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Abstract

Meiosis is a specialized form of cellular division that results in the precise halving of the genome to produce gametes for
sexual reproduction. Checkpoints function during meiosis to detect errors and subsequently to activate a signaling cascade
that prevents the formation of aneuploid gametes. Indeed, asynapsis of a homologous chromosome pair elicits a
checkpoint response that can in turn trigger germline apoptosis. In a heterogametic germ line, however, sex chromosomes
proceed through meiosis with unsynapsed regions and are not recognized by checkpoint machinery. We conducted a
directed RNAi screen in Caenorhabditis elegans to identify regulatory factors that prevent recognition of heteromorphic sex
chromosomes as unpaired and uncovered a role for the SET domain histone H3 lysine 9 histone methyltransferase (HMTase)
MET-2 and two additional HMTases in shielding the male X from checkpoint machinery. We found that MET-2 also mediates
the transcriptional silencing program of meiotic sex chromosome inactivation (MSCI) but not meiotic silencing of
unsynapsed chromatin (MSUC), suggesting that these processes are distinct. Further, MSCI and checkpoint shielding can be
uncoupled, as double-strand breaks targeted to an unpaired, transcriptionally silenced extra-chromosomal array induce
checkpoint activation in germ lines depleted for met-2. In summary, our data uncover a mechanism by which repressive
chromatin architecture enables checkpoint proteins to distinguish between the partnerless male X chromosome and
asynapsed chromosomes thereby shielding the lone X from inappropriate activation of an apoptotic program.
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Introduction

In sexually reproducing organisms, meiotic cell division is

responsible for the faithful segregation of genetic material to sperm

and egg [1]. Errors in this process contribute to aneuploidy and

genomic instability and are an underlying cause of human

reproductive problems [2]. A number of conserved checkpoint

mechanisms monitor the steps of meiosis and respond to errors by

eliciting signals to activate repair pathways and/or to induce

germline apoptosis [2,3]. The mechanisms by which meiotic

checkpoint machinery responds to errors differ between males and

females, and these differences are proposed to contribute to the

high frequency of meiotic failure observed in human oocytes [4].

One distinction between female and male meiosis that may

account for differences in checkpoint function is sex chromosome

karyotype. Whereas human females possess a pair of homologous

X chromosomes, males have a single, largely unpaired X and non-

homologous Y, whose unpaired status is not recognized by

checkpoint machinery [5]. While multiple strategies have evolved

to promote the segregation of heteromorphic sex chromosomes

[5–7], the molecular mechanisms responsible for shielding the sex

chromosomes from meiotic checkpoints and preventing inappro-

priate apoptosis are unknown.

During mammalian male meiosis, the heteromorphic sex

chromosomes undergo a silencing process called meiotic sex

chromosome inactivation (MSCI), which results in the elaboration

of a specialized chromatin domain and transcriptional silencing

[8,9]. In mice, defects in MSCI result in pachytene arrest and

elevated germline apoptosis, presumably due to expression of sex-

linked genes deleterious for male meiosis [10]. Interestingly,

asynapsed regions of homologous chromosomes are also epige-

netically marked by a related process termed meiotic silencing of

unsynapsed chromatin (MSUC) [8,11]. While MSCI correlates

with the shielding of heteromorphic sex chromosomes from being

recognized as unpaired by meiotic checkpoints, MSUC does not

block recognition of unpaired homologous chromosomes, suggest-

ing that MSUC and MSCI have distinct properties and outputs.

Although sex chromosomes have evolved independently many

times, aspects of sex chromosome regulation have many common

features [12]. As in humans, Caeonorbaditis elegans males have a

single X chromosome that is subject to MSCI and is precluded

from meiotic checkpoints [5,13,14]. Similar to the XY body
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during mammalian spermatogenesis [5], the lone X chromosome

in male worms is highly condensed and accumulates the repressive

histone modification dimethylation of histone H3 on lysine 9

(H3K9me2) [15–17]. Consistent with transcriptional silencing

characteristic of MSCI, X-linked transcripts have not been

detected by in situ hybridization in C. elegans heterogametic germ

lines [13,16], and microarray analyses have revealed a significant

under-representation of sperm-expressed genes on the X [18].

To determine how heteromorphic sex chromosomes are

shielded from recognition by checkpoints, we conducted a directed

RNAi screen in C. elegans to identify germline-enriched chromatin

modifiers that block checkpoint signaling and germline apoptosis

in the heterogametic germ line. As males lack germline apoptosis

[19], we utilized fem-3(lf) X0 worms, a sex determination mutant

that has an oogenic germ line competent for checkpoint-activated

apoptosis but a single, unpaired X chromosome [13,20]. Similar to

the male X, the single X in fem-3(lf) females accumulates repressive

chromatin marks, is transcriptionally quiescent, and is not

recognized by meiotic checkpoints as partnerless [13]. We

identified a novel role for three conserved SET domain histone

methyltransferases (HMTases), MES-2, MET-1 and MET-2, in

this process. Here, we focus primarily upon understanding the

function of met-2, which encodes the ortholog of mammalian

protein SetDB1, a H3K9 HMTase that maintains transcriptional

quiescence in embryonic stem cells [21,22]. In C. elegans, MET-2 is

the HMTase required for all H3K9me2 deposition in the adult

germ line [23], and in this study we demonstrate that MET-2-

dependent H3K9me2 has distinct outputs on the unpaired X

chromosome versus asynapsed homologous chromosomes with

respect to both checkpoint signaling and transcriptional silencing.

Results

A subset of chromatin modifiers inhibit apoptosis in the
heterogametic germ line

In the C. elegans heterogametic (X0) germ line, the single,

unpaired X chromosome is highly condensed, accumulates a

subset of repressive histone modifications, and is not recognized by

meiotic checkpoints [13,15–17]. We therefore hypothesized that

the unique heterochromatin architecture of the lone X chromo-

some directly prohibits access of checkpoint proteins that would

otherwise recognize the unpaired X as problematic and trigger

meiotic checkpoint activation. To this end, we individually

depleted twenty-nine germline-enriched chromatin modifiers and

identified candidates whose knockdown increased apoptosis in fem-

3(lf) X0 germ lines versus wild-type (XX) germ lines expressing

CED-1::GFP, a fusion protein that is expressed in sheath cells and

marks early apoptotic corpses [24] (Table S1).

RNAi depletion of approximately one-third of the candidates

screened resulted in an elevated number of CED-1::GFP(+) nuclei

in both homogametic (XX) and heterogametic [fem-3(lf) X0] germ

lines (Table S1), indicating a broad requirement for chromatin

architecture in maintaining overall germline homeostasis through-

out meiosis. We identified seven candidates whose absence resulted

in significantly elevated apoptosis in heterogametic (X0) but not

homogametic (XX) germ lines (Table S1). From these candidates,

levels of X0-specific germline apoptosis were highest in the SET

domain HMTases MES-2, MET-1, and MET-2 (Table 1). MES-2

is the homolog of Enhancer of zeste E(z), and in the C. elegans germ

line, MES-2 promotes acquisition of the repressive marks

H3K27me2/3 and H3K9me3 [23,25]. MET-1 and MET-2 are

homologs of the yeast H3K36 HMT Set2 and the mammalian

H3K9 HMT SetDB1, respectively, and in C. elegans, they are

required for transcriptional repression of lin-3 during vulval

development [21]. In the adult germ line, MET-2 is also required

for accumulation of the repressive histone modification H3K9me2

and is suggested to play a role in ensuring the fidelity of

chromosome segregation during meiotic progression [23]. Identi-

fication of these HMTases in our screen suggests a role for repressive

histone modifications in shielding the X chromosome from being

recognized as unpaired and triggering checkpoint activation.

Absence of met-2 in X0 germ lines results in increased
apoptosis by activating the recombination checkpoint

As H3K9me2 deposition is a conserved feature of heteromor-

phic sex chromosomes ([14,26,27]), we focused our experiments

on met-2. RNAi knockdown of met-2 resulted in abrogation of

H3K9me2 staining and corresponded to elevated apoptosis

exclusively in the X0 germ line (Figure S1; Table 1). XX animals

did not show a similar dependence on met-2 for apoptosis; the

number of CED-1::GFP(+) nuclei was not significantly affected in

either met-2(RNAi) XX or met-2(n4256) XX deletion mutant germ

lines (Figure S2B). We also assessed germline apoptosis in met-

2(n4256) XX mutants using acridine orange (AO) and obtained

similar results (Figure S2C).

