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Abstract

Background: The hypothesis of dosage compensation of genes of the X chromosome, supported by previous microarray studies,
was recently challenged by RNA-sequencing data. It was suggested that microarray studies were biased toward an over-estimation
of X-linked expression levels as a consequence of the filtering of genes below the detection threshold of microarrays.

Methodology/Principal Findings: To investigate this hypothesis, we used microarray expression data from circulating
monocytes in 1,467 individuals. In total, 25,349 and 1,156 probes were unambiguously assigned to autosomes and the X
chromosome, respectively. Globally, there was a clear shift of X-linked expressions toward lower levels than autosomes. We
compared the ratio of expression levels of X-linked to autosomal transcripts (X:AA) using two different filtering methods: 1.
gene expressions were filtered out using a detection threshold irrespective of gene chromosomal location (the standard
method in microarrays); 2. equal proportions of genes were filtered out separately on the X and on autosomes. For a wide
range of filtering proportions, the X:AA ratio estimated with the first method was not significantly different from 1, the value
expected if dosage compensation was achieved, whereas it was significantly lower than 1 with the second method, leading
to the rejection of the hypothesis of dosage compensation. We further showed in simulated data that the choice of the
most appropriate method was dependent on biological assumptions regarding the proportion of actively expressed genes
on the X chromosome comparative to the autosomes and the extent of dosage compensation.

Conclusion/Significance: This study shows that the method used for filtering out lowly expressed genes in microarrays may
have a major impact according to the hypothesis investigated. The hypothesis of dosage compensation of X-linked genes
cannot be firmly accepted or rejected using microarray-based data.
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Copyright: � 2011 Castagné et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The Gutenberg Heart Study is funded through the government of Rheinland-Pfalz (‘‘Stiftung Rheinland Pfalz für Innovation’’, contract AZ 961-386261/
733), the research programs ‘‘Wissen schafft Zukunft’’ and ‘‘Schwerpunkt Vaskuläre Prävention’’ of the Johannes Gutenberg-University of Mainz and its contract
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Introduction

It is widely admitted that in mammals, X-linked genes are

upregulated to ensure balanced expression between the X

chromosome, present in a single active copy per cell, and

autosomes, present in two copies [1]. The hypothesis of dosage

compensation first proposed by Ohno in 1967 [2] was supported

by recent microarray studies showing that X-linked genes were

expressed at similar levels to autosomal genes in mice and humans

[3–5]. However, the molecular mechanism responsible for this

compensation is still not understood [6]. The absence of

mechanistic interpretation, coupled to the lack of dosage

compensation in other taxa [7,8], have spurred speculation about

this phenomenon.
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Recently, Ohno’s hypothesis was challenged by a study using

RNA sequencing (RNA-Seq) data showing that the ratio of the

median expression level of X-linked genes to that of autosomal

genes (X:AA) was significantly lower than 1 in different human

and mouse tissues [9]. The authors attributed the difference

between their findings and previous ones to the fact that RNA-Seq

is much more sensitive than microarray to detect small expression

differences [9–11] and that microarray studies are likely to be

biased towards an over-estimation of X-linked expression levels as

a consequence of the filtering of genes considered to be under the

detection threshold of microarray [9]. This controversial finding

led us to question the method conventionally used for the analysis

of microarray-based expression data. Using data from a large-scale

expression study in human monocytes [12], we showed that

according to the method used for filtering out the genes prior to

analysis, the inference regarding dosage compensation was in the

opposite direction. A simulation study further demonstrated that

the choice of the most appropriate filtering method was dependent

on biological assumptions regarding the proportion of actively

expressed genes on the X chromosome and on autosomes and the

extent of dosage compensation. Although the limited sensitivity of

microarrays does not allow one to go further in resolving this issue,

the potential methodological bias arising from using a signal-

threshold cutoff in microarray experiments should be kept in mind

when comparing expression across loci.

