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Pedro Gil4,5,6

1 Malaria Research Lab, Department of Medicine, Karolinska Institutet, Stockholm, Sweden, 2 Institute for Microbiology, Tumour and Cell Biology, Karolinska Institutet,

Stockholm, Sweden, 3 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden, 4 Drug Resistance and Pharmacogenetics Group,

Institute of Biotechnology and Bioengineering, Centre of Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal, 5 Unit of Pharmacogenetics,

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden, 6 Department of Biological Sciences, The Harpur College of Arts and Sciences,

Binghamton University, Binghamton, New York, United States of America

Abstract

ATP-Binding Cassette (ABC) transporters are efflux pumps frequently associated with multidrug resistance in many
biological systems, including malaria. Antimalarial drug-resistance involves an ABC transporter, PfMDR1, a homologue of P-
glycoprotein in humans. Twenty years of research have shown that several single nucleotide polymorphisms in pfmdr1
modulate in vivo and/or in vitro drug susceptibility. The underlying physiological mechanism of the effect of these
mutations remains unclear. Here we develop structural models for PfMDR1 in different predicted conformations, enabling
the study of transporter motion. Such analysis of functional polymorphisms allows determination of their potential role in
transport and resistance. The bacterial MsbA ABC pump is a PfMDR1 homologue. MsbA crystals in different conformations
were used to create PfMDR1 models with Modeller software. Sequences were aligned with ClustalW and analysed by Ali2D
revealing a high level of secondary structure conservation. To validate a potential drug binding pocket we performed
antimalarial docking simulations. Using aminoquinoline as probe drugs in PfMDR1 mutated parasites we evaluated the
physiology underlying the mechanisms of resistance mediated by PfMDR1 polymorphisms. We focused on the analysis of
well known functional polymorphisms in PfMDR1 amino acid residues 86, 184, 1034, 1042 and 1246. Our structural analysis
suggested the existence of two different biophysical mechanisms of PfMDR1 drug resistance modulation. Polymorphisms in
residues 86/184/1246 act by internal allosteric modulation and residues 1034 and 1042 interact directly in a drug pocket.
Parasites containing mutated PfMDR1 variants had a significant altered aminoquinoline susceptibility that appears to be
dependent on the aminoquinoline lipophobicity characteristics as well as vacuolar efflux by PfCRT. We previously described
the in vivo selection of PfMDR1 polymorphisms under antimalarial drug pressure. Now, together with recent PfMDR1
functional reports, we contribute to the understanding of the specific structural role of these polymorphisms in parasite
antimalarial drug response.
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Introduction

Efforts to control Plasmodium falciparum malaria are currently

reliant on vector control and chemotherapy. Unfortunately, the

parasite has demonstrated a persistent ability to circumvent

antimalarial drug efficacy through resistance-conferring muta-

tions, as most dramatically illustrated by the collapse of

chloroquine as worldwide mainstay chemotherapy [1]. Lack of

an effective alternative chemotherapy led to a documented rise in

the public health impact of malaria and a significant increase in

the disease’s related mortality [2,3].

A cornerstone event in malaria chemotherapy occurred in

Thailand, during the 1990s: the recovery of the efficacy of

mefloquine (MQ) through its combination with artesunate [4,5].

Following this successful implementation, conceptually similar

artemisinin derivative combination therapies (ACT) were progres-

sively adopted worldwide. Consequently, ACT is presently

recognised as an absolute central factor in P. falciparum malaria

control [6]. It has been proposed that P. falciparum resistance to ACT

could evolve [7,8]. Indeed, recent reports have provided the first

indications that resistance to ACTs may be emerging in natural

parasite populations [9,10]. If such resistance spreads widely, our

drug-based efforts to control malaria will be severely held back.

Drug treatments and policies, purposely engineered to avoid the

development of Multi-Drug Resistance (MDR) mechanisms are

urgently required. This challenge demands a fundamental under-

standing of the details of the resistance mechanisms utilised by

P. falciparum.

In higher mammals, the ATP-binding cassette (ABC) super-

family subclass B1, typified by the mammalian P-glycoprotein
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(Pgp) [11], have been consistently linked to drug-resistance

phenotypes in a large range of organisms [12]. P. falciparum

contains in its proteome a Pgp-homologue (PfMDR1) [13,14].

