists an fp ∈ ℝD such that
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(21)

We will choose D to make this loss small. Furthermore, fp is guaranteed to have ‖fp‖∞ ≤ C/D,
so

(22)

Now given such an fp we must show that fpriv will have true risk close to that of fp as long as
there are enough data points. This can be shown using the techniques in Shalev-Shwartz and
Srebro (2008). Let

and let

minimize the regularized true risk. Then

Now, since J̄(·) is minimized by frtr, the last term is negative and we can disregard it. Then we
have

(23)

From Lemma 19, with probability at least 1 − δ over the noise b,

(24)

Now we can bound the term (J̄(fpriv) − J̄(frtr)) by twice the gap in the regularized empirical risk
difference (24) plus an additional term (Sridharan et al., 2008, Corollary 2). That is, with
probability 1 − δ:

(25)

If we set , then , and we can plug Lemma 19 into (25) to obtain:
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(26)

Plugging (26) into (23), discarding the negative term involving  and setting Λ = εg/
‖fp‖2 gives

(27)

Now we have, using (21) and (27), that with probability 1 − 4δ:

Substituting (22), we have

To set the remaining parameters, we will choose D < n so that

We set  to make the last term εg/6, and:

Setting n as in (20) proves the result. Moreover, setting  ensures that

.
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We can adapt the proof procedure to show that Algorithm 3 is competitive against any classifier
f0 with a given bound on ‖f0‖∞. It can be shown that for some constant ζ that |a0(θ)| ≤ Vol(
ζ‖f0‖∞. Then we can set this as C in (20) to obtain the following result.

Theorem 24 Let f0 be a classifier with norm ‖f0‖∞, and let ℓ′(·) be c-Lipschitz. Then for any
distribution P, there exists a constant C0 such that if

(28)

then Λ and D can be chosen such that the output fpriv of Algorithm 3 with Algorithm 2
satisfies ℙ(L(fpriv) − L(f0) ≤ εg) ≥ 1 − 4δ.

Proof Substituting C = Vol( ζ‖f0‖∞ in Lemma 23 we get the result.

We can also derive a generalization result with respect to classifiers with bounded ‖f0‖ℋ.

Theorem 25 Let f0 be a classifier with norm ‖f0‖ℋ, and let ℓ′ be c-Lipschitz. Then for any
distribution P, there exists a constant C0 such that if,

then Λ and D can be chosen such that the output of Algorithm 3 run with Algorithm 2
satisfies ℙ (L(fpriv) − L(f0) ≤ εg) ≥ 1 − 4δ.

Proof Let f0 be a classifier with norm  and expected loss L(f0). Now consider

for some Λrtr to be specified later. We will first need a bound on ‖frtr‖∞ in order to use our
previous sample complexity results. Since frtr is a minimizer, we can take the derivative of the
regularized expected loss and set it to 0 to get:

where P(x,y) is a distribution on pairs (x,y). Now, using the representer theorem,

. Since the kernel function is bounded and the derivative of the loss is always
upper bounded by 1, so the integrand can be upper bounded by a constant. Since P(x,y) is a
probability distribution, we have for all x′ that |frtr(x′)| = O(1/Λrtr). Now we set

 to get
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We now have two cases to consider, depending on whether L(f0) < L(frtr) or L(f0) > L(frtr).

Case 1: Suppose that L(f0) < L(frtr). Then by the definition of frtr,

Since , we have .

Case 2: Suppose that L(f0) > L(frtr). Then the regularized classifier has better generalization

performance than the original, so we have trivially that .

Therefore in both cases we have a bound on ‖frtr‖∞ and a generalization gap of εg/2. We can
now apply Theorem 24 to show that for n satisfying (28) we have

6. Parameter Tuning
The privacy-preserving learning algorithms presented so far in this paper assume that the
regularization constant Λ is provided as an input, and is independent of the data. In actual
applications of ERM, Λ is selected based on the data itself. In this section, we address this
issue: how to design an ERM algorithm with end-to-end privacy, which selects Λ based on the
data itself.