To determine if the elevated level of apoptosis observed in the

absence of met-2 was the result of checkpoint activation, we scored

apoptosis in met-2(RNAi); fem-3(lf) X0 germ lines depleted or

mutant for meiotic checkpoint machinery. In C. elegans, meiotic

progression is monitored by two distinct checkpoints that

distinguish and respond to errors in synapsis or recombination

defects [28]. To determine whether the synapsis checkpoint was

activated, we scored apoptosis in the absence of the pachytene

checkpoint protein PCH-2 (Pch2), which in C. elegans is triggered in

response to unsynapsed chromosomal pairing centers [28]. We

observed no decrease in apoptosis in the absence of pch-2 [pch-

2(RNAi);met-2(RNAi);fem-3(lf) X0 and pch-2(tm1458);met-2(RNAi);-

fem-3(lf) X0] compared to met-2(RNAi);fem-3(lf) X0 alone

(Figure 1A), suggesting that met-2-dependent apoptosis is not

activated by the synapsis checkpoint.

To test whether RNAi knockdown of met-2 triggered the

recombination checkpoint in response to meiotic DSBs that are

Author Summary

Meiosis results in the generation of non-identical haploid
gametes and maintenance of chromosome number during
sexual reproduction. Precise meiotic chromosome segre-
gation is essential for life, and in humans errors in this
process contribute to aneuploidy or failure in meiosis,
which manifests as spontaneous abortions or infertility.
Cellular surveillance pathways monitor the steps of
meiosis; and, if homologous chromosomes fail to pair
and recombine, checkpoint machinery responds by
eliciting signals to induce apoptosis. However, in many
species males possess a single X chromosome that is
transcriptionally silenced, accumulates repressive histone
marks, and is not recognized as partnerless by meiotic
checkpoints. Here, we used C. elegans to investigate how
the male X is precluded from checkpoint signaling and
uncovered a role for conserved chromatin-remodeling
proteins that block checkpoints and mediate meiotic
silencing. Our data elucidate the molecular mechanisms
by which chromatin architecture influences both tran-
scriptional silencing and checkpoint response to breaks on
unpaired sex chromosomes, and we propose a model by
which repressive chromatin modifiers directly block
meiotic checkpoints from accessing the male X chromo-
some.

Meiotic Checkpoints and Sex Chromosome Regulation
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induced on the single X [13], we scored the number of

CED-1::GFP(+) nuclei in met-2(RNAi);fem-3(lf) X0 germ lines

inactivated for cep-1, which encodes the ortholog of the human

tumor suppressor p53 and is required for the detection of

persistent recombination intermediates but not chromosome

asynapsis in worms [28–30]. RNAi knockdown or a dele-

tion mutant of cep-1 [cep-1(RNAi);met-2(RNAi);fem-3(lf)X0 and

cep-1(gk138);met-2(RNAi);fem-3(lf) X0], resulted in basal levels of

apoptosis (Figure 1A), suggesting that the absence of met-2 activates

the recombination checkpoint. We also monitored localization of

ATL-1 (ATR), a component of the recombination checkpoint

pathway upstream of p53 [31], in met-2(RNAi);fem-3(lf) X0 germ

lines. In response to checkpoint activating conditions including

chromosome asynapsis, ATL-1 is recruited to germline nuclei and

accumulates on all chromosomes [19,31]. While we observed no

ATL-1 nuclear accumulation in control, fem-3(lf) X0 germ lines,

RNAi depletion of met-2 resulted in the appearance of ATL-1 foci

in late pachytene nuclei, coincident with the timing of apoptotic

body accumulation (Figure 1B and Figure S2A).

To determine if activation of the recombination checkpoint in

the absence of MET-2 was a consequence of either altered

processing or an increased number of meiotic DSBs on the male X

chromosome, we monitored RAD-51 foci formation. In wild-type

C. elegans germ lines, RAD-51 accumulation begins in the

transition zone (e.g. leptotene/zygotene) and is most abundant

in late transition zone/early pachytene male nuclei [13,32], prior

to an X-specific enrichment of H3K9me2 (Figure S3A). We

observed no difference in the number of X-specific RAD-51 foci in

wild-type versus met-2 mutant germ lines, indicating that MET-2

does not affect the kinetics of DSB processing or repair (Figure

S3B). We also monitored RAD-51 foci in germ lines depleted for

rad-54, which is required for homologous recombination-mediated

repair [33], and observed no difference in the number of RAD-51

foci in rad-54(RNAi) versus met-2;rad-54(RNAi) nuclei (Figure

S3C), suggesting that the absence of met-2 does not result in

recombination checkpoint activation due to an increased number

of breaks on the X chromosome.

Absence of repressive chromatin modifiers results in
ectopic acquisition of H3K4me2 on the single X
chromosome

In heterogametic (X0) pachytene-stage germ lines, the single,

unpaired X accumulates the repressive mark H3K9me2 and lacks the

histone modification H3K4me2 [13,16,17], a mark corresponding to

transcriptionally competent chromatin. In contrast to XX germ lines,

which accumulate H3K4me2 on the X chromosome pair in late

pachytene/early diplotene coincident with a transient accumulation

of elongating RNA Polymerase II [34], X0 germ lines remain devoid

of X-specific H3K4me2 until late diplotene [13,15,17], and

H3K4me2 intensity on the single X is never as high as it is on the

autosomes in diakinesis (Figure 2A). To test whether the absence of

H3K9me2 altered the dynamics of X-specific H3K4me2 accumu-

lation, we assessed H3K4me2 staining in fem-3(lf) X0 germ lines

depleted for met-2. While H3K4me2 localization was unaffected in

transition zone nuclei through mid-pachytene stage germ lines, we

observed an ectopic accumulation of this mark on the single,

unpaired X chromosome in late pachytene (Figure 2B), indicating

that the absence of met-2 alters the dynamics of other histone marks in

addition to H3K9me2 on the partnerless X chromosome.

The other HMTases identified in our screen methylate distinct

histone lysine residues: MES-2 promotes the acquisition of

H3K27me2/3 and H3K9me3 [23,25] while MET-1 methylates

H3K36 [21,35]. Consistent with this, H3K9me2 levels appear

normal in the absence of either mes-2 [23] or met-1 (Figure S1). To

determine whether the absence of these HMTases also resulted in

ectopic X chromosome-specific H3K4me2 accumulation, we

monitored H3K4me2 in fem-3(lf) X0 germ lines depleted for

mes-2 and met-1, and indeed, both met-1(RNAi); fem-3(lf) X0 and

mes-2(RNAi); fem-3(lf) X0 germ lines exhibited ectopic H3K4me2

accumulation on the single, unpaired X in late pachytene (Figure

S4). Together, these data suggest that multiple repressive marks

are required to block recognition of the single, unpaired X by

checkpoint machinery and that absence of any one of these

repressive marks results in ectopic accumulation of H3K4me2 on

the single X.

MET-2 inhibits transcription of the single X
A hallmark of heteromorphic sex chromosomes is the

acquisition of repressive histone modifications and transcriptional

silencing. Because met-2 affects the dynamics of H3K9me2 and

H3K4me2, we hypothesized that the transcriptional status of the

single X chromosome was also disrupted in heterogametic germ

lines depleted for met-2. To examine transcriptional activity on the

X, we used an antibody raised against the Ser5 phospho-epitope of

the RNA Polymerase II C terminal domain (Pol2 Ser5-P) that

localizes to transcriptionally competent chromatin [15,36,37]. As

expected, Pol2 Ser5-P localized to chromatin in both sexes and

remained visible until mid/late diplotene (Figure 3A; data not

shown). Notably, while late pachytene stage hermaphrodite (XX)

Table 1. Absence of a subset of SET-domain HMTases results in elevated apoptosis in the heterogametic (X0) germ line.