Single nucleotide polymorphisms (SNPs) in its coding gene (pfmdr1)

have been shown to be associated with differential in vivo and in

vitro parasite responses to a significant range of central ACT

antimalarial partner drugs, including amodiaquine [15,16],

mefloquine [7,17–19], lumefantrine [8,20] and, importantly,

artemisinin [18,19]. PfMDR1 is hence considered an important

potential candidate for mediating ACT resistance [21,22].

However the biophysics and mechanistic role of these polymor-

phisms remains poorly understood.

In the present study we demonstrate 3D structural models for

PfMDR1 and merge available, but never fully integrated, molecular/

functional data on this transporter and the functional effects of its

main polymorphisms, including in vitro antimalarial susceptibility.

Recent observations of the effects of the clinical use of different

antimalarial upon allele selection are discussed in terms of their

contribution to drug resistance and mechanism of action contrib-

uting to evidence based view of antimalarial implementation.

Results

PfMDR1 structure
PfMDR1 is a member of the ABC protein superfamily. It is a

homologue of Human Pgp-1 composed of two symmetric parts

(defined as domain 1 and 2, from N-terminal to C-terminal). Each

domain has a transmembrane domain (TMD), composed of three

external loops (EL) and two internal helixes (IH) that link six

transmembrane regions (TM) followed by a nucleotide binding

domain (NBD) (Figure S1).

As a reference for our model, we considered the bacterial ABC

lipid flippase (MsbA). This transporter is structurally and

functionally related to eukaryotic MDR-type proteins [23]. The

documented determination of MsbA structures captured in

different conformations allows the basis for structural and motion

extrapolations for other ABC full transporters [24].

Comparison of the PfMDR1 primary and secondary structure

with those of MsbA, revealed the existence of structure/function

conservation between the two proteins, reflected by a ,22%

identity in total homology of PfMDR1 aminoacid residue

sequence. In addition, the alignment showed a righteous match

in the aminoacid type homology and consequently in secondary

structure, pointing towards a structural and functional conserva-

tion (Figure S1).

The main sequence divergence in homology occurs in a part of

the PfMDR1 NBD’s. In NBD1 there is an aminoacid frame

insertion after the Q-loop and in NBD2 the insertion occurs after

the P-loop. Another observed insertion is located in the TM5 and

in its equivalent region of the second domain, designated TM10.

TM5 and TM10 in PfMDR1 are expected to be longer than those

observed to the MsbA structures. The consistence of this

divergence in the homologous halves supports the existence of

symmetry between the two domains of ABC transporters (Figure

S1).

Structural changes in PfMDR1
It has been previously demonstrated that a large range of

motion is required for the MsbA transporter to function [24]. For

PfMDR1, two hinges whose movement allow for different

conformations correspond to EL2 (residue 189–194) and EL3

(residue 311–315) and the equivalent hinge EL5 (residue 929–933)

and EL6 (residue 1055–1059) (Figure 1 A–C).

The TMDs communicate with NBDs through IH contact. A

particular characteristic is the intertwined interface between the

two halves of the transporter, interlocking TM4/TM5/IH2 with

NBD2 and TM10/TM11/IH4 with NBD1. Recently, the

importance of this structural feature for ABC transporter substrate

binding, signalling, and transport was shown. The bonding of the

nucleotide transmits a structural change to the TMs via IH’s,

resulting in an outward-facing conformation activating transport

[25,26].

Pfmdr1 single nucleotide polymorphisms: implications
for PfMDR1 substrate transport capacity

In Africa, two major PfMDR1 variants are found that differ at 3

aminoacid residues: N86Y, F184Y and D1246Y. The haplotype

NFD is associated with decreased parasite sensitivity to arylami-

noalcool quinoline drugs (e.g. mefloquine, lumefantrine). Accord-

ingly, selection of this haplotype has been consistently observed

during artemether-lumefantrine, (CoartemH, Novatis AG, Basel)

treatment [8,20,27], whereas the alternative haplotype YYY, is

linked to decreased sensitivity to 4-aminoquinoline drugs such as

chloroquine and amodiaquine [15,28–31].