Results

Filtering transcripts considered as undetected by
microarrays may discard genes that show biologically
relevant associations supporting cellular expression

In microarray studies, genes whose expression is not signifi-

cantly different from the background signal are conventionally

filtered out prior to analysis. These genes are often inappropriately

considered as unexpressed in the cell type under study although

they are only undetected. Recent studies based on RNA-Seq have

shown that a fraction of the genes undetected by microarrays were

actually expressed at low levels in the cells investigated [9,10,13].

This filtering based on a statistical detection criterion was justified

in former small microarray studies which were mainly designed for

discovering large expression differences between contrasted

experimental conditions and therefore focused on highly expressed

genes. However, it may be less appropriate in current large-scale

transcriptomic studies which are more interested in characterizing

the natural sources of variability of gene expression, such as

genetic variations, environmental exposures, metabolic conditions,

ageing or gender [12]. Actually, a gene expression level that is

below the detection threshold of microarrays may be found to be

related to a SNP or another relevant factor that provides biological

evidence that the gene is expressed. This is a problem known as

signal-to-noise in biology [14].

To illustrate this issue, we re-analyzed the data of a previous

study in which gene expression was simultaneously measured by

microarray and RNA-Seq in two different cell lines, HEK and B

cells [10]. In this study, RNA-Seq could detect 25% more gene

expressions than could microarrays. When the authors focused on

genes detected by both platforms and in both cell lines (n = 7,043),

they showed that the differences of gene expression between HEK

and B cells (measured by the log ratio of expression) strongly

correlated across the two platforms (r = 0.88) in spite of a

compression effect resulting in smaller ratios in microarrays. This

result indicated that true biological differences between cell types

were reproducibly found across platforms. Using the same dataset,

we performed a similar analysis on the genes that were detected by

RNA-Seq (at least five reads) but were undetected by microarray

(detection score ,0.95) (1,640 genes). As shown in Figure 1, there

was a subset of genes lying along the diagonal in which differential

expression between HEK and B cells strongly correlated across the

two platforms. For these genes, which are likely to be truly

differentially expressed between cell types, the difference could be

detected by microarrays even though their expression level was

considered not different from the background noise. This

demonstrates that for genes below the detection level of

microarrays, biologically relevant signals can be found that

indicate that the gene is expressed.

Testing the hypothesis of dosage compensation of X-
linked genes in human monocytes

To investigate the hypothesis of dosage compensation of X-

linked genes, we used expression data from the Gutenberg Heart

Study (GHS), a population-based study in which the transcriptome

of circulating monocytes was assessed in 1,467 unrelated subjects

(51.1% of men) by microarray using the Illumina HT-12 v3

BeadChip [12]. After removing probes with a bad quality score

according to ReMOAT [15], 25,349 probes were unambiguously

assigned to the autosomes and 1,156 probes to the X chromosome.

Analyses were performed at the probe level and for simplicity the

term of ‘‘transcript’’ was used to denote a unique probe-

hybridization product (although in few cases the same transcript

could be targeted by several probes or conversely, a same probe

could target several transcripts). Analyses were performed in males

and females separately.

As usually performed in microarray experiments, we first

selected the transcripts whose expression was detected in $95% of

samples. This filtering resulted in the selection of 10,896

autosomal and 360 X-linked transcripts, the vast majority of them

being detected in both genders. The proportion of transcripts

filtered out prior to analysis was 57.5% as a whole, but it was

much higher on the X chromosome than on autosomes (68.9% vs

57.0%, P,1026). In the subset of selected transcripts, the median

level of expression of X-linked transcripts was not significantly

different from that of autosomal transcripts in both sexes (7.68 vs

7.87, P = 0.09 in males; 7.71 vs 7.85, P = 0.12 in females). As

previously reported [5], expression levels of X-linked genes fell

within the global range of autosomes, suggesting that dosage

compensation of X-linked genes was globally achieved in both

sexes (Figures 2A and 2B).