# Apoptotic bodies/gonad

RNAi Description/Relevant Function wild-type XX fem-3(lf) X0

L4440 N/A 6.560.1 2.560.1

met-1 Set2 homolog; H3K36 methylation 5.560.3 4.460.2*

met-2 SETDB1 homolog; H3K9 methylation 6.160.2 4.160.2*

mes-2 Enhancer of zeste (EZH2) ortholog; H3K27 methylation 7.060.4 4.760.2*

Apoptotic bodies were scored by quantifying CED-1::GFP expressing nuclei per gonad arm. L4 wild-type XX hermaphrodites or young adult fem-3(lf) X0 females
expressing CED-1::GFP were transferred to RNAi feeding plates (see Materials and Methods) and scored after approx. 48 hrs. fem-3(lf) X0 germ lines have an overall lower
level of apoptosis than wild-type XX germ lines, which is presumably a consequence of delayed meiotic progression due to the absence of sperm production [5,13,14].
Total number of gonads examined: N2 L4440 XX, N = 457; met-1(RNAi) XX, N = 55; met-2(RNAi) XX, N = 129; mes-2(RNAi) XX, N = 63; fem-3(lf) L4440 X0, N = 383; fem-
3(lf);met-1(RNAi) X0, N = 73; fem-3(lf);met-2(RNAi) X0, N = 141; fem-3(lf);mes-2(RNAi) X0, N = 82. Data shown are means 6 S.E.M., and statistical comparisons between RNAi
knockdown and empty L4440 vector were determined using a two-tailed Mann-Whitney test;
*denotes p,0.0001. See Table S1 for entire data set from directed RNAi screen.
doi:10.1371/journal.pgen.1002267.t001
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Figure 1. Absence of MET-2 triggers the recombination checkpoint in worms with a single X. (A) fem-3(lf) X0 germ lines expressing CED-
1::GFP have elevated apoptosis when depleted for met-2, which is dependent upon cep-1 but not pch-2. Apoptosis was scored in fem-3(lf) X0 adults
approximately 48 hr post-L4. Total number of gonads examined: fem-3(lf) L4440, N = 116; met-2(RNAi); fem-3(lf), N = 31; met-2(RNAi);cep-1(gk138);fem-
3(lf) N = 26; met-2(RNAi);cep-1(RNAi);fem-3(lf), N = 46; met-2(RNAi);pch-2(tm1458);fem-3(lf) N = 56; met-2(RNAi);pch-2(RNAi);fem-3(lf) N = 60; pch-
2(tm1458);fem-3(lf) N = 83; pch-2(RNAi);fem-3(lf), N = 49; cep-1(gk138);fem-3(lf) N = 44; cep-1(RNAi);fem-3(lf) N = 38. Statistical comparisons between
data sets were conducted using a two-tailed Mann-Whitney test. * denotes p#0.001, and ** denotes p#0.05. Error bars correspond to S.E.M. (B) Right:
Schematic of C. elegans recombination repair pathway. Left: Late pachytene fem-3(lf) X0 germ line nuclei stained with DAPI (blue) and ATL-1 (red).
ATL-1 is not present in control fem-3(lf) X0 germ lines fed empty L4440 vector, whereas met-2(RNAi);fem-3(lf) X0 and zim-1(RNAi);fem-3(lf) X0 germ
lines accumulate ATL-1 foci in pachytene nuclei. We did not observe any ATL-1 staining in atl-1(RNAi) germ lines, consistent with previous studies
demonstrating specificity of this antibody (data not shown; [19]). White arrows denote apoptotic corpses. Scale bar = 10 mm.
doi:10.1371/journal.pgen.1002267.g001
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germ lines contained robust Pol2 Ser5-P staining on all

chromosomes, all male germ line nuclei examined possessed a

single, highly condensed chromosome devoid of Pol2 Ser5-P

staining, which based on its morphology [38], we presume to be

the X (Figure 3A).

To determine whether the presence of MET-2 is sufficient to

block transcriptional activation, we examined the pattern of Pol2

Ser5-P in fem-3(lf) X0 germ lines depleted for met-2. In pre-meiotic

germ cells through mid-pachytene, both control fem-3(lf) X0 and

met-2(RNAi);fem-3(lf) X0 germ lines had identical patterns of Pol2

Ser5-P accumulation (data not shown). However, while Pol2 Ser5-

P remained absent from the X chromosome throughout meiotic

prophase in fem-3(lf) X0 germ lines, ectopic Pol2 Ser5-P

accumulation was detected on the X chromosome in late

pachytene met-2(RNAi);fem-3(lf) X0 germ lines (Figure 3B),

indicating that MET-2 inhibits transcription from the single X

chromosome.

To determine whether MET-2 inhibits transcription at the level

of pre-initiation complex assembly, we used an antibody that

recognizes the unphosphorylated form of Pol2 CTD, which is

assembled at promoters prior to transcription initiation [39]. In

control fem-3(lf) X0 germ lines, Pol2 CTD accumulation was

identical to the pattern of Pol2 Ser5-P accumulation, and was

detected abundantly on the autosomes from the distal tip

(mitotically-dividing germline nuclei) through diplotene stage

nuclei, yet was absent from the X chromosome in all stages

examined (Figure 3C; data not shown). In met-2(RNAi);fem-3(lf) X0

germ lines, however, we observed ectopic, X-specific accumulation

of Pol2 CTD in late pachytene, consistent with the timing of Pol2

Ser5-P appearance in these germ lines (Figure 3C).

As the absence of met-2 resulted in loss of H3K9me2,

accumulation of H3K4me2, and transcriptional activation, we

tested whether acquisition of H3K4me2 is required for Pol2

loading and promoter clearance. To this end, we examined Pol2

Ser5-P accumulation in wild-type XX germ lines co-stained with

anti-H3K4me2. In mid-pachytene XX germ lines, only the sex

chromosomes are devoid of H3K4me2 staining [15], making it

possible to easily identify the X chromosome pair at this stage.

Interestingly, despite the absence of X-chromosome specific

H3K4me2 staining in mid-pachytene, we detected Pol2 Ser5-P

staining on both the autosomes and the sex chromosomes of wild-

type XX germ lines (Figure 4), suggesting that H3K4me2

Figure 2. Ectopic X-specific H3K4me2 accumulation in late pachytene X0 germ lines depleted for met-2. Immunolocalization of
H3K4me2 (red) counterstained with DAPI (blue) in fem-3(lf) X0 germ lines fed (A) empty L4440 vector (left) or (B) met-2 dsRNA (right). Green outline
indicates the X chromosome in MP, LP, and LP/DP, as determined by HIM-8 staining (green). White arrows indicate the X chromosome in DP and DI.
Mid-pachytene (MP); Late pachytene (LP); diplotene (DP); diakinesis (DI). Scale bar = 5 mm. (See also Figure S4).
doi:10.1371/journal.pgen.1002267.g002
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accumulation is not an absolute requirement for transcriptional

activation.

H3K9me2 is required to repress checkpoint signaling and
transcription during MSCI but not MSUC

In addition to the partnerless X, H3K9me2 accumulates on

asynapsed chromosomes (both autosomes and sex chromosomes)

[13,16]; however, unlike the male X, asynapsed homologous

chromosomes are recognized as unpaired and trigger checkpoint

activation [40]. Given that MET-2-dependent H3K9me2 depo-

sition on a single unpaired X chromosome protects germ lines

from increased apoptosis (Table 1; Figure S2A–S2B), we asked

whether MET-2 plays a general role in modulating apoptosis in

the presence of asynapsed X chromosomes. To that end, we

monitored apoptosis upon inactivation of him-8, which is required

for pairing and synapsis of the X chromosome pair [40], in the

presence or absence of met-2 [met-2(RNAi);him-8(me4) XX and him-

8(RNAi);met-2(n4256) XX strains expressing CED-1::GFP]. Sur-

prisingly, while absence of met-2 abrogates H3K9me2 enrichment

on asynapsed X chromosomes [23], there was no corresponding

effect on the number of apoptotic bodies in XX germ lines

defective for X chromosome pairing (Figure 5A), suggesting that

H3K9me2 deposition on an asynapsed chromosome pair does not

inhibit checkpoint-activated germline apoptosis.

The apparent disconnect between the role of H3K9me2

deposition on the lone X chromosome (X0) versus asynapsed

chromosomes (him-8 XX) suggests that this modification may elicit

a different functional response depending on the presence of a

homologous partner. It has been proposed that multiple pathways

exist to target H3K9me2 in the C. elegans germ line [41], and we

hypothesized that an alternative pathway may be involved in

either targeting or responding to H3K9me2 on asynapsed

chromosomes. sin-3 encodes a conserved histone deacetylase

[42] that has been suggested to play a role in targeting

H3K9me2 to unpaired chromatin in both mammals and worms

[14,41,43]. Analysis of sin-3 mutants revealed that in contrast to

MET-2, SIN-3-dependent H3K9me2 deposition was specific for

asynapsed chromosome pairs but not sequences lacking a pairing

partner, as both the male X and a repetitive, extra-chromosomal

array, oxEx229 [44] retained H3K9me2 in the absence of SIN-3

(Figure S5A; data not shown). On the other hand, H3K9me2

acquisition on the asynapsed X chromosomes in him-8 germ lines

was dependent on both MET-2 and SIN-3 ([23]; Figure S5B and

data not shown). These data suggest that SIN-3 is specific for

H3K9me2 deposition on asynapsed chromosomes.