EL1 is known to be N-glycosylated in the human multidrug

transporter Pgp-1 [32]. Asparagines at position 84 and 86 in the

EL1 of PfMDR1 were predicted to be glycosylated with a potential

of 0.56 and 0.73 respectively (Figure S2). When we replaced in the

sequence 86N residue for the tyrosine variant (86Y), the potential

glycosylation site was abolished. However, because of the low

N-glycosylation capability in P. falciparum, its physiological impact

remains to be investigated. [33].

For the MsbA transporter, the EL1, which connects TM1 and

TM2, is also proposed to be important in open-apo conformation

stability through contact with EL6 which links TM11 and TM12.

In order to establish a protein nucleotide-bound conformation, the

PfMDR1 EL1 and EL6 split and lose interaction transforming

the transporter in a V-shape (Figure 1A–C). Indeed, in MsbA, the

a.a. residue 56 localized in the EL1 region was shown to interact

covalently through spontaneous disulphide bounding with the

opposing monomer by cysteine cross-linking experiments in the

ATP unbound form [34] demonstrating the proximity between

the EL1 and EL6 loops. A similar structural arrangement has been

reported to occur in human Pgp, highlighting the importance of

TM1 and TM11 terminals at EL’s closeness, in ABC transporters

function [35].

Analyzing the contact residue in the PfMDR1 EL6 we found

that the side-chain of 86Y in EL1 localizes in parallel with residue

1054K (Figure 2A). TM1 and TM11 interactions have been

shown in human Pgp to be fundamental for the correct positioning

of TMs, while modulating the transporter affinity in a drug specific

manner [25,36]. Accordingly, a significant change in drug affinity

caused by the TM1 located N86Y mutation was observed [37]

suggesting an analogous biophysical role when residue 86 is

mutated to a tyrosine.

PfMDR1 a.a. residue 184 is embedded in TM3, facing the

transporter out surface. Analogous to human P-glycoprotein, a

mutation in TM3 was shown to alter transport kinetics,

independent from drug binding capacity [38]. TM3 is located in

the middle of TMD1 surrounded by TM1–TM2 on one side and

TM4–TM6 in the other. TM4 and TM5 are closely associated

with TM3 in the nucleotide bound conformation (Figure 2B).

These major changes, between close and open conformation, are

due to the flexibility of EL3 and EL4, which constitute an

important hinge in the transporter structure from an ‘‘inverted V’’

shape to a ‘‘V’’ shape and enabling membrane transport

interference [24]. In such mobile structures small changes, such

PfMDR1 Structures Models

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e23875



as tyrosine to phenylalanine (being both aromatic aminoacids),

may cause disturbance in protein dynamics.

The Y184F SNP appears to alter PfMDR1 kinetics but not drug

specificity [37,39] as showed in the pfmdr1 allelic exchange

experiments investigating antimalarial resistance [18]. When

compared with the other SNPs in PfMDR1, polymorphism at

position 184 exhibit a weaker antimalarial resistance association in

vivo [7,20,40–45].

Polymorphisms located in the NBD of ABC transporters were

reported to alter protein transport kinetics through ATP hydrolysis

capacity alteration [46] or by altering the communication between

the NBD and the transmembrane domains [47]. Residue 1246 is

located in the NBD2 near the Q-loop and is part of the cleft in

NBD2 that interacts with IH2 at the N-terminal (Figure 2C), and

is essential for ABC transporter function [48]. PfMDR1 ATPase

basal activity was shown not to be blocked by the D1246Y

mutation alone. Reduction of PfMDR1 ATPase activity was also

reported to occur only when 1246Y is associated with 1034S or

1042D, but not alone [39].

Our model suggests that the functional impact of the D1246Y

mutation occurs through interference with the NBD/TM

communication, which is required for ABC transporter function.