Our solution is to present a privacy-preserving parameter tuning technique that is applicable
in general machine learning algorithms, beyond ERM. In practice, one typically tunes
parameters (such as the regularization parameter Λ) as follows: using data held out for
validation, train predictors f(·;Λ) for multiple values of Λ, and select the one which provides
the best empirical performance. However, even though the output of an algorithm preserves
εp-differential privacy for a fixed Λ (as is the case with Algorithms 1 and 2), by choosing a
Λ based on empirical performance on a validation set may violate εp-differential privacy
guarantees. That is, if the procedure that picks Λ is not private, then an adversary may use the
released classifier to infer the value of Λ and therefore something about the values in the
database.

We suggest two ways of resolving this issue. First, if we have access to a smaller publicly
available data from the same distribution, then we can use this as a holdout set to tune Λ. This
Λ can be subsequently used to train a classifier on the private data. Since the value of Λ does
not depend on the values in the private data set, this procedure will still preserve the privacy
of individuals in the private data.

If no such public data is available, then we need a differentially private tuning procedure. We
provide such a procedure below. The main idea is to train for different values of Λ on separate
subsets of the training data set, so that the total training procedure still maintains εp-differential
privacy. We score each of these predictors on a validation set, and choose a Λ (and hence f
(·;Λ)) using a randomized privacy-preserving comparison procedure (McSherry and Talwar,
2007). The last step is needed to guarantee εp-differential privacy for individuals in the
validation set. This final algorithm provides an end-to-end guarantee of differential privacy,
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and renders our privacy-preserving ERM procedure complete. We observe that both these
procedures can be used for tuning multiple parameters as well.

6.1 Tuning Algorithm
Algorithm 4

Privacy-preserving parameter tuning

Inputs: Database  parameters {Λ1,…, Λm}, εp.

Outputs: Parameter fpriv.

Divide into m + 1 equal portions 1,…, m+1, each of size 

For each i = 1,2,…,m, apply a privacy-preserving learning algorithm (for example Algorithms 1, 2, or 3) on i with
parameter Λi and εpto get output fi.

Evaluate zi, the number of mistakes made by fi on m+1. Set fpriv = fi with probability

.

We note that the list of potential Λ values input to this procedure should not be a function of
the private data set. It can be shown that the empirical error on m + 1 of the classifier output
by this procedure is close to the empirical error of the best classifier in the set {f1,…,fm} on

m+1, provided |  is high enough.

6.2 Privacy and Utility
Theorem 26 The output of the tuning procedure of Algorithm 4 is εp-differentially private.

Proof To show that Algorithm 4 preserves εp-differential privacy, we first consider an
alternative procedure ℳ. Let ℳ be the procedure that releases the values (f1,…,fm, i) where,
f1,…,fm are the intermediate values computed in the second step of Algorithm 4, and i is the
index selected by the exponential mechanism step. We first show that ℳ preserves εp-
differential privacy.

Let and  be two data sets that differ in the value of one individual such that = ̄ ∪ {(x,y)},
and  = ̄ ∪ {(x′,y′)}.

Recall that the data sets 1,…, m + 1 are disjoint; moreover, the randomness in the privacy
mechanisms are independent. Therefore,

(29)
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where μj(f) is the density at f induced by the classifier run with parameter Λj, and μ(f1,…,fm)
is the joint density at f1,…,fm, induced by ℳ. Now suppose that (x,y) ∈ j, for j = m + 1. Then,

, and  for k ∈ [m]. Moreover, given any fixed set f1,…,fm,

(30)

Instead, if (x,y) ∈ j, for j ∈ [m], then, , for k ∈ [m + 1], k ≠ j. Thus, for a fixed f1,
…,fm,

(31)

(32)

The lemma follows by combining (29)–(32).

Now, an adversary who has access to the output of ℳ can compute the output of Algorithm 4
itself, without any further access to the data set. Therefore, by a simulatibility argument, as in
Dwork et al. (2006b), Algorithm 4 also preserves εp-differential privacy.

In the theorem above, we assume that the individual algorithms for privacy-preserving
classification satisfy Definition 2; a similar theorem can also be shown when they satisfy a
guarantee as in Corollary 13.

The following theorem shows that the empirical error on K + 1 of the classifier output by the
tuning procedure is close to the empirical error of the best classifier in the set {f1,…,fK}. The
proof of this Theorem follows from Lemma 7 of McSherry and Talwar (2007).

