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Purpose: Previous experiments from our laboratory showed that the oral intake of selected guanidino compounds could
block the formation of crystallin-bound advanced ascorbylation products. Here we tested whether these were also active
when applied as eye drops.
Methods: Two month old hSVCT2 transgenic mice (n=10) were treated twice daily with one drop of 0.1% L-arginine,
γ-guanidinobutyric acid (GBA), penicillamine (PA) or N-acetylcysteine (NAC) in one eye and vehicle only in the other
eye. After seven months, lens crystallins were isolated, dialyzed, and proteolytically digested to determine the protein-
bound fluorescence at 335/385 and 370/440 nm excitation/emission and the advanced glycation/ascorbylation endproducts
carboxymethyl-lysine (CML), carboxyethyl-lysine (CEL), glucosepane, glyoxal, and methylglyoxal hydroimidazolones
G-H1 and MG-H1. The topical uptake of L-arginine and NAC was also evaluated in vitro and in vivo in rabbit lens.
Results: In hSVCT2 mice, L-arginine decreased 335/385 and 370/440 nm fluorescence by 40% (p<0.001), CML, CEL,
and glucosepane crystallin crosslinks by 35% (p<0.05), 30% (p<0.05), and 37% (p<0.05), respectively, without affecting
MG-H1 and G-H1. NAC decreased 335/385 nm fluorescence by 50% (p<0.001) but, like PA and GBA, had no effect on
other modifications. L-Arginine uptake into rabbit eyes treated topically reached identical lenticular plateau levels (~400
nmol/g wet weight) at 0.5% and 2.0% but levels remained three times higher at 5 h at 2% versus 0.5% concentration,
respectively. In vitro studies showed a 100 fold higher L-arginine level than NAC levels, implicating high affinity uptake
of the former.
Conclusions: L-Arginine when applied both orally and topically is a potent and broad suppressor of advanced
ascorbylation in the lens. Its uptake in rabbit lens upon topical application suggests transcorneal uptake into the human
lens should be feasible for testing its potential anticataract properties in clinical trials.

Aging human lens crystallins accumulate several
modifications which include the formation of protein
disulfides, oxidation of methionine residues, protein
fragmentation and cross-linking by disulfide and non-
disulfide bonds, deamination, deamidation and accumulation
of colored and colorless, fluorescent or non-fluorescent
products [1]. The significance of these modifications is that
they can destabilize lens crystallins, impair their chaperone
function, unfold the protein, and increase their susceptibility
toward oxidation and aggregation, eventually leading to the
formation of high molecular weight products that are opaque,
i.e., cataractous.

Among these modifications, our laboratory has obtained
strong evidence for the hypothesis that ascorbic acid oxidation
products are responsible for the formation of crystallin
adducts and cross-links in vivo [2]. In this process,
dehydroascorbic acid (DHA) and its degradation products 2,3-
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diketogulonic acid (DKG), xylosone, and erythrulose can act
as precursors of the lysine-arginine crosslink pentosidine, the
lysine-lysine cross-links vesperlysine A and K2P, the arginine
hydroimidazolone of glyoxal (G-H1) and methylglyoxal
(MG-H1), and the lysine adducts carboxymethyl- and
carboxyethyl-lysine (CML, CEL). Examples are shown in
Figure 1. All these modifications are present in the aging
human lens [3] and could be duplicated in the transgenic mice
that expresses the human vitamin C transporter 2 (hSVCT2)
in their lens [2] and in vitro [4,5]. In these mice the ascorbate
levels are as high as those present in the human lens, i.e., 1–
3 mM.

While there is ample in vitro evidence for the fact that
crystallin ascorbylation and glycation can be deleterious on
the lens crystallin structure and function [6-8], the critical
questions are 1) whether these can be pharmacologically
prevented, and 2) whether prevention of the latter delays the
progression of age-related nuclear sclerosis. Toward the first
question, we have previously tested the ability of several
orally administered candidate pharmacological compounds to
block ascorbylation in the hSVCT2 mouse lens, i.e., the
guanidino compounds NC-1 (L-arginine) and NC-2 (γ-
guanidinobutyric acid), aminoguanidine, the sulfhydryl
compound penicillamine, and the nucleophilic scavenger
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pyridoxamine. The compound with the most consistent
activity was NC-1, i.e., L-arginine fed at the concentration of
0.1% (wt/wt) in food [9]. All tested modifications were
decreased by 25%–65%.