Furthermore, this effect is substrate specific, since no significant

change was observed in halofantrine or vinblastine transport by

this mutation, suggesting that it is important for substrates which

bind to the TM11 binding pocket (described below), as

demonstrated for QN transport [37].

PfMDR1 drug-binding pocket
Transmembrane regions in ABC transporters are involved in

ligand docking. Among the five naturally occurring functional

PfMDR1 polymorphisms involved in antimalarial resistance, two

are located in TM11, residues 1034 and 1042 (Figure 1D).

Polymorphisms localised in this region of the human homologous

transporter Pgp interfere with drug transport, suggesting the

existence of a drug-binding pocket in this region [49].

In our model, the 1034/1042 and 86 positions co-localize in

three dimension at a close region in the open state conformation of

the protein (V shaped), whereas TM1 and TM11 come closer

(Figure 1A and 1D). Spatial analysis shows that residue 86 in EL1

is in contact with the digestive vacuole (DV) lumen (Figure 1A–C),

while the residues 1034 and 1042 alternate between facing the

cytosol in the open state (V shaped, Figure 1A) and DV lumen in

the closed state (Figure 1C).

Several studies propose residues 1034 and 1042 as part of an

antimalarial binding pocket [19,39]. Using a refined model from

the open state conformation we performed docking analysis in

Figure 1. PfMDR1 structure models. PfMDR1 structures are shown in different conformations: inverted V shape (open-apo) based in bacterial
MsbA 3B5w structure (A), close-apo based in 3B5x (B) and V shape based in 3B60 structure (C). Panel (D) shows localization of residues 86 (EL1), 1034
and 1042 (TM11) in the open state. Dashed green circle represents residue 86 location and red dashed circle 1034 and 1042.
doi:10.1371/journal.pone.0023875.g001

PfMDR1 Structures Models
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TM11 for several antimalarial drugs in order to characterize 1034

and 1042 residues as a drug binding site. Mefloquine (MQ),

quinine (QN), and chloroquine (CQ) docked in the proposed

binding site, preferentially interacting with residue 1042. The

energies of docking for the best pose were estimated to be:

26.89 Kcal/mol for CQ (Figure 3A), 27.86 for QN (Figure 3B)

and 25.69 for MQ (Figure 3C).

When residues 1042 and 1034 were mutated, the estimated

docking capacity of binding was altered, strengthening the

hypothesis that these residues are actively involved in the drug

binding site. Introduction of a single mutation 1034C abolished

the docking of MQ and QN but not CQ. CQ binds to the mutated

TM11 (1034C) with an estimated energy of 27.55 Kcal/mol.

The single mutation of N1042D and the double mutation

1034C/1042D abolished the docking of all tested antimalarial.

Cellular physiology of antimalarial transport by PfMDR1
and resistance

Together with PfMDR1, multidrug resistance in P. falciparum

was shown to be highly associated with another gene, the

chloroquine resistance transporter gene (pfcrt). Both transporters

localize in the DV, with opposed directional flux characteristics.

PfMDR1 is proposed to be a DV importer [50] whilst PfCRT was

shown to be an antimalarial DV exporter [51]. To study the

physiology of PfMDR1/PfCRT interference towards antimalarial

resistance, we evaluate the contribution for antimalarial resistance

of isogenic PfMDR1 mutant’s clones with a CQ resistant (7G8) or

sensitive (D10) genetic background (Table S1).

The target for antimalarial aminoquinoline is well known to be

the parasite’s DV. For this reason, chloroquine (CQ), amodiaquine

(AQ) and desethylamodiaquine (DEAQ) were used as probe drugs.

In order to study in exclusive the effect of PfMDR1 mutations,

verapamil was used to block the PfCRT 76T variant.

To test the contribution of PfMDR1 for aminoquinoline we

compared the index of resistance between parasites harbouring a

wild type (SND) or resistant (CDY) haplotype at residues 1034,

1042 and 1246. These experiments were conducted in two

different pfcrt genetic backgrounds carrying a 76T (7G8) or 76K

allele (D10).