To determine whether SIN-3’s role in monitoring chromosome

pairing and H3K9me2 enrichment could be required to regulate

checkpoint signaling in response to asynapsed chromosomes, we

Figure 3. X chromosome-specific transcriptional regulation is specified by chromatin architecture and is disrupted in met-
2(RNAi);fem-3(lf) X0 germ lines. (A) Late pachytene stage nuclei from wild-type male X0 (top) and hermaphrodite XX (bottom) germ lines stained
with activated Pol2 Ser5-P (red), and counterstained with DAPI (blue). White arrowheads (top) correspond to the unpaired X chromosome. Scale
bar = 10 mm. (B) In fem-3(lf) X0 germ lines, Pol2 Ser5-P (red) is absent from the X chromosome (marked by white arrowheads and the X chromosome
marker HIM-8 [40] in green) but appears on the single X in late pachytene in the absence of met-2. Scale bar = 5 mm. (C) The unphosphorylated form
of Pol2 (CTD, red) is absent from the X chromosome (denoted by white arrowheads and HIM-8, green) in control fem-3(lf) X0 germ lines (top), but
appears on the X in met-2(RNAi);fem-3(lf) X0 germ lines in late pachytene. Mid-pachytene (MP); Late pachytene (LP). Scale bar = 5 mm.
doi:10.1371/journal.pgen.1002267.g003

Figure 4. H3K4me2 is not required for Pol2 loading or promoter clearance on paired X chromosomes. Wild-type XX germ line stained
for H3K4me2 (top, middle panel) and Pol2 Ser5-P (top, right panel) and counterstained with DAPI (top, left panel). In mid to late pachytene stage
nuclei (inset), H3K4me2 (green, middle panels) is present on all chromosome pairs except the X (bottom, middle panel), whereas Pol2 Ser5-P (green,
left panels) is present on all chromosomes (bottom left). Germ lines were counterstained with DAPI (red; blue in merge). Inset: White arrowheads
denote the X chromosome pair. Merged image (bottom, right panel) shows DAPI (blue), H3K4me2 (white) and Pol2 Ser5-P (red). White arrow
indicates direction of meiotic progression. Scale bar = 10 mm.
doi:10.1371/journal.pgen.1002267.g004
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Figure 5. Germline apoptosis and Pol2 activation are not inhibited by H3K9me2 on asynapsed chromosome pairs. (A) Number of
apoptotic bodies in XX germ lines as determined by CED-1::GFP fluorescence approx. 48 hr post L4 stage. Total number of gonads examined: N2
L4440 XX, N = 61; him-8(RNAi) XX, N = 74; him-8(me4) L4440, N = 54; him-8(me4);met-2(RNAi), N = 26; met-2(n4256) L4440, N = 25; met-2(n4256);him-
8(RNAi), N = 33; sin-3(tm1276), N = 18; sin-3(tm1276);him-8(RNAi), N = 25. Statistical comparisons between data sets were conducted using a two-tailed
Mann-Whitney test. * denotes p#0.001, and ** denotes p#0.05. Error bars correspond to S.E.M. (B) In him-8(me4) XX germ lines, three Pol2 Ser5-P
(red) staining patterns were observed on asynapsed X chromosome pairs (identified by HIM-8 [green] and indicated by either white outlines [top and
middle rows] or arrowheads [bottom rows]. We assessed Pol2 Ser5-P staining in pachytene nuclei from four him-8(me4) germ lines, and in 42/121
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examined sin-3(tm1276) XX germ lines expressing CED-1::GFP

and assessed germline apoptosis in this mutant as well as in

response to depletion of him-8. In germ lines lacking SIN-3, we

observed no difference in apoptosis compared to wild-type germ

lines (Figure 5A). Further, while absence of sin-3 eliminated

H3K9me2 on the asynapsed X chromosome pair of him-8(me4)

germ lines (Figure S5B), apoptosis was not affected (Figure 5A),

indicating that SIN-3-dependent H3K9me2 deposition on asy-

napsed chromosomes does not affect checkpoint signaling.

To examine the transcriptional status of asynapsed chromo-

somes, we analyzed the loading/activation of Pol2 in him-8

mutants. him-8(me4) encodes a missense mutation that results in

defective X chromosome synapsis yet still generates a truncated

protein product recognized by HIM-8 antibodies, allowing us to

identify the X [40]. In contrast to male germ lines, which were

completely devoid of Pol2 Ser5-P on the single, unpaired X

chromosome (Figure 3A and Figure 5C), analysis of him-8 revealed

that Pol2 Ser5-P exhibited variable staining patterns: 35% of mid

to late pachytene germ lines were devoid of Pol2 Ser5-P on the Xs

and 43% contained Pol2 Ser5-P on all chromosomes (Figure 5B).

The remaining 22% contained what appear to be only discrete X

chromosome regions of Pol2 Ser5-P staining; in these examples we

could identify regions surrounding the pairing center that lacked

this epitope, yet Pol2 Ser5-P staining did not appear to be missing

throughout the length of the unpaired chromosomes (Figure 5B;

data not shown). We also monitored Pol2 Ser5-P in zim-1, in

which chromosomes II and III are asynapsed and zim-2, in which

chromosome V pairs are asynapsed [40], and we observed the

same variable staining pattern (Figure S6A; data not shown).

Together, these results suggest that while transcription is inhibited

on asynapsed chromosomes, it is not completely blocked as occurs

on the single X.

To probe the relationship between H3K9me2 deposition and

transcriptional silencing on the single X versus the asynapsed X

chromosome pair, we monitored H3K9me2 and Pol2 Ser5-P in

him-8 mutant male and hermaphrodite mid to late pachytene stage

germ cells. Consistent with our previous results, we saw robust

H3K9me2 staining and an absence of Pol2 Ser5-P on the single X

throughout pachytene in male germ lines (Figure 5C, left panel;

data not shown). In him-8 XX germ lines, H3K9me2 staining on

the asynapsed X chromosomes was less robust yet these

chromosomes lacked Pol2 Ser5-P (Figure 5Ci). However, we

occasionally observed mid-pachytene nuclei containing only a

single H3K9me2 staining body even though Pol2 Ser5-P was

absent from two chromosomes (Figure 5Cii). Additionally, as

previously demonstrated for wild-type hermaphrodite germ lines

[15], we also observed H3K9me2 accumulation on the autosomes

in late pachytene him-8 XX nuclei; at this stage, there was no

apparent correlation between H3K9me2 deposition and Pol2

Ser5-P staining (Figure S6B; data not shown). These results suggest

that unlike the male X, there is not a strict correlation between

H3K9me2 deposition and transcriptional repression on asynapsed

chromosomes.

The observation that transcriptional repression can occur in the

absence of H3K9me2 on asynapsed chromosomes suggests that

MET-2 and SIN-3 are not required for transcriptional silencing

during MSUC. To examine the consequence of inactivating MET-2

and SIN-3 on transcription in the presence of asynapsed chromo-

somes, we monitored Pol2 Ser5-P in sin-3(tm1276) and met-2-

depleted germ lines [sin-3(tm1276);him-8(me4), sin-3(tm1276);zim-

1(tm1813), met-2(RNAi);him-8(me4), and met-2(RNAi);zim-2(tm574)].

Consistent with our findings above, Pol2 Ser5-P staining in sin-

3(tm1276);him-8(me4) and sin-3(tm1276);zim-1(tm1813) double mu-

tants was identical to that of him-8(me4) and zim-1(tm1813) XX germ

lines, indicating that SIN-3 had no effect on the transcriptional status

of asynapsed chromosomes (Figure 5D and Figure S6A). Similarly,

in him-8(me4) and zim-2(tm574) germ lines depleted for met-2, Pol2

Ser5-P staining was unaffected compared to either mutant alone

(Figure 5D and Figure S6). These data suggest that unlike the

situation on the lone X, there is not a direct relationship between

H3K9me2 and Pol2 activity on asynapsed chromosomes, and that

H3K9me2 has different outputs on sequences lacking a pairing

partner versus asynapsed chromosome pairs.