As a preamble to a clinical trial, we now have investigated
whether topical application for seven months of L-arginine,
γ-guanidinobutyric acid, N-acetylcysteine, and penicillamine
(a copper chelator) to one eye of hSVCT2 mice can block
crystallin ascorbylation compared to the control eye. This
demonstration is essential since the most desirable clinical
outcome would be to demonstrate that age-related

modifications and nuclear sclerosis can be delayed using
topical instead of systemic application. We have also tested
whether L-arginine can also be taken up into the rabbit lens in
vitro as well as when applied topically to the eye.

METHODS
Experimental animals: All animal experiments were
conducted in accordance with procedures approved by the
Case Western Reserve University, Cleveland, OH Animal
Care Committee and conformed to the ARVO Statement for
use of Animals in Ophthalmic and Vision Research. Animals

Figure 1. Structure of AGEs identified in the aging human lens.
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were housed under diurnal lighting condition and allowed free
access to food and water. hSVCT2 transgenic mice were
maintained as described previously [2]. The genetic
background of these transgenic mice is C57BL/6 after
multiple rounds of breeding with this strain.

Eye drop formulation and topical application to hSVCT2
mouse eye: L-Arginine (A5131), DL-penicillamine (P5125),
γ-guanidinobutyric acid (G6503), and N-acetyl-L-cysteine
(N7250) were all purchased from Sigma Company (St. Louis,
MO). Solutions containing 0.1% of inhibitor were produced
in phosphate buffer saline (PBS) whereby the pH was adjusted
to 7.4 as needed and sterilized over 0.2 µm filters. The
solutions were aliquoted into 1 ml fractions and stored in a
−80 °C freezer. hSVCT2 transgenic mice (n=10) received
twice per day, 5 days per week starting at 2 months and
continued till 9 months of age, one eye drop of inhibitor in the

Figure 2. Levels of protein-bound fluorescence in transgenic mouse
lens protein with and without inhibitor treatment. A: Fluorescence at
λex/em 335/385 nm and B: Fluorescence at λex/em 370/440 nm. One-
way ANOVA was used followed by post-hoc analysis for all
comparisons (n=10 per group). L-Arginine (ARG) significantly
reduced fluorescence at 335/385 nm (p<0.001) and 370/440 nm
(p<0.001). N-acetylcysteine (NAC) significantly reduced the
fluorescence at 335/385 nm (p<0.001). GBA=guanidinobutyric acid,
PA=penicillamine.

right eye and vehicle control in the left eye. Mice were
sacrificed and eyes were removed and decapsulated to release
the lenses. These were processed for advanced glycation end
product (AGE) determination as described below.
Rabbit lens topical inhibitors kinetic study: Two rabbits in
each group received one drop of a solution of 0.5% inhibitor
dissolved in Systane Lubricant Eye Drops (Alcon, Fort Worth,
TX) on the right eye and 2% inhibitor similarly prepared on
the left eye. The rabbits were sacrificed at various time points
and the lenses were quickly dissected and washed three times
with ice-cold PBS. The lenses were then homogenized in
1.0 ml ice-cold PBS, centrifuged at 20,000× g for 25 min and
the supernatant was used to determine the content of inhibitors
using liquid chromatography/mass spectrometry (LC/MS).
In vitro incubation of rabbit lenses with L-arginine and N-
acetylcysteine: Freshly excised rabbit lenses were
preincubated for 8 h in Dulbecco’s modified Eagle’s medium
(Medium 199; Sigma Company) to verify viability, and
further incubated with or without added 10 mM L-arginine or
N-acetylcysteine in the presence of 25 mM glucose, or 5 mM
ascorbate, or 100 µM dehydroascorbate. After 24 h, lenses
were processed to determine the uptake of L-arginine or N-
acetylcysteine (NAC).
Processing of mice lenses for the determination of protein-
bound AGEs: Lenses were homogenized in ice-cold 10%
trichloracetic acid (TCA), and placed on ice for 15 min. The
TCA protein precipitate was washed twice with 500 μl of ethyl
ether and further delipidated with 500 μl of chloroform/
methanol (2:1) at 4 °C overnight, then soaked in water and
lyophilized. The lyophilized sample representing on average
1 mg protein was reconstituted with 500 μl of 5.0 mM argon-
exchanged, Chelex-treated phosphate buffer (pH 7.0) by
sonication. The suspension was solubilized with 35 µl of
10 mg/ml protease K at 37 °C for 24 h for determination of
protein-bound fluorescence. The sample was then divided into
two equal fractions, one of which was subjected to further
enzymatic digestion, and the other subjected to hydrolysis
with 6 N HCl following our previous described method [2] to
release free AGEs.
Fluorescence spectroscopy and advanced glycation
endproducts determination: The fluorescence at λex/em
370/440 nm and 335/385 nm of the enzymatic lens protein
digest was measured with a spectrofluorometer (821-F; Jasco,
Easton, MD). The data was expressed as fluorescence units
per unit protein measured as leucine equivalent.
Carboxymethyl-lysine (CML) and carboxyethyl-lysine
(CEL) were determined by the gas chromatography/mass
spectrometry (GC/MS) method and the hydroimidazolones G-
H1 and MG-H1, and glucosepane were determined by the LC/
MS method as described in our previous study [10].
Determination of L-arginine and N-acetylcysteine: Uptake of
L-arginine and N-acetylcysteine was determined in the
protein-free rabbit lens extract using the same method as for
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the rabbit lens topical inhibitor study (see above). Arginine
was assayed by isotope dilution technique using 15N-arginine
as an internal standard. The m/z transition 174.9>70.1 and
176.9>70.2 were used for arginine and 15N-arginine,
respectively. Cone voltage (Cv) and collision energies (Ce)
were 60 V/22 eV and 60 V/20 eV, respectively. N-
acetylcysteine was quantified based on the peak area for the
transition m/z 163.66x>121.85 (loss of acetyl; Cv:48 V, CE:
9 eV, respectively) in the same chromatographic analysis run
as for L-arginine.
Statistical analysis: All values were expressed as means±SD.
Statistical significance of the differences in mean values was
assessed by repeated-measures of ANOVA or Student’s t-test.
P values of <0.05 were considered statistically significant.