Theorem 27 Let zmin = mini zi, and let z be the number of mistakes made on Dm+1 by the
classifier output by our tuning procedure. Then, with probability 1 − δ,

Proof In the notation of McSherry and Talwar (2007), the zmin = OPT, the base measure μ is
uniform on [m], and St = {i : zi < zmin + t}. Their Lemma 7 shows that

where μ is the uniform measure on [m]. Using min  to upper bound the right side and
setting it equal to δ we obtain

From this we have
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and the result follows.

7. Experiments
In this section we give experimental results for training linear classifiers with Algorithms 1
and 2 on two real data sets. Imposing privacy requirements necessarily degrades classifier
performance. Our experiments show that provided there is sufficient data, objective
perturbation (Algorithm 2) typically outperforms the sensitivity method (1) significantly, and
achieves error rate close to that of the analogous non-private ERM algorithm. We first
demonstrate how the accuracy of the classification algorithms vary with εp, the privacy
requirement. We then show how the performance of privacy-preserving classification varies
with increasing training data size.

The first data set we consider is the Adult data set from the UCI Machine Learning Repository
(Asuncion and Newman, 2007). This moderately-sized data set contains demographic
information about approximately 47,000 individuals, and the classification task is to predict
whether the annual income of an individual is below or above $50,000, based on variables such
as age, sex, occupation, and education. For our experiments, the average fraction of positive
labels is about 0.25; therefore, a trivial classifier that always predicts −1 will achieve this error-
rate, and only error-rates below 0.25 are interesting.

The second data set we consider is the KDDCup99 data set (Hettich and Bay, 1999); the task
here is to predict whether a network connection is a denial-of-service attack or not, based on
several attributes. The data set includes about 5,000,000 instances. For this data the average
fraction of positive labels is 0.20.

In order to implement the convex minimization procedure, we use the convex optimization
library provided by Okazaki (2009).

7.1 Preprocessing
In order to process the Adult data set into a form amenable for classification, we removed all
entries with missing values, and converted each categorial attribute to a binary vector. For
example, an attribute such as (Male,Female) was converted into 2 binary features. Each
column was normalized to ensure that the maximum value is 1, and then each row is normalized
to ensure that the norm of any example is at most 1. After preprocessing, each example was
represented by a 105-dimensional vector, of norm at most 1.

For the KDDCup99 data set, the instances were preprocessed by converting each categorial
attribute to a binary vector. Each column was normalized to ensure that the maximum value is
1, and finally, each row was normalized, to ensure that the norm of any example is at most 1.
After preprocessing, each example was represented by a 119-dimensional vector, of norm at
most 1.

7.2 Privacy-Accuracy Tradeoff
For our first set of experiments, we study the tradeoff between the privacy requirement on the
classifier, and its classification accuracy, when the classifier is trained on data of a fixed size.
The privacy requirement is quantified by the value of εp; increasing εp implies a higher change
in the belief of the adversary when one entry in changes, and thus lower privacy. To measure
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accuracy, we use classification (test) error; namely, the fraction of times the classifier predicts
a label with the wrong sign.

To study the privacy-accuracy tradeoff, we compare objective perturbation with the sensitivity
method for logistic regression and Huber SVM. For Huber SVM, we picked the Huber constant
h = 0.5, a typical value (Chapelle, 2007).1 For each data set we trained classifiers for a few
fixed values of Λ and tested the error of these classifiers. For each algorithm we chose the
value of Λ that minimizes the error-rate for εp = 0.1.2 We then plotted the error-rate against
εp for the chosen value of Λ. The results are shown in Figures 2 and 3 for both logistic regression
and support vector machines.3 The optimal values of Λ are shown in Tables 1 and 2. For non-
private logistic regression and SVM, each presented error-rate is an average over 10-fold cross-
validation; for the sensitivity method as well as objective perturbation, the presented error-rate
is an average over 10-fold cross-validation and 50 runs of the randomized training procedure.
For Adult, the privacy-accuracy tradeoff is computed over the entire data set, which consists
of 45,220 examples; for KDDCup99 we use a randomly chosen subset of 70,000 examples.

For the Adult data set, the constant classifier that classifies all examples to be negative
acheives a classification error of about 0.25. The sensitivity method thus does slightly better
than this constant classifier for most values of εp for both logistic regression and support vector
machines. Objective perturbation outperforms sensitivity, and objective perturbation for
support vector machines achieves lower classification error than objective perturbation for
logistic regression. Non-private logistic regression and support vector machines both have
classification error about 0.15.