A repressive chromatin environment is sufficient to block
checkpoint signaling in response to targeted DSBs in the
absence of a homologous partner

DSB accumulation and processing are distinct between paired

chromosomes and a single, unpaired X chromosome, indicating

that dynamics of DSB repair are likely to be influenced by

chromatin architecture as well as the presence of a homologous

pairing partner [13]. To investigate how chromatin architecture

and lack of a pairing partner influence response to DSBs, we used

Mos1 mutagenesis to induce targeted breaks to unpaired DNA in

the presence or absence of repressive chromatin marks. We

hypothesized that oxEx229, a repetitive extra-chromosomal array

that contains multiple copies of the Mos1 substrate [44], is

recognized in a manner similar to that of the single X

chromosome. Analogous to the lone X, the oxEx229 array lacks

a homologous pairing partner and is modified by MET-2, but not

SIN-3 (Figures S5A and S7A–S7B). We therefore tested whether

DSBs targeted to oxEx229 resulted in increased accessibility to

checkpoint proteins and elevated apoptosis in the absence of met-

2. We generated double-transgenic worms containing both

oxEx229 as well as oxEx166 (an array containing a heat-shock

inducible Mos1 transposase) and monitored apoptosis in heat-

shocked worms grown in the presence or absence of met-2

dsRNA. As a control, we scored apoptosis in heat-shocked germ

lines containing only the Mos1 substrate array (oxEx229+;-

oxEx1662); in these germ lines, absence of met-2 had no effect,

indicating that any differences observed were specific to the Mos1-

induced DSBs. In heat-shocked, oxEx229+;oxEx166+ germ lines

depleted for met-2, we observed an increase in apoptosis as

measured by AO staining compared to controls (Figure 6A,

p = 0.001).

nuclei, Pol2 Ser5-P was missing throughout the length of the asynapsed X chromosomes [Pol2(2), top row]. 27/121 nuclei only lacked Pol2 Ser5-P on
discrete regions of asynapsed X chromosomes adjacent to and containing the X chromosome pairing center [Pol2(+/2), middle row], and 52/121
nuclei contained Pol2 Ser5-P throughout the length of the asynapsed chromosome pairs [Pol2(+), bottom row]. Germ lines were counterstained with
DAPI (blue). Scale bar = 2 mm. (C) The him-8(me4) male X chromosome (left) and most (30/35) him-8(me4) asynapsed X chromosome pairs (middle, i)
were devoid of Pol2 Ser5 staining (red) and accumulated H3K9me2 staining (green) corresponding to unpaired DAPI-staining bodies (indicated by
white arrowheads). Some (5/35) late pachytene him-8(me4) XX nuclei (right, ii) contained only one H3K9me2-enriched DAPI-staining body (green,
arrowhead on right), while both asynapsed chromosomes were devoid of Pol2 Ser5-P staining (red). (D) sin-3(tm1276);him-8(me4), sin-3(tm1276);zim-
1(1813), met-2(RNAi);him-8(me4), and met-2(RNAi);zim-2(574) XX late pachytene germ line nuclei stained with Pol2 Ser5-P (red) and counterstained
with DAPI (blue). In him-8(me4) XX germ lines, the asynapsed chromosomes were identified by co-staining with HIM-8 (green). Arrows indicate
asynapsed chromosome pairs in inset. Scale bar = 10 mm.
doi:10.1371/journal.pgen.1002267.g005
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To determine whether targeted DSBs in oxEx229+;oxEx166+
germ lines depleted for met-2 recruit meiotic checkpoint proteins,

we stained heat-shocked germ lines with an antibody against

activated phosphorylated Chk1 (pChk1). In response to either

damage or errors in meiosis, pChk1 is recruited to germline nuclei

and accumulates on all chromatin similarly to ATL-1 [19]. We

observed an accumulation of pChk1 foci in pachytene-stage met-

2(RNAi); oxEx229+;oxEx166+ germ lines in response to Mos1

transposase activation compared to control (empty L4440) or met-

2(RNAi);oxEx229 (Mos1 substrate-only) germ lines (Figure 6B),

demonstrating DSBs targeted to an extra-chromosomal array

induce checkpoint-dependent apoptosis in germ lines depleted for

met-2. Together, these results suggest that the absence of MET-2-

dependent H3K9me2 creates a chromatin environment conducive

to checkpoint signaling in response to a break on sequences lacking

a partner.

Our analyses indicate that on the single, unpaired X

chromosome, absence of MET-2 results not only in loss of

H3K9me2, but also acquisition of H3K4me2 and transcription in

late pachytene germ lines, coincident with checkpoint activation

and elevated apoptosis (Figure 1, Figure 2, Figure 3, and Figure

S2). To determine the status of H3K4me2 and transcription on the

extra-chromosomal array, we stained germ lines depleted for met-2

and found that neither H3K4me2 nor the activated form of Pol2

were observed on the array (Figure S7A–S7B and Figure 6C).

These data indicate that the role of MET-2 in repressing

checkpoint signaling can be uncoupled from its role in transcrip-

tional silencing: DSBs targeted to the oxEx229 array lacking

H3K9me2 results in checkpoint signaling in the absence of

transcription (Figure 6 and Figure 7).

Another property of many extra-chromosomal arrays, yet not

the single X chromosome, is enrichment for H3K9me3, a mark

that is independent of H3K9me2 in the C. elegans germ line, yet is

also associated with heterochromatin and transcriptional silencing

[23]. To investigate whether the oxEx229 array is subject to

H3K9me3 enrichment, we examined this mark in both control

and met-2(RNAi) germ lines carrying the array. As expected, the

pattern of H3K9me3 staining was identical in both control and

met-2(RNAi) germ lines (see [23]) and was detected on all

chromosomes throughout meiotic prophase (data not shown).

Notably, we observed a robust enrichment of H3K9me3

accumulation on oxEx229 from late pachytene through diakinesis

(Figure S7C), which could potentially account for the correspond-

ing absence of Pol2 observed in both control germ lines as well as

those lacking met-2 (Figure 6C). In summary, these results

corroborate previous studies proposing independent roles for

H3K9me2 and H3K9me3 enrichment, and demonstrate that the

presence of H3K9me2 is sufficient to block checkpoint-dependent

apoptosis in response to unpaired DNA.

Discussion

The presence of unpaired (or partially paired) sex chromosomes

presents a unique challenge during meiosis in the heterogametic

sex. Consequently, multiple strategies have evolved to handle and

segregate heterologous sex chromosomes while concurrently

preventing their unpaired status from being recognized as

problematic and hence activating meiotic checkpoints. Here, we

have identified MET-2 as being required to shield the partnerless

X chromosome from checkpoints and to mediate MSCI. As in

mammals, heterochromatinization of the C. elegans male X

chromosome is associated with repression of X-linked gene

expression, which we have demonstrated is due to failure to load

Pol2. Our analyses indicate that these processes, while interrelated,

can be uncoupled and suggest that the unique chromatin

environment of sex chromosomes safeguards gamete production

in the heterogametic sex.

Distinct targeting and outputs of H3K9me2 deposition
on partnerless sex chromosomes versus asynapsed
homologous chromosomes

In this study we provide evidence that the epigenetic landscape of

sex chromosomes directly modulates meiotic checkpoint signaling,

supporting a model whereby the chromatin architecture of the male

X chromosome prevents triggering of a checkpoint in response to

breaks ([6]; Figure 7). We identified a role for the HMTase MET-2

in blocking checkpoint signaling and mediating MSCI on the single

X, as fem-3(lf) X0 germ lines depleted for met-2 have elevated

checkpoint-dependent apoptosis and load and activate Pol2.

Previous reports have suggested that heterochromatization of the

X chromosome depends on the absence of a pairing partner [17],

and consequently, differences in sex chromosome karyotype may

prevent activation of a checkpoint that detects chromosome

asynapsis. Interestingly, our data suggest that meiotic checkpoint

machinery is capable of distinguishing between asynapsed chromo-

somes and a single unpaired X, even though MET-2-dependent

H3K9me2 modifies both. The mechanism by which the recombi-

nation checkpoint distinguishes between asynapsed chromosomes

and a single unpaired X is not clear. One possibility is that there is a

counting mechanism to distinguish sex chromosome karyotype and

elicit the appropriate response. During development the dosage

compensation complex is controlled by the ratio of X chromosomes

to sets of autosomes and consequently targeted to the X

chromosome in a sex-specific manner; however, inactivation of

dpy-30, which encodes a subunit of the C. elegans dosage

compensation complex essential for its recruitment to the X

chromosome [45–46], did not result in an increase in apoptosis in

X0 worms (Table S1), suggesting that a different mechanism

distinguishes sex chromosome karyotype in meiosis.