RESULTS
One drop of potential inhibitors, each 0.1% dissolved in
phosphate buffer saline of L-arginine, guanidinobutyric acid,
DL-penicillamine, or N-acetylcysteine was applied five days
a week to the right eye of hSVCT2 mice. The contralateral eye
received vehicle only, i.e., PBS. Total lens crystallins were
isolated, enzymatically digested, and processed for the

measurement of protein-bound fluorescence at 335/385 nm
and 370/440 nm and advanced glycation/ascorbylation
products as previously described [10]. After seven months, L-
arginine suppressed pentosidine-like fluorescence at 335/385
nm and 370/440 nm fluorescence by 40% (p<0.001; Figure
2). Interestingly, the latter was also 50% suppressed by N-
acetylcysteine (p<0.05; Figure 2). NAC suppressed 335/385
fluorescence, though not significantly. L-Arginine also
suppressed CML, CEL, and glucosepane cross-links by 35%
(p<0.05), 30% (p<0.05) and 37% (p<0.05), respectively
(Figure 3A,B,E). Surprisingly it did not suppress the
methylglyoxal hydroimidazolone MG-H1 and the glyoxal
hydroimidazolone G-H1 (Figure 2C,D). Except for the
positive effect of NAC on 335/385 nm fluorescence (Figure
2A), neither the latter nor penicillamine (PA) or
guanidinobutyric acid (NAC-2) had any effect on any of the
advanced glycation endproducts (Figure 2 and Figure 3).

The above findings suggest that mice have the ability to
take up L-arginine and N-acetylcysteine trans-corneally. To
find out if this was potentially applicable to other species, we
determined the uptake in vitro and in vivo of L-arginine in
rabbit lenses upon transcorneal application. Lenses were

Figure 3. Additional AGE levels in
mouse lens with or without inhibitor eye
drop treatment. A: Mouse lens protein
CML levels were significantly reduced
by L-arginine (p<0.05). B: Mouse lens
protein CEL levels were significantly
reduced by L-arginine (p<0.05). C:
Mouse lens protein GH1 were not
affected by inhibitors (p=N.S.) versus
vehicle control. D: Mouse lens protein
MG-H1 levels were not affected by
inhibitors (p=N.S) versus vehicle
control. E: Mouse lens protein
glucosepane levels were significantly
reduced by L-arginine (p<0.05). One-
way ANOVA was used followed by
post-hoc analysis for all comparisons
(n=10 per group). For abbreviations, see
Figure 1.
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incubated with 5 mM concentration of L-arginine in ascorbic
acid, dehydroascorbic acid (DHA) or D-glucose in
Dulbecco’s modified Eagle’s medium 199 for 24 h under
different conditions to simulate either the ascorbate or glucose
concentration of the medium. The chosen concentration (i.e.,
5 mM L-arginine) was five times lower than that applied to
the hSVCT2 mouse eye. i.e., 0.5% or 28 mM. The results were
compared with 5 mM N-acetylcysteine (NAC) incubated
under similar conditions. As shown in Figure 4, lenticular
arginine levels in the absence of added L-arginine varied from
150 to 210 nmol/g wet weight (mean±SD: 166.5±17.5 nmol/
g wet weight, n=6) and jumped  to values ranging from 780
to  1,432  nmol/g (mean±SD  1,008.7±233.5  nmol/g)   when
lenses were incubated with 5 mM arginine. This increase was
highly significant (p<0.0001).  For comparison, NAC levels
were 1.60±0.85  nmol/g wet weight (n=4)  in  the presence of 
5  mM   added  NAC,  while  no  NAC  was  detected  in   lenses
incubated without added NAC.