For the KDDCup99 data set, the constant classifier that classifies all examples as negative, has
error 0.19. Again, objective perturbation outperforms sensitivity for both logistic regression
and support vector machines; however, for SVM and high values of εp (low privacy), the
sensitivity method performs almost as well as objective perturbation. In the low privacy regime,
logistic regression under objective perturbation is better than support vector machines. In
contrast, in the high privacy regime (low εp), support vector machines with objective
perturbation outperform logistic regression. For this data set, non-private logistic regression
and support vector machines both have a classification error of about 0.001.

For SVMs on both Adult and KDDCup99, for large εp (0.25 onwards), the error of either of
the private methods can increase slightly with increasing εp. This seems counterintuitive, but
appears to be due the imbalance in fraction of the two labels. As the labels are imbalanced, the
optimal classifier is trained to perform better on the negative labels than the positives. As εp
increases, for a fixed training data size, so does the perturbation from the optimal classifier,
induced by either of the private methods. Thus, as the perturbation increases, the number of
false positives increases, whereas the number of false negatives decreases (as we verified by
measuring the average false positive and false negative rates of the private classifiers).
Therefore, the total error may increase slightly with decreasing privacy.

7.3 Accuracy vs. Training Data Size Tradeoffs
Next we examine how classification accuracy varies as we increase the size of the training set.
We measure classification accuracy as the accuracy of the classifier produced by the tuning
procedure in Section 6. As the Adult data set is not sufficiently large to allow us to do privacy-
preserving tuning, for these experiments, we restrict our attention to the KDDCup99 data set.

1Chapelle (2007) recommends using h between 0.01 and 0.5; we use h = 0.5 as we found that a higher value typically leads to more
numerical stability, as well as better performance for both privacy-preserving methods.
2For KDDCup99 the error of the non-private algorithms did not increase with decreasing Λ.
3The slight kink in the SVM curve on Adult is due to a switch to the second phase of the algorithm.
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Figures 4 and 5 present the learning curves for objective perturbation, non-private ERM and
the sensitivity method for logistic loss and Huber loss, respectively. Experiments are shown
for εp = 0.01 and εp = 0.05 for both loss functions. The training sets (for each of 5 values of
Λ) are chosen to be of size n = 60,000 to n = 120,000, and the validation and test sets each are
of size 25,000. Each presented value is an average over 5 random permutations of the data,
and 50 runs of the randomized classification procedure. For objective perturbation we

performed experiment in the regime when , so Δ = 0 in Algorithm 2.4

For non-private ERM, we present result for training sets from n = 300,000 to n = 600,000. The
non-private algorithms are tuned by comparing 5 values of Λ on the same training set, and the
test set is of size 25,000. Each reported value is an average over 5 random permutations of the
data.

We see from the figures that for non-private logistic regression and support vector machines,
the error remains constant with increasing data size. For the private methods, the error usually
decreases as the data size increases. In all cases, objective perturbation outperforms the
sensitivity method, and support vector machines generally outperform logistic regression.

8. Discussions and Conclusions
In this paper we study the problem of learning classifiers with regularized empirical risk
minimization in a privacy-preserving manner. We consider privacy in the εp-differential
privacy model of Dwork et al. (2006b) and provide two algorithms for privacy-preserving
ERM. The first one is based on the sensitivity method due to Dwork et al. (2006b), in which
the output of the non-private algorithm is perturbed by adding noise. We introduce a second
algorithm based on the new paradigm of objective perturbation. We provide bounds on the
sample requirement of these algorithms for achieving generalization error εg. We show how
to apply these algorithms with kernels, and finally, we provide experiments with both
algorithms on two real data sets. Our work is, to our knowledge, the first to propose
computationally efficient classification algorithms satisfying differential privacy, together
with validation on standard data sets.

In general, for classification, the error rate increases as the privacy requirements are made more
stringent. Our generalization guarantees formalize this “price of privacy.” Our experiments,
as well as theoretical results, indicate that objective perturbation usually outperforms the
sensitivity methods at managing the tradeoff between privacy and learning performance. Both
algorithms perform better with more training data, and when abundant training data is available,
the performance of both algorithms can be close to non-private classification.