While our study did not reveal the mechanism whereby germ

cells distinguish between asynapsed chromosomes and a single X,

we have shown that H3K9me2 deposition plays distinct roles in

these two situations. In particular, our data demonstrate that

H3K9me2 is required for blocking checkpoint signaling and

transcriptional silencing on the single X during MSCI but not on

asynapsed chromosomes during MSUC (Figure 7). Cytological

analyses suggest that there is more robust accumulation of

H3K9me2 on a single X chromosome or extra-chromosomal

array compared to asynapsed chromosome pairs (see [23];

Figure 5C; Checchi and Engebrecht, unpublished observations),

providing a plausible explanation for the differential affect of

H3K9me deposition on sequences lacking a pairing partner.

Interestingly, studies in mice spermatocytes also suggest that there

are more robust chromatin modifications on an unpaired

chromosome compared to segmental trisomic regions resulting

in asynapsis [47].

Analysis of the histone deacetylase SIN-3, which plays a role in

targeting H3K9me2 to unpaired DNA [14], also supports the

differential regulation of H3K9me2 on asynapsed homologous

chromosomes versus the partnerless X chromosome. Absence of

sin-3 specifically affects H3K9me2 targeting to DNA normally

possessing a homologous pairing partner; him-8 XX germ lines

depleted for sin-3 and carrying a repetitive extra-chromosomal

array retain H3K9me2 on the array, yet lack this modification on

the asynasped X chromosome pair (Figure S5; Checchi and

Engebrecht, unpublished observations). Nonetheless, levels of

germline apoptosis in response to chromosome asynapsis are

unchanged in sin-3 mutants (Figure 5A), indicating that SIN-3-
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dependent deposition of H3K9me2 does not create a chromatin

environment that blocks checkpoint signaling. Further, H3K9me2

deposition does not directly mediate the transcriptional silencing

that defines MSUC, as the absence of either SIN-3 or MET-2 has

no effect on the transcriptional repression of asynapsed chromo-

some pairs (Figure 5, Figure S5, and Figure 7). Thus, H3K9me2

on the lone X leads to MSCI and checkpoint shielding, whereas

this same modification neither mediates transcriptional silencing

during MSUC nor modulates checkpoint signaling, suggesting that

these processes are distinct.

Figure 6. In the absence of MET-2, DSBs targeted to an unpaired extra-chromosomal array induces checkpoint-dependent
apoptosis independent of transcriptional activation. (A) Scatterplot depicting number of apoptotic bodies per gonad arm as detected by AO
staining at 16 and 24 hr following heat-shock in wild-type N2 oxEx166;oxEx229;L4440 XX germ lines (squares = 16 hr; circles = 24 hrs),
oxEx166;oxEx229;met-2(RNAi) XX germ lines (upward-pointing triangles = 16 hr; outlined squares = 24 hr), N2 oxEx229;L4440 XX germ lines
(downward-pointing triangles), and met-2(RNAi);oxEx229 XX germ lines (diamonds). Horizontal black lines correspond to mean for each data set. Total
number of gonads examined: 16 hr: N2 oxEx166;oxEx229 XX, N = 45; met-2(RNAi);oxEx166;oxEx229 XX, N = 102; N2 oxEx229 XX, N = 30; met-
2(RNAi);oxEx229 XX, N = 31. 24 hr: N2 oxEx166;oxEx229 XX, N = 61; met-2(RNAi);oxEx166;oxEx229 XX, N = 26. Statistical comparisons between data sets
were conducted using a two-tailed Mann-Whitney test, and p values between statistically significant data sets are indicated above corresponding
data points. (B) Late pachytene oxEx166;oxEx229;L4440 XX, oxEx166;oxEx229;met-2(RNAi) XX, and oxEx229;met-2(RNAi) XX germ line nuclei stained
with phospho-Chk1(Ser345) (pChk1) (red) and counterstained with DAPI (blue). Germ line dissections and immunostaining were performed
approximately 16 hr following heat-shock. pChk1 specificity was determined using chk-1 RNAi (date not shown) and was consistent with results in
[19]. Scale bar = 5 mm. (C) Late pachytene/diplotene stage nuclei from control oxEx229;L4440 (top) and met-2(RNAi);oxEx229 germ lines stained with
Pol2 Ser5-P (red) and counterstained with DAPI (blue). White arrowheads indicate extra-chromosomal array (oxEx229). Scale bar = 5 mm.
doi:10.1371/journal.pgen.1002267.g006

Figure 7. Repressive chromatin architecture blocks meiotic checkpoint signaling and facilitates MSCI on the single X chromosome
but is dispensable for transcriptional inactivation on asynapsed chromosome pairs. During MSCI (top left, green box), a single, unpaired,
and heterochromatinized X chromosome contains repressive chromatin marks including H3K9me2 (red) that corresponds to transcriptional
inactivation and blocks meiotic checkpoint activation, even in the presence of DSBs (yellow lightening bolts). In heterogametic met-2 germ lines, the
single, unpaired X chromosome lacks H3K9me2, and DSBs on the lone X activate meiotic checkpoints. In response to DSBs targeted to an extra-
chromosomal array (bottom, black box), absence of MET-2 results in checkpoint activation, while the array remains transcriptionally silenced. During
MSUC (top right, blue box) chromosome asynapsis corresponds to transcriptional inactivation and H3K9me2 deposition on unpaired DNA, but unlike
the male X chromosome, asynapsed X chromosomes elicit a checkpoint response. H3K9me2 deposition on asynapsed chromosome pairs is targeted
by chromatin remodelers MET-2 and SIN-3; however, absence of either protein fails to re-establish Pol2 activation in response to pairing defects.
doi:10.1371/journal.pgen.1002267.g007
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H3K9me2 deposition in the germ line is also regulated by

EGO-1, CSR-1, EKL-1 and DRH-3, components of the small

RNA pathway. Mutation of any of these genes results in

redistribution of H3K9me2 from both asynapsed chromosomes

and the single X of males to paired chromosomes, suggesting that

this pathway does not distinguish asynapsed chromosomes from

those lacking a pairing partner [41,48]. Consistent with this, we

found that inactivation of these components results in a global

increase in apoptotic nuclei in both XX and X0 germ lines

(Checchi and Engebrecht, unpublished observations). The effect of

this small RNA pathway on transcription has not been examined;

thus, the role of this pathway in MSCI and MSUC is unclear.

Although H3K9me2 deposition on asynapsed chromosomes

neither blocks transcription nor checkpoint signaling, it does

impact fertility. MET-2 plays a subtle role in promoting the fidelity

of meiotic chromosome segregation [23] and we observed a

progressive sterility defect in both met-2 and sin-3 mutants over

successive generations (Billadeau and Checchi, unpublished

observations). H3K9me2 could facilitate the repair outcome of

breaks induced on asynapsed chromosomes by altering chromatin

structure and/or preventing inappropriate recombination between

non-homologous chromosomes. Another possibility is that

H3K9me2 marks asynapsed chromosomes to promote their

segregation in the absence of chiasma, thereby improving the

likelihood of generating euploid gametes. While the role of

H3K9me2 deposition on asynapsed chromosomes has not been

elucidated, H3K9me2 is important for genome integrity as the met-

2; sin-3 double mutant is sterile. Thus, multiple pathways mediate

H3K9me2 deposition and distribution in the germ line and the

integration of these pathways in conjunction with the chromo-

somal context result in distinct regulatory outputs including

blocking checkpoint activation and transcription, as well as

promoting genome integrity.

Meiotic checkpoint signaling can occur in the absence of
local transcriptional activation

In heterogametic (X0) germ lines depleted for met-2, both

activated Pol2 and H3K4me2, a mark corresponding to

transcriptionally competent chromatin, appear on the X chromo-

some in late pachytene, coincident with accumulation of ATL-1

(ATR) and elevated levels of apoptosis in these nuclei (Figure 1,

Figure 2, Figure 3). Further, heterogametic germ lines depleted for

either met-1 or mes-2 also exhibit elevated apoptosis as well as

ectopic, X chromosome-specific accumulation of H3K4me2 in

late pachytene (Table 1; Figure S4). Together, these data suggest

that a subset of HMTases specifies a repressive chromatin

architecture that blocks checkpoint signaling and precludes

acquisition of activating marks and transcription.