However, as shown by the quantile functions of expression levels

plotted separately for the X chromosome and for autosomes, there

was a clear shift of X-linked expressions towards lower levels than

autosomes in both sexes (Figures 3A and 3B). As a consequence,

taking a uniform detection threshold for the X and for autosomal

chromosomes led to a greater truncation of transcripts on the X

chromosome than on autosomes (as shown by the horizontal plain

red line in Figures 3A and 3B) resulting in an over-estimation of X-

linked expressions in the subset of genes kept for analysis. In order

to circumvent this potential bias, we compared expression levels

between X-linked and autosomal transcripts after excluding equal

proportions of the less expressed transcripts on the X and on

autosomes separately (as shown by the vertical green line in

Figures 3A and 3B). When excluding the same proportion of

transcripts as above (57.5%), but considering this time the X

chromosome and autosomes separately, the difference of median

expression levels between X-linked and autosomal transcripts

became highly significant in both sexes (6.82 vs 7.91, P,10231 in

males; 6.85 vs 7.91, P,10230 in females).

We then compared the X:AA ratio of expression level of X-

linked transcripts to autosomal transcripts when filtering either a

Dosage Compensation of the X Chromosome
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global proportion of the lowest gene expressions irrespective of

their chromosome location (model 1 which is equivalent to

considering a uniform detection threshold) or an equal proportion

of the lowest gene expressions on the X and on autosomes

separately (model 2). In order to investigate the impact of the

filtering threshold on the estimation of the X:AA ratio, we varied

the proportion of filtered transcripts, which corresponded to

moving the horizontal red lines from the bottom to the top (model

1) or the vertical green lines from the left to the right (model 2) in

Figures 3A and 3B. As shown in Figures 4A and 4B, the X:AA

ratio was always higher when using a uniform filtering threshold

not depending on the gene chromosomal location (model 1, red

triangles) than when using a chromosome-specific threshold

(model 2, green circles). The difference between the two X:AA

estimates increased as the filtering became more stringent as a

result of a greater truncation in model 1 of lowly expressed genes

on the X chromosome than on autosomes. When the proportion

of genes filtered out prior to analysis was greater or equal to 50%,

the X:AA ratio estimated when taking a uniform filtering threshold

was no longer significantly different from 1, the value expected if

there was dosage compensation, whereas it was significantly lower

than 1 when taking a chromosome-specific threshold. Results were

very similar in males and females (Figure 4A and 4B).

We also estimated the X:AA ratio for each autosome

individually after filtering out the same proportion (50%) of the

lowest gene expressions on each chromosome. For all autosomes,

the X:AA ratio was significantly lower than 1 (Figure 4C and 4D).

Worthy of note, the X:AA ratio associated to chromosome 21,

which was the highest in human liver RNA-seq data [9], was also

the highest in human monocytes.

The number of probes per gene was slightly higher on the X

chromosome than on autosomes (1.64 vs 1.51). To check whether

this difference might have an impact on the results, we repeated

the analysis using the most variable probe for each gene or using

average expression across probes. Although the X:AA ratio tended

to be slightly higher than when focusing on probes, the same

trends were observed (Figure S1).

Dosage compensation of X-linked genes in other human
and mouse tissues

Because the expression of genes is known to be tissue specific,

we checked whether the same observation could be made from

other tissues. For this purpose, we analyzed publicly available

microarray expression data from three different human tissues, the

meibomian glands (access number GSE17822), the muscle (access

number GSE20319) and the colon (access number GSE26305).

For each tissue dataset, we selected either the transcripts for which

the detection score was greater than 95% (filtering not depending

of chromosome), or the same proportion (arbitrarily taken to 50%)

of the most highly expressed transcripts separately on the X

chromosome and on autosomes. Whatever the tissue under

consideration, the differences of expression levels between X-

linked and autosomal genes were always more pronounced when

filtering out separately genes on the X and on autosomes (Figure 5).