Figure 4. Comparative uptake of L-arginine and N-acetyl-L-cysteine
in rabbit lenses (n=2) incubated with 5 mM L-arginine and 5 mM
NAC with and without presence of 25 mM D-glucose or 5 mM
ascorbic acid and 0.1 mM dehydroascorbic acid for 4 h. The lenses
were washed with cold PBS and homogenized in water for L-arginine
and NAC determination in supernatant by LC/MS.

Finally, lenticular uptake of L-arginine upon in vivo
transcorneal application to the rabbit eye showed a rapid
transcorneal uptake which reached similar lenticular plateau
levels varying from 400 to 500 nmol/g after 120 min,
regardless of whether 0.5 or 2.0% eye drops were applied
(Figure 5). However the latter concentration remained more
elevated at 4 h in presence of 2.0% compared to 0.5%.
Similarly, NAC levels reached a plateau at 2 h, but levels were
three to four times higher and persisted longer with 2.0%
instead of 0.5% NAC.

DISCUSSION
The above results confirm the ability of L-arginine
(previously referred to as “NC-1” [10]) to suppress the
formation of advanced ascorbylation end products in the
hSVCT2 mouse model of human lens brunescence. Quite
remarkably, except for the fact that NAC lowered the
fluorescence at 335/385 nm, L-arginine was the only
compound able to significantly delay the accumulation of
multiple AGEs.

We tentatively attribute the ability of arginine to suppress
AGE formation to its ability to scavenge oxoaldehydes such
as glyoxal and methylglyoxal, as well as DHA and its
degradation products xylosone, erythrulose, and
deoxythreosone. While γ-guanidinobutyric acid had
expectedly similar effects when fed orally to hSVCT2 mice,
no such effects were noted in the present experiments. We
attribute this discrepancy to the fact that specific transporters
for L-arginine must be present in the cornea and lens, which
preferentially favor its uptake over γ-guanidinobutyric acid
into the lens. When orally fed at 0.1% in the diet, presumably
sufficient concentrations of the latter are achieved to allow
scavenging of oxoaldehydes. Indeed Jain-Vakkalagadda et al.
[10] found that transport of L-arginine across rabbit cornea
was saturable (Km=306±72 μM and Vmax=0.12±0.01 nmol min
−1cm−2) and was Na+, Cl-, and energy dependent, and inhibited
by neutral and cationic amino acids. The specific B(0,+)
arginine transporter was identified in both rabbit and human
corneas.

Concerning the uptake of arginine into the lens, numerous
studies on the uptake of various amino acids into the animal
and human lens have been done in the past [11-14]. One study
suggests a ~1:1 ratio of lens: aqueous arginine levels [11],
which would exclude the presence of high affinity uptake into
the lens. However the aqueous: plasma ratio was ~3:1
implying active uptake from the plasma into the aqueous.
Systematic studies on arginine transport are lacking and
molecular studies are needed to clarify this field.

L-Arginine is an attractive drug for the potential delay of
senile cataracts for multiple reasons. First, recent studies from
our laboratory have unequivocally demonstrated that arginine
is the single major damaged crystallin residue by advanced
glycation during aging [3]. In addition, various studies by
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others have demonstrated the ability of arginine to block in
vitro and in vivo advanced glycation [15-22]. Second, recent
studies also suggest that arginine added to proteins in solution
has stabilizing effects by the prevention of aggregation and
improving solubilization [23,24]. Thus, topically applied
arginine might improve the progression of cataractogenesis
by acting as an AGE inhibitor and a protein stabilizing agent.
Finally and importantly, L-arginine has low toxicity since it
is a natural constituent.

Another important aspect of the above study is the
demonstration that N-acetylcysteine was able to block protein
bound formation of AGE fluorescence. The latter might be a
consequence of UV or other oxidation mediated damage to
tryptophan residues, rather than a glycation-related process
[25]. NAC is widely used for suppression of oxidant stress in
cell culture experiments, and is an approved clinical drug of
low toxicity for the treatment of acetaminophen poisoning and
various other conditions [26].

In summary, the above study confirms the in vivo
potential of L-arginine as a blocking agent of carbonyl stress
in the lens. In addition, our finding that topical application of
NAC was potent at decreasing protein-bound fluorescence at
335/385 nm, and to some extent at 370/440 nm, suggests it
might be useful as an adjuvant to L-arginine for combating
combined carbonyl and oxidant stress in the pathogenesis of
age-related nuclear cataracts.
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