While our data do not exclude the possibility that the absence of

transcription from the single X is directly responsible for blocking

checkpoint signaling in worms, we favor the hypothesis that

chromatin architecture directly blocks checkpoint signaling for the

following reasons: One, the unmodified form of Pol2 is present on

all autosomes but is absent from the single X chromosome,

suggesting that the chromatin architecture of the X is inaccessible

to protein complexes. Because chromatin accessibility of check-

point components is critical to signaling [49], the closed chromatin

structure of the X is likely to preclude assembly of checkpoint

proteins. Two, ATR is not enriched in the nuclei of wild-type male

[19] or fem-3(lf) X0 germ cells, yet is abundant in nuclei of

heterogametic germ lines with asynapsed autosomes (e.g. zim-1)

(Figure 1B; [19]) even though the X is not transcribed in these

germ lines (Figure 3 and Figure 5C). Three, we observed

checkpoint-dependent apoptosis in both XX and X0 germ lines

depleted or mutant for him-17 (Table S1; Figure S2C; data not

shown), which results in aberrant H3K9me2 accumulation yet

normal transcriptional regulation [50], suggesting that alteration

in chromatin structure can influence checkpoint signaling without

impinging on transcription. Four, we demonstrate that checkpoint

response is dependent upon chromatin architecture but not

transcription by targeting breaks to the extra-chromosomal Mos1

substrate array in the absence of met-2. In these germ lines

H3K9me2 was abrogated and breaks elicited a checkpoint

response in the absence of the activating mark H3K4me2 or

Pol2 (Figure 6, Figure 7, and Figure S7A-S7B). Together, these

results indicate that the checkpoint response to breaks on

sequences lacking a partner is dependent upon chromatin

architecture but not transcription.

In mice, transcriptional silencing of asynapsed chromosomes or

chromosomal regions has been proposed to induce arrest or

apoptosis due to silencing of genes essential for meiosis [10]. In C.

elegans, we provide evidence that transcriptional silencing during

MSUC is not absolute, although incomplete silencing may be

sufficient to reduce the expression of genes essential for meiosis,

thereby inducing apoptosis. The role of transcriptional silencing

on checkpoint signaling in the context of MSUC awaits

identification of the machinery that blocks transcription on

asynapsed chromosomes.

A complex chromatin environment mediates sex
chromosome regulation

Histone modifications (e.g. the ‘‘histone code hypothesis’’) play

an essential role in coordinating numerous cellular processes

including the regulation of gene expression, DNA repair and

checkpoint signaling [51,52]. Here, we have uncovered a novel

role for MET-2 as well as two additional conserved HMTases,

MET-1 and MES-2, in inhibiting X chromosome-specific

checkpoint signaling. Inactivation of any one of these HMTases

results in elevated apoptosis in worms with a single X

chromosome, indicating that no single chromatin mark mediates

repression of checkpoint signaling. While MET-2 and MES-2 are

required for deposition of the repressive marks enriched on the

single unpaired X chromosome, the role of MET-1 is less clear.

MET-1 (ortholog of yeast Set2) is a H3K36 HMTase; previous

reports indicated that H3K36me corresponds to transcriptional

activation, and both yeast and human Set2 directly associate with

the elongating form of Pol2 [53,54]. On the other hand, the

mammalian Set2 ortholog Whsc functions in embryonic stem cells

as a negative regulator of transcription [55], suggesting that

H3K36me can be repressive. Consistent with a repressive role, C.

elegans met-1 was initially identified and characterized as an

inhibitor of transcription [21].

In this study we show that like met-2 and mes-2 depletion,

absence of met-1 results in an ectopic accumulation of H3K4me2

on the single unpaired X chromosome and elevated germline

apoptosis, consistent with a repressive role for MET-1 in this

process. met-1 interacts synthetically with met-2 as well as hpl-1/2,

the worm homologs of heterochromatin protein 1 (HP1) during

vulval development [21]. Furthermore, the met-1; met-2 double

mutant has synthetic effects in the germ line [21], suggesting that a

similar repressive pathway may operate to block checkpoint

signaling on the unpaired X. While the precise chromatin

environment that mediates this process is unclear, we propose

that functional interactions between MET-1, MET-2, MES-2, and

as yet unidentified factors, are necessary to promote germline

homeostasis and facilitate efficient meiotic progression and

checkpoint regulation.
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Meiotic behavior of heteromorphic sex chromosomes in
worms and mammals

Our data have uncovered a role for repressive chromatin

modifiers in mediating both transcriptional silencing and check-

point shielding of the partnerless X chromosome in C. elegans. Sex

chromosomes in mammalian males are also subject to transcrip-

tional silencing and as in worms, this appears to be mediated by

H3K9me2 deposition [26]. However, whether the orthologous

mammalian HMTases play a role in sex chromosome regulation

has not been explored. A recent study in mice provides compelling

evidence for the importance of MSCI in male fertility [56];

however, as perturbation of both transcriptional silencing and

checkpoint signaling results in elevated apoptosis it is difficult to

determine the relative contributions of these processes to ensuring

the formation of gametes from the heterogametic sex. Our

analyses in C. elegans suggest that the epigenetic landscape of sex

chromosomes is complex and plays a critical role in ensuring

transmission of sex chromosome through meiosis through both

transcriptional silencing and checkpoint shielding.

Materials and Methods

Alleles and strain maintenance
Maintenance and genetic analysis of worms were performed

using standard procedures [57]. C. elegans var. Bristol (N2) was used

as the wild-type strain. The following mutations were used in this

study: LG1, sin-3(tm1276), cep-1(gk138), met-1(n4337); LGII, pch-

2(tm1458); LGIII, met-2(n4256); LGIV, fem-3(e1996)/nT1-GFP,

him-8(me4), zim-1(tm1813); zim-2(tm574); LGV, him-17(e2806);

LGX, lon-2(e678). Some nematode strains used in this work were

provided by the Caenorhabditis Genetics Center, which is funded by

the National Institutes of Health National Center for Research

Resources (NCRR). Homozygous X0 female worms were

generated as described in [13]. Transgenic strains containing the

Mos1 template array (oxEx229) and the HSP:Mos1-transposase

array (oxEx166) were used for Mos1 mutagenesis experiments [58].

All strains were propagated at 20uC, unless otherwise noted.

Quantification of germline apoptosis
Apoptotic germline nuclei were scored in indicated worms

approximately 48 hrs post L4 larvae by acridine orange (AO) or

CED-1::GFP [24] as described in [13].

Immunofluorescence analysis
Immunostaining of germ lines was performed as described in

[59] except anti-Pol2 CTD (8WG16) staining where whole-mount

gonads were fixed in 5% formaldehyde, followed by a 2 min. post-

fix in 220uC 95% ethanol prior to washing and antibody addition.

Guinea pig anti-HIM-8 (1:500) and rabbit anti-ATL-1 (1:500)

were generous gifts from Abby Dernburg and Simon Boulton,

respectively. The following primary antibodies were purchased

and used at the indicated dilutions: rabbit anti-histone H3K9me2

and rabbit-anti-histone H3K27me3, 1:500 (Millipore; Billerica,

MA), rabbit anti-histone H3K4me2, 1:500 (Cell Signaling

Technology; Danvers, MA), mouse anti-histone H3K9me2 and

rabbit-anti-histone H3K9me3, 1:500 (AbCam; Cambridge, MA),

rabbit anti-HIM-8, 1:500 (SDIX; Newark, DE), rabbit-anti-

phospho-Chk1(Ser345), 1:50 (Santa Cruz Biotechnology, Inc.;

Santa Cruz, CA), rabbit-anti-RAD-51, 1:1000 (Novus Biologicals;

Littleton, CO) and rabbit anti-GFP, 1:500 (Novus Biologicals;

Littleton, CO). To detect the phosphorylated or unphosphorylated

form of RNA Pol II, the monoclonal antibodies H14 (Pol2 Ser5-P),

1:50 and 8WG16 (Pol2 CTD), 1:500 (Covance; Princeton, NJ)

were used, respectively. DyLightTM649 donkey anti-guinea pig

IgG (Jackson ImmunoResearch Laboratories; West Grove, PA)

and the following secondary antibodies from Molecular ProbesH
(Invitrogen; Carlsbad, California) were all used at 1:500 dilutions:

Alexa FluorH 546 goat anti-mouse IgG, Alexa FluorH 488 goat

anti-mouse IgG, Alexa FluorH 555 goat anti-rabbit IgG, Alexa

FluorH 488 goat anti-rabbit IgG, Alexa FluorH 488 goat anti-

guinea pig IgG. DAPI (Sigma, 1 mg/ml) was used to counterstain

DNA. Collection of images was performed using an API Delta

Vision deconvolution microscope. Images were deconvolved using

Applied Precision SoftWoRx image analysis software and were

subsequently processed and analyzed using ImageJ (Wayne

Rasband, NIH). All images shown are projections through data

stacks.