Figure 1. Comparison of differentially expressed genes (B versus HEK cells) by RNA sequencing and microarrays. Data are drawn from
Sultan et al. [10] and genes detected by RNA-Seq (at least five reads) but not detected by microarrays (detection score ,0.95) were selected (1,640
genes in total). The plot shows log2 ratios of expression in RNA-Seq (x axis) and microarrays (y axis).
doi:10.1371/journal.pone.0023956.g001

Dosage Compensation of the X Chromosome
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The same observation was made for microarray expression data

from mouse heart tissue (access number GSE27689) (Figure 5).

Unlike what had been previously reported from RNA-Seq data

[9], we did not observe a lower X:AA ratio in mice than in

humans in this mouse dataset (Figure S2).

Comparison with genes submitted to genomic
imprinting

In mammals, genomic imprinting affects a small proportion

(,1%) of autosomal genes and results in the expression of only one

allele inherited from the father or the mother. In terms of

expressed alleles, imprinted genes are thus comparable to X-linked

genes which are submitted to inactivation of one of the two alleles.

We hypothesized that imprinted genes may exhibit a similar

pattern of expression to the one observed in X-linked genes.

To test this hypothesis, we compared the levels of imprinted

transcripts to those of non-imprinted transcripts in the GHS

dataset. Among the 10,806 well-annotated autosomal probes, 97

probes (listed in Table S1) corresponded to genes that were

reported to be submitted to imprinting in two databases (http://

igc.otago.ac.nz/home.html and http://www.geneimprint.com/).

When first selecting the transcripts whose expression was detected

in $95% of samples, the proportion of transcripts filtered out prior

to analysis was much higher for imprinted than for non-imprinted

transcripts (72.2% vs 57.3%, P,1026). In the subset of selected

transcripts, the median level of expression of imprinted transcripts

was not significantly different from that of non-imprinted

transcripts (8.32 vs 8.08, P = 0.88). By contrast, when selecting a

similar proportion (arbitrarily taken to 50%) of the most highly

expressed transcripts separately among imprinted and non-

Figure 2. Box plots of the median expression levels in human monocytes according to chromosome when selecting the transcripts
detected in at least 95% of individuals. (A) Males and (B) Females.
doi:10.1371/journal.pone.0023956.g002
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imprinted genes, expression levels were significantly lower in

imprinted transcripts than in non-imprinted ones (6.89 vs 7.78,

P,0.001) (Figure 6).

Simulation study
By filtering out the same proportion of genes on each

chromosome, we implicitly make the assumption that the same

proportion of genes are actively expressed on the X chromosome

and on autosomes, an assumption that may not be true, at least in all

tissues. We addressed this issue using the gene expression dataset

from HEK and B cells already used above [7]. In HEK cells, the

proportions of genes actively expressed (i.e. detected by RNA-Seq)

on autosomes and on the X chromosome were relatively similar

(81.2% vs 76.8%, P = 0.02), whereas in B cells, these proportions

were globally lower and differed more drastically between

autosomes and the X (70.0% vs 58.8%, P = 2.461026). These

results suggested that the assumption of equal proportionality of

expressed genes by chromosome may not hold in all cell types.

We further explored the impact of different assumptions using

simulations. We simulated expression data assuming either an

equal proportion of actively expressed genes on autosomes and on

the X (80% as in HEK cells), or a lower proportion on the X than

on autosomes (60% vs 70% as in B cells). For each cell type, we

additionally assumed that there was either full dosage compensa-

tion (X:AA ratio = 1), partial compensation (X:AA ratio = 0.75) or

complete lack of compensation (X:AA ratio = 0.5). Expression

levels were simulated according to the model proposed by Lin et

al. [16] with parameters based on the empirical values observed in

the GHS dataset (see Methods). The X:AA ratio was then

estimated using the two different methods for filtering out gene

expressions (referred to as ‘‘uniform filtering’’ and ‘‘chromosome-

specific filtering’’, respectively). For both methods, the proportion

of filtered genes was fixed at 50% and the null hypothesis tested

was that of full dosage compensation. Results of the simulation

study are presented in Figure 7.