The conditions on the loss function and regularizer required by output perturbation and
objective perturbation are somewhat different. As Theorem 6 shows, output perturbation
requires strong convexity in the regularizer and convexity as well as a bounded derivative
condition in the loss function. The last condition can be replaced by a Lipschitz condition
instead. However, the other two conditions appear to be required, unless we impose some
further restrictions on the loss and regularizer. Objective perturbation on the other hand,
requires strong convexity of the regularizer, convexity, differentiability, and bounded double
derivatives in the loss function. Sometimes, it is possible to construct a differentiable
approximation to the loss function, even if the loss function is not itself differentiable, as shown
in Section 3.4.2.

4This was chosen for a fair comparison with non-private as well as the output perturbation method, both of which had access to only 5
values of Λ.
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Our experimental as well as theoretical results indicate that in general, objective perturbation
provides more accurate solutions than output perturbation. Thus, if the loss function satisfies
the conditions of Theorem 9, we recommend using objective perturbation. In some situations,
such as for SVMs, it is possible that objective perturbation does not directly apply, but applies
to an approximation of the target loss function. In our experiments, the loss of statistical
efficiency due to such approximation has been small compared to the loss of efficiency due to
privacy, and we suspect that this is the case for many practical situations as well.

Finally, our work does not address the question of finding private solutions to regularized ERM
when the regularizer is not strongly convex. For example, neither the output perturbation, nor
the objective perturbation method work for L1-regularized ERM. However, in L1-regularized
ERM, one can find a data set in which a change in one training point can significantly change
the solution. As a result, it is possible that such problems are inherently difficult to solve
privately.

An open question in this work is to extend objective perturbation methods to more general
convex optimization problems. Currently, the objective perturbation method applies to strongly
convex regularization functions and differentiable losses. Convex optimization problems
appear in many contexts within and without machine learning: density estimation, resource
allocation for communication systems and networking, social welfare optimization in
economics, and elsewhere. In some cases these algorithms will also operate on sensitive or
private data. Extending the ideas and analysis here to those settings would provide a rigorous
foundation for privacy analysis.

A second open question is to find a better solution for privacy-preserving classification with
kernels. Our current method is based on a reduction to the linear case, using the algorithm of
Rahimi and Recht (2008b); however, this method can be statistically inefficient, and require a
lot of training data, particularly when coupled with our privacy mechanism. The reason is that
the algorithm of Rahimi and Recht (2008b) requires the dimension D of the projected space to
be very high for good performance. However, most differentially-private algorithms perform
worse as the dimensionality of the data grows. Is there a better linearization method, which is
possibly data-dependent, that will provide a more statistically efficient solution to privacy-
preserving learning with kernels?

A final question is to provide better upper and lower bounds on the sample requirement of
privacy-preserving linear classification. The main open question here is to provide a
computationally efficient algorithm for linear classification which has better statistical
efficiency.

Privacy-preserving machine learning is the endeavor of designing private analogues of widely
used machine learning algorithms. We believe the present study is a starting point for further
study of the differential privacy model in this relatively new subfield of machine learning. The
work of Dwork et al. (2006b) set up a framework for assessing the privacy risks associated
with publishing the results of data analyses. Demanding high privacy requires sacrificing
utility, which in the context of classification and prediction is excess loss or regret. In this paper
we demonstrate the privacy-utility tradeoff for ERM, which is but one corner of the machine
learning world. Applying these privacy concepts to other machine learning problems will lead
to new and interesting tradeoffs and towards a set of tools for practical privacy-preserving
learning and inference. We hope that our work provides a benchmark of the current price of
privacy, and inspires improvements in future work.
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Figure 1.
An algorithm which is differentially private. When data sets which are identical except for a
single entry are input to the algorithm  the two distributions on the algorithm’s output are
close. For a fixed measurable the ratio of the measures (or densities) should be bounded.
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Figure 2.
Privacy-Accuracy trade-off for the Adult data set
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Figure 3.
Privacy-Accuracy trade-off for the KDDCup99 data set
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Figure 4.
Learning curves for logistic regression on the KDDCup99 data set

Chaudhuri et al. Page 43

J Mach Learn Res. Author manuscript; available in PMC 2011 August 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Learning curves for SVM on the KDDCup99 data set
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