Our results show that PfMDR1 contributed to resistance for all

tested antimalarial. The differential effect of PfMDR1 for different

aminoquinoline susceptibility was as follow: chloroquine,amo-

diaquine,desethylamodiaquine (Fig. 4). This association is related

with the lipophobicity characteristics of the tested drugs and the

PfCRT background. The corresponding Log D (pH 7.2) values for

these drug are CQ:0.045,(DEAQ:1.183,AQ:2.60) (taken from

[52]). In general, the involvement of PfMDR1 was stronger for

AQ and DEAQ than the effect observed for CQ.

In the PfCRT 76K background (D10), the contribution of

PfMDR1 was observed even for CQ while in 7G8 clone (76T) is

only detected for DEAQ. Although, when PfCRT is blocked with

verapamil in 7G8 clone, a significant increase is observed also for

AQ to levels comparable with D10 index for AQ (Fig. 4).

These observations support the hypothesis that PfMDR1 is a

vacuolar importer. In the presence of the mutant PfMDR1

(blocking antimalarial DV import), sensitivity to aminoquinoline is

driven by its capacity to passively enter the DV membrane,

demonstrated here through the correlation between the PfMDR1

resistance index and aminoquinoline lipophobicity characteristics.

Interestingly, taken together with the inverse association of

aminoquinoline lipophobicity pattern for PfCRT-based resistance,

an explanation may present itself for the in vivo co-selection of

opposed functional haplotypes (highly effective PfCRT efflux

and deficient PfMDR1 influx transporters) to reduce the dynamics

of aminoquinoline accumulation in the DV, especially for

hydrophobic compounds.

Figure 2. Structural localization of PfMDR1 polymorphisms. A)
Interaction of EL1-EL6 aromatic side-chain of residue 86Y approximation
to the cationic side-chain 1054K in the resting state. Interaction is
shown in the Van der Waals surface (dark orange) between the O (red
atom) of the 86Y side-chain with N (blue atom) in 1054K side-chain. B)
Location of residue 184 in TM3 shown in two different conformation
structures - open (red) and close (blue). C) Location of residue 1246 in
NBD2 - Residue 1246 surface is shown in red localized in the cleft
interacting with IH2 (yellow aminoacids surface) in the opposed
domain.
doi:10.1371/journal.pone.0023875.g002

PfMDR1 Structures Models

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e23875



Discussion

In the present work we propose a model for PfMDR1 structure

and motion during transport. The existence of extensive literature

describing the functional and molecular epidemiologic impact of

polymorphisms in this transporter together with knowledge of the

structure of ABC transporters, made it possible to predict the

functional role of mutant residues in PfMDR1.

Our structural analyses, in the light of previous allelic exchange

and transport kinetics studies [18,19,37,39], demonstrate the

existence of an internal allosteric modulation of protein transport-

ing capacity by the three key polymorphisms herein studied.

Accordingly, PfMDR1 variant 86Y/184Y/1246Y relates to a

PfMDR1 low-performance quinoline antimalarial transporter.

The inverse variant (86N/184F/1246D) relates to a higher-

performance PfMDR1 transporter, being coherently associated

with gene copy number amplification and its effects in terms of

enhanced resistance to MQ and QN [7,53].

The two most common PfMDR1 selected variants observed in

African parasite populations harbour 86N/184F/1246D or 86Y/

184Y/1246Y [8,15,20,28]. Hence, the suggested altered allosteric

control of transporter activity proposed by the model seems to be

the main molecular phenotype associated with the influence of

PfMDR1 in African parasites.

Figure 3. Docking of antimalarial in TM11. Docking of CQ (A), QN (B) and MQ (C) at residues 1042 and 1034 (serine and aspartic acid
respectively) in TM11 is shown. The energies of docking for best pose were estimated to be 26.89 Kcal/mol for CQ, 27.86 Kcal/mol for QN and
25.69 Kcal/mol for MQ.
doi:10.1371/journal.pone.0023875.g003

Figure 4. Contribution of PfMDR1 for antimalarial resistance. PfMDR1 Resistance Index (RI) was calculated, for each given antimalarial, as
follow: for D10 - RI = D10CDY EC50/D10SND EC50 and equally for 7G8 - RI = 7G8CDY EC50/7G8SND EC50. Verapamil was used to block PfCRT.
doi:10.1371/journal.pone.0023875.g004

PfMDR1 Structures Models
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We describe that residues in TM11 (1034 and 1042) are related

to phenotype modulation by altering a drug pocket in PfMDR1.