Under the assumption of equal proportions of expressed genes

(as in HEK cells), both methods correctly estimated the X:AA ratio

to 1 when there was full compensation. When there was partial

compensation, the uniform filtering method did not allow the

rejection of the null hypothesis whereas the chromosome-specific

Figure 3. Quantile functions of median expression levels of X-linked and autosomal transcripts in human monocytes. (A) Males and
(B) Females: X-linked transcripts are shown by the plain black curve, autosomal transcripts by the dashed black curve and each autosome by an
individual grey curve. For a probability p (x-axis), the y-axis shows the median expression level below which p6100% of transcripts fall. The horizontal
red line corresponds to the filtering performed when selecting transcripts detected in $95% of individuals. The vertical green line corresponds to
excluding equal proportions (57.5%) of the less expressed genes on the X chromosome and on autosomes separately.
doi:10.1371/journal.pone.0023956.g003

Dosage Compensation of the X Chromosome
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filtering method did. In case of complete lack of compensation,

both methods allowed the rejection of the null hypothesis.

Under the assumption of different proportions of expressed

genes (as in B cells), the chromosome-specific filtering method

tended to globally under-estimate the true X:AA ratio, leading to

falsely reject the null hypothesis of compensation when this latter

was true, whereas in that case the uniform filtering method

correctly estimated the X:AA ratio. For partial compensation,

again the uniform filtering method did not allow the rejection of

the null hypothesis whereas the chromosome-specific filtering

method did. Both methods allowed the rejection of the null

hypothesis when there was no compensation.

Discussion

The present study addresses an important issue concerning

the potential biases arising from the method of filtering genes in

expression studies. In microarray studies, it is generally

advocated to select only the genes whose expression is detected

in the majority of samples, the remaining genes being

Figure 4. Comparison of expression levels between the X chromosome and autosomes in human monocytes. (A) Males and (B)
Females: The graph plots the X:AA ratio of median expression of X-linked genes to autosomal genes according to the proportion of transcripts
filtered out prior to analysis, using either a uniform threshold (red triangles) or individual thresholds on the X and on autosomes (green circles). Error
bars show the 95% bootstrap confidence intervals. The horizontal dashed lines show the ratios expected if there was no dosage compensation
(X:AA = 0.5) or full compensation (X:AA = 1). The vertical line corresponds to the proportion of genes filtered out when using a detection score $95%.
(C) Males and (D) Females: X:AA ratios when the X is compared to individual autosomes and the same proportion of transcripts (50%) is filtered on
the X and on each autosome.
doi:10.1371/journal.pone.0023956.g004

Figure 5. Expression levels of X-linked and autosomal transcripts in different human and mouse tissues. The graph shows boxplots of
expression levels either when filtering the genes according to a uniform detection threshold (detection score (DS) $95%) or when excluding the 50%
lowest gene expressions separately on the X chromosome and on autosomes (AUT).
doi:10.1371/journal.pone.0023956.g005

Dosage Compensation of the X Chromosome
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considered as not expressed in the cell type under study.

However, with the advent of more sensitive techniques like

RNA-Seq, as well as the greater power of contemporary

transcriptomic studies, it is realized that many genes considered

as unexpressed in microarray experiments are actually ex-

pressed at low levels, or only in a fraction of the population, for

example when expression is modulated by a genetic or an

environmental factor.