The contact of residue 86 with the end of TM11 may explain an

observed change in drug specificity through the alteration of

PfMDR1 drug pocket conformation [37]. Polymorphisms in

TM11 are geographically fixed in Asia and South America. This

observation suggests that different genetic background/environ-

ment defines the fixation of a particular mechanism for PfMDR1

functional modulation.

From a mechanistic perspective, the haplotype encoding 86N,

1034S, 1042N and 1246D residues is related to a functional

PfMDR1 importer into the DV [50]. Again, field observations

show this haplotype to be related to mefloquine and lumefantrine

resistance [7,8,20,53]. This importer variant is oppositely related

(promotes sensitivity) to CQ and amodiaquine (AQ) which acts

within the DV [15,28–31].

From a dynamic perspective, PfCRT antimalarial vacuolar

efflux may affect the contribution of PfMDR1 to resistance.

Supporting the hypothesis of a vacuolar antimalarial accumulation

dynamic through PfCRT/PfMDR1 interaction, is the natural

selection of functionally inversed polymorphisms of PfCRT and

PfMDR1. PfCRT 76T promotes vacuolar efflux [54,55] and is

associated with PfMDR1 86Y (abrogates quinolines transport)

[37]. Both forms are selectively associated with, as for example,

CQ and AQ malaria chemotherapy [15,28–31]. Oppositely,

PfCRT 76K with PfMDR1 86N are associated with selection by

aminoalcohol antimalarial drugs, such lumefantrine [8,56].

Based on different genetic backgrounds, PfCRT/PfMDR1

dynamics can be either pro- or con- tolerance as has been

previously reported to occur in a compensatory manner depending

on the mechanism of action of the antimalarial [57].

We previously reported the importance of natural selection of

different variants of PfMDR1 with different antimalarial chemo-

therapies [8,15,20,28]. Now we describe how residues in PfMDR1

may be involved in drug resistance using a structural model.

In conclusion, we describe a model for structural changes

associated with transport motion and we suggest the presence of a

drug binding pocket in PfMDR1. Our results support recent

findings suggesting this transporter as being a vacuolar antima-

larial importer and propose a structural basis for the importance of

residues 86, 184, 1034, 1042 and 1246 for drug specificity and

how mutations at these residues may interfere with the

composition of a drug pocket in TM11. The proposed models

are expected to contribute to the prediction of the effects of other

less studied PfMDR1 SNPs, while being a potential tool for the

design of antimalarial drugs targeting this essential P. falciparum

transporter.

Materials and Methods

Parasites and drug susceptibility assays
Four P. falciparum clones in which the pfmdr1 1034, 1042 and/or

1246 loci have been modified through allelic exchange [18] were

selected for this study. They were obtained from the Malaria

Research and Reference Reagent Resource Center (MR4�). Two

clones were derived from the CQ sensitive D10 clone from Papua

New Guinea i.e MRA-563: D10 pfmdr1 SND (autologous

transfectant) (D10SND) and MRA-565: D10 pfmdr1 CDY

(D10CDY). Two clones were derived from the CQ resistant clone

7G8 from Brazil i.e MRA-566: 7G8 pfmdr1 SND (7G8SND) and

MRA-567: 7G8 pfmdr1 CDY (autologous transfectant). The clones

were defrosted, adapted to continuous culture in supplemented

RPMI-1640 and 5% haematocrite and then synchronized with

sorbitol, according to established protocols.

The influence of the pfmdr1 1034C, 1042D and/or 1246Y SNPs

on parasite response to CQ, AQ and DEAQ was determined with

an HRP2-ELISA based assay in vitro as previously described [58].

In vitro cultured parasites were diluted to an initial parasitemia of

0.05% and aliquoted into microculture 96-well plates pre-dosed

with ascending concentrations of 0–404 nM CQ, 0–67 nM AQ or

0–156 nM DEAQ. We also added VP 0.8 mM to a parallel setup.