Figure 6. Expression levels of imprinted and non-imprinted autosomal transcripts in human moncoytes. The graph shows boxplots of
expression levels either when filtering the genes according to a uniform detection threshold (detection score (DS) $95%) or when excluding the 50%
lowest gene expressions separately in imprinted and non-imprinted genes.
doi:10.1371/journal.pone.0023956.g006

Figure 7. X:AA ratio estimated from data simulated under different models of dosage compensation and assuming variable
proportions of expressed genes on the X and on autosomal chromosomes (see legend of x axis). In all cases, 50% of transcripts were
filtered out prior to analysis, using either a uniform threshold (red triangles) or individual thresholds on the X and on autosomes (green circles).
doi:10.1371/journal.pone.0023956.g007

Dosage Compensation of the X Chromosome
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This issue is particularly critical when comparing expression

across loci, as for the analysis of dosage compensation comparing

genes on different chromosomes. We showed that analyzing data

by conventional filtering methods of microarrays led to the

conclusion that in human monocytes, expression levels of X-linked

genes did not differ from those of autosomal genes. This result

would support the hypothesis of dosage compensation of X-linked

genes, as reported by previous microarray studies [3–5]. On the

other hand, if there is no dosage compensation, as recently

suggested by RNA-Seq data [9], expression levels of X-linked

genes are expected to be lower than those of autosomal genes.

Applying the standard filtering threshold of microarrays would

then bias the results by excluding a disproportionate number of

lowly expressed genes on the X chromosome. When applying a

chromosome-specific filtering threshold to circumvent this bias,

the hypothesis of dosage compensation was no longer supported

by the data. However, the use of a chromosome-specific threshold

implicitly rests on the assumption that the same proportion of

genes are expressed on the X chromosome and on autosomes, an

assumption which may hold in some cell types but not in others, as

suggested by the comparison of HEK and B cells. Depending on

the underlying biological reality, we showed by simulations that

either method of filtering might lead to false inference. This

potential bias should be kept in mind in analysis of microarray

experiments. Hopefully, this should be no longer an issue with the

development of highly sensitive technologies for the quantification

of transcript abundance such as RNA-Seq. Interestingly, in a

recent RNA-Seq study on mouse Th2 cells, two distinct groups of

genes could be detected, one group of lowly expressed and

putatively non-functional mRNAs, and the other group of highly

expressed and functional mRNAs [13]. This suggests that the

distinction between expressed and non-expressed genes may be

even more subtle than initially thought.

Materials and Methods

Ethic statement
The study protocol and drawing of the blood sample have been

approved by the local ethics committee and by the local and

federal data safety commissioners (Ethik-Kommission der Land-

esärztekammer Rheinland-Pfalz 22/03/2007 Number 837.020.07

(5555)). All subjects included signed an informed consent.

Study Population
The study has been described in details elsewhere [12]. Study

participants of both sexes aged 35–74 yr, were successively

enrolled into the Gutenberg Heart Study (GHS), a community-

based single centre cohort study conducted in the Rhein-Main

region in western mid-Germany. All subjects were of European

descent. Individuals for whom we found a discrepancy between

the phenotypic gender and the sex inferred from expression of Y-

linked transcripts were excluded, leaving 1,467 individuals for

analysis (750 men and 717 women).

Genome-wide expression
Genome-wide expression profiles were assessed from peripheral

blood monocytes. Separation of monocytes was conducted within

60 min after blood collection by negative selection using

RosetteSep Monocyte Enrichment Cocktail (StemCell Technolo-

gies, Vancouver, Canada). Total RNA was extracted the same day

using Trizol extraction and purification by silica-based columns.

Expression profiles were assessed using the Illumina HT-12 v3

BeadChip. The pre-processing of data was performed using

Beadstudio. Values from probes with #1 bead were re-imputed

using the SVD impute from the pcaMethods R package. Data

were normalized using quantile normalization and VST transfor-

mation [16] as implemented in the lumi R package [17]. After

removing probes with a bad quality score according to ReMOAT

(http://remoat.sysbiol.cam.ac.uk), 25,349 and 1,156 probes were

unambiguously assigned to the autosomes and the X chromosome,

respectively.

Statistical Analysis
Analyses were performed at the probe level unlike other

specified. To select the transcripts that were detected in $95% of

individuals, we used the detection P-values provided by the Illumina

software and considered that a transcript was detected in a sample

when the detection P-value for that sample was ,0.05. Proportion

of detected genes between the X chromosome and autosomes were

compared using a Chi2 test with 1df. Median expression levels

were compared between the X chromosome and autosomes using

a Mann-Whitney U test. The X:AA ratio was the ratio between

median expression levels of X-linked genes to median expression

levels of autosomal genes. The 95% bootstrap confidence interval

was estimated by resampling 1000 times the datasets of X-linked

and autosomal transcripts.