After incubation at 37uC for 72 h, the samples were freeze-

thawed, transferred and processed in pre-coated ELISA plates

(Cellabs, Australia) for spectrophotometric analysis (Multiskan EX,

Thermo LabsystemsH, Helsingfors, Finland) of HRP2 produced

during parasite growth. The IC50 and values were determined

using HN-NonLin V1.05 Beta � H. Noedl 2001 (http://malaria.

farch.net).

Modelling
Protein sequences and structures from bacterial MsbA 3B5w

(open-apo with inverted V shape), 3B5x (closed-apo) and 3B60

(open-apo with V shape) upon nucleotide-bind were downloaded

from PDB database (www.pdb.org). PfMDR1 sequence is

deposited in NCBI Protein database with accession number

XP_001351787.

Sequences were aligned with blosum62 matrix in MultiAlin

server [59] with manual refinement. Since MsbA is formed by a

homodimer, PfMDR1 sequence was analyzed dividing sequence

protein in the two symmetric halves and terminals trimmed to the

homologous TMD and NBD. Residues 37–642, corresponding to

TMD1 and NBD1 and residues 763–1400 corresponding to

TMD2 and NBD2, were used in the alignment.

Alignment was then analyzed with Ali2D software (http://

toolkit.tuebingen.mpg.de/ali2d), developed by the Department of

Protein Evolution, Max-Planck-Institute for Developmental Biol-

ogy (Germany) for sequence identity and secondary structure

similarities. Secondary structure was determined with Psipred

algorithm [60] and aminoacids group coloured with Mview [61].

Models were generated using Modeller software [62]. For

structures modelling and analysis, divergent residues 479–486 and

496–531 in NBD1, IH4 987–998 and residues 1181–1227 were

absent in the alignment. MaxSprout software at European

Bioinformatics Institute server was used to generate protein

backbone and side chain co-ordinates from the C-(alpha)

trace [63]. The halves of the transporter were assembled by

superimposition in the MsbA structures using the Mustang

algorithm and adjusted manually [64]. Yasara [65] and WinCoot

[66] software were used for visualization and refinement.

N-Glycosylation sites prediction
Prediction of N-Glycosylation sites at the EL1 was performed

using NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/

NetNGlyc/). The protein sequence including the predicted EL1

plus four boundary aminoacids comprising residues 79–91 was

evaluated. A threshold of 0.5 was applied.

Drug pocket modeling and docking
The model based in the 3B5w structure was further refined in

WinCoot for docking studies. Docking was performed with

Arguslab software [67]. Residues 1034 and 1042 in TM11 were

defined as drug binding pockets and docking boxes defined as

minimum volume for binding of 12.5613612.5 Å for CQ and

QN and 13613613 Å for MQ were used. Best pose for the lowest

energy of binding was considered. The CQ, QN and MQ

structures were design and refined at PRODRG2 server [68].
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Supporting Information

Figure S1 Protein sequences alignment of PfMDR1 and
different MsbA structures. The alignment describes the

primary percentage of overall matching between PfMDR1 protein

as well as secondary and tertiary structures features. Aminoacids

letters are coloured by group identity default palette defined by

Mview software. Background colour shows secondary structure,

grey - coiled; brown- helix and yellow- beta-sheet. On top of the

alignment is annotated the ABC conserved motifs as well as main

structural characteristics: TM-transmembranes; EL- external loop;

IH- internal helix. Stars identify functional residues in PfMDR1

transport: N86Y, Y184F, S1034C, N1042D and D1246Y.

(PDF)

Figure S2 N-glycosylation sites prediction. External loop

1 sequence (residues 79–91) was screened for putative

N-glycosylation sites. Two asparagines localize in this loop at

positions 84 and 86. Predictive potential sites obtained with

NetNglyc 1.0 software.

(PDF)

Table S1 PfCRT and PfMDR1 coding genotypes for
clones D10SND, D10CDY, 7G8SND and 7G8CDY.
(PDF)
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