We estimated the X:AA ratio using either a common filtering

proportion of genes irrespective of the chromosomal location, or a

proportion specific of the X/autosomal location. In the former

case, we excluded the k% lowest transcripts among all transcripts,

whereas in the latter case, we excluded the k% lowest X-linked

transcripts and the k% lowest autosomal transcripts (k varying from

0% to 80%). For the comparison of the X chromosome to

individual autosome, the same proportion of genes was excluded

on each autosome and on the X.

Simulations
We simulated expression levels in 25,349 autosomal transcripts

and 1,156 X-linked transcripts under different hypotheses. For

each transcript, expression level was simulated using the model

proposed by Lin et al. [16]:

^; m~ B z m eg

where ^; m is the observed transcript level, m is the noise-free

expression level, B is the background error following a Gaussian

distribution (mB, sB) and g the multiplicative error following a

Gaussian distribution (0, sg). We simulated two different

situations in terms of proportion p of expressed genes: a first one

with equal proportions (p= 80%) on the X chromosome and on

autosomes, and a second one with a lower proportion on the X

than on autosomes (p= 60% vs 70%). To mimic real expression

data, m was sampled with probability p from the p% highest values

of the empirical distribution of untransformed, background-

corrected, expression levels of autosomal genes observed in GHS

data, and was set to 0 with probability 1-p. Under the hypothesis

of complete lack of dosage compensation, the value of m for X-

linked transcripts was multiplied by 0.5 to mimic the inactivation

of one X copy (X:AA = 0.5). We also simulated data under a

model of partial compensation (X:AA = 0.75) and full compensa-

tion (X:AA = 1). Values for mB and sB were taken from the

empirical distribution of the negative controls provided by Illumina

while sg was estimated from the relation between the bead

average expression and the bead standard error as in Lin et al.

[16]. Simulated data were then transformed using the VST

transformation and the X:AA ratio was computed after filtering

out either the lowest 50% of genes irrespective of the chromosome

Dosage Compensation of the X Chromosome
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or the lowest 50% on the X chromosome and on autosomes

separately. The simulation was repeated 10,000 times to generate

confidence intervals.

All analyses were performed in R v. 2.10.1.

Supporting Information

Figure S1 Comparison of expression levels between the
X chromosome and autosomes in human monocytes
when selecting the most variable probe per gene (top, A:
males, B: females) or the average of probe levels by gene
(bottom, C: males, D: females). The graph plots the X:AA

ratio of median expression of X-linked genes to autosomal genes

according to the proportion of transcripts filtered out prior to

analysis, using either a uniform threshold (red triangles) or

individual thresholds on the X and on autosomes (green circles).

Error bars show the 95% bootstrap confidence intervals. The

horizontal dashed lines show the ratios expected if there was no

dosage compensation (X:AA = 0.5) or full compensation

(X:AA = 1).

(TIFF)

Figure S2 Comparison of expression levels between the
X chromosome and autosomes in mouse heart tissue. (A)

The graph plots the X:AA ratio of median expression of X-linked

genes to autosomal genes according to the proportion of

transcripts filtered out prior to analysis, using either a uniform

threshold (red triangles) or individual thresholds on the X and on

autosomes (green circles). Error bars show the 95% bootstrap

confidence intervals. The horizontal dashed lines show the ratios

expected if there was no dosage compensation (X:AA = 0.5) or full

compensation (X:AA = 1). (B) X:AA ratios when the X is

compared to individual autosomes and the same proportion of

transcripts (50%) is filtered out on the X and on each autosome.

(TIFF)

Table S1 List of the probes corresponding to imprinted
genes in the GHS dataset.

(XLS)
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