RNA–mediated interference (RNAi) analysis
All RNAi experiments in this study were performed at 20uC,

using the feeding method, as described in [60]. L4 larvae were fed

RNAi-inducing HT115(DE3) bacteria strains from an available

RNAi feeding library [61]. As a control, worms were fed the same

bacteria, except that it was transformed with the empty RNAi

feeding vector, L4440. RNAi constructs not available from the

feeding library (e.g. him-17 and mes-2) were cloned from a worm

cDNA library into L4440. Cultures were plated onto NGM plates

containing 25 mg/ml Carbenicillin and 1 mM IPTG. For double

RNAi experiments (see Figure 1A), parents were mated on either

control (L4440) or met-2(RNAi) plates and F1 fem-3(lf) X0 progeny

were picked as L4s and transferred to either L4440, pch-2(RNAi)

or cep-1(RNAi) plates for 48 hours before scoring.

Mos1-mediated mutagenesis
Mos1-mediated mutagenesis was performed using the protocol

described in [58]. Targeted DSBs were induced by expressing

Mos1 transposase, encoded on an extra-chromosomal array

(oxEx166) whose expression is regulated by a heat shock-inducible

promoter. To examine the consequence of DSBs targeted to an

extra-chromosomal Mos1 template array (oxEx229), double-

transgenic worms (oxEx166; oxEx229) were generated and

propagated for one generation on either OP50 or RNAi feeding

plates. Efficiency of Mos1 transposition was determined by PCR

amplification of the Mos1 sequence in the offspring of heat-

shocked worms, as described in Boulin and Bessereau [58]; at least

one Mos1 insertion was present in $80% of animals tested (data

not shown).

Supporting Information

Figure S1 RNAi depletion of met-2 disrupts H3K9me2 deposi-

tion in the heterogametic (X0) germ line. Immunolocalization of

H3K9me2 (red) in pachytene fem-3(lf) X0 germ lines fed empty

L4440 vector or met-2 dsRNA (left) and met-2(n4256) and met-

1(n4337) male germ lines (right). Germ lines were counterstained

with DAPI (blue). Scale bar = 10 mm.

(TIFF)

Figure S2 Apoptotic bodies in XX versus X0 mutant germ lines.

(A) Cytological analysis of control (L4440) fem-3(lf) X0 (top) versus

met-2(RNAi); fem-3(lf) X0 (bottom) germ lines expressing CED-

1::GFP. Germ lines were stained with anti-GFP (red) and

counterstained with DAPI (blue). White arrowheads denote

CED-1::GFP(+) nuclei. Yellow arrows indicate late-stage corpses.

Scale bar = 10 mm. (B) Number apoptotic bodies in XX (left)

versus fem-3(lf) X0 (right) germ lines as determined by CED-

1::GFP fluorescence approx. 48 hr post L4 stage. Total number of

gonads examined: N2 XX L4440, N = 296; met-2(RNAi) XX,

N = 123; met-2(n4256) XX, N = 58; fem-3(lf) X0, N = 211; met-
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2(RNAi);fem-3(lf) X0, N = 85. (C) Number of apoptotic nuclei per

gonad arm measured by acridine orange (AO) staining approx.

48 hr post L4 stage. Total number of gonads examined: N2 XX,

N = 41; met-2(n4256) XX, N = 35; met-1(n4337), N = 38; him-

17(e2806), N = 27; zim-2(tm574), N = 17. Statistical comparisons

between mutants were conducted using the two-tailed Mann-

Whitney test. * denotes p#0.001. Error bars correspond to S.E.M.

(TIFF)

Figure S3 met-2 does not affect the accumulation or processing

of X chromosome-specific DSBs. (A) Immunolocalization of

H3K9me2 (red) and RAD-51 (green) in a wild-type male germ

line. Red asterisk denotes distal tip. Scale bar = 10 mm. (B)

Histograms comparing quantification of RAD-51 foci on the

wild-type male X chromosome (left) and the met-2(n4256) male X

chromosome (right). Y axis indicates the percentage of nuclei that

contained 0, 1 or 2–3 RAD-51 foci during early pachytene (light

gray) or mid/late pachytene (dark gray). RAD-51 foci were

quantitated as described in [13]. Total number of nuclei scored:

wild-type early pachytene, N = 101; wild-type late pachytene,

N = 82; met-2 early pachytene, N = 97; met-2 late pachytene,

N = 101. No RAD-51 foci were observed in spo-11 mutants,

indicating specificity of antibody. (C) Histograms comparing

quantification of RAD-51 foci on the X chromosome in pachytene

stage rad-54(RNAi) male germ line nuclei (white; N = 48) versus

met-2;rad-54(RNAi) germ line nuclei (black; N = 49). rad-54

depletion was assessed by progeny inviability.

(TIFF)

Figure S4 H3K4me2 accumulates ectopically on the single X

chromosome in X0 germ lines depleted for met-1 or mes-2.

Immunolocalization of H3K4me2 (red) counterstained with DAPI

(blue) in fem-3(lf) X0 germ lines fed (A) met-1 dsRNA (left) or (B)

mes-2 dsRNA (right). Green outline indicates the X chromosome in

mid-pachytene (MP), late pachytene (LP), and LP/diplotene (DP),

as determined by HIM-8 staining (green). White arrows indicate

the X chromosome in DP and diakinesis (DI). Scale bar = 5 mm.

(See also Figure 2).

(TIFF)

Figure S5 SIN-3 targets H3K9me2 to asynapsed chromosome

pairs but not to a repetitive extra-chromosomal array. (A)

Immunolocalization of H3K9me2 (red) in wild-type N2 XX

(top), sin-3(RNAi) XX (middle), and met-2(RNAi) XX (bottom) in

mid-pachytene germ lines carrying the extra-chromosomal array

oxEx229. Scale bar = 10 mm. Inset: A single nucleus (indicated in

main panel by white box) accumulates H3K9me2 on the array in

wild-type and sin-3(RNAi) germ lines (top and middle) but lacks

this mark in the absence of met-2 (bottom). Red outlines indicate

the extra-chromosomal array as determined by size/chromatin

condensation. Scale bar = 1 mm. (B) him-8(me4) XX mutants fed

either empty L4440 vector (top) or sin-3 dsRNA (bottom) were

stained with H3K9me2 (red) and HIM-8 (green) and were

counterstained for DAPI (blue). Insets show individual mid-

pachytene stage nuclei. White arrowheads denote unpaired X

chromosomes (identified by HIM-8, green). Scale bar = 10 mm.

(TIFF)

Figure S6 In C. elegans, MSUC corresponds to transcriptional

inactivation of asynapsed chromosome pairs that is independent

from H3K9me2 deposition. (A) him-8(me-4), zim-1(tm1813), and

zim-2(tm574) XX germ lines stained with Pol2 Ser5-P (red) and

counterstained with DAPI (blue). In him-8(me4) XX germ lines, the

asynapsed chromosomes were identified by co-staining with HIM-

8 (green). Inset: An asynapsed late pachytene chromosome pair

(indicated by white arrowheads) lacks Pol2 Ser5-P staining. Scale

bar = 10 mm. (B) Whole-mount him-8(me-4) XX germ line stained

with Pol2 Ser5-P (red) and H3K9me2 (green) and were

counterstained with DAPI (blue). White arrow (in merge) indicates

direction of meiotic progression. Boxed section corresponds to

inset. Scale bar = 10 mm. Inset: Most late pachytene nuclei lack

Pol2 Ser5-P staining on the asynapsed X chromosome pairs

(indicated by white arrowheads), but this does not always

correspond to H3K9me2 deposition. Scale bar = 5 mm. (C) met-

2(RNAi);him-8(me-4) XX pachytene nuclei stained with Pol2 Ser5-

P and H3K9me2 (green) and counterstained with DAPI (red) are

completely devoid H3K9me2 yet do not affect transcription on the

asynapsed X chromosomes. Scale bar = 5 mm.

(TIFF)

Figure S7 On an unpaired, extra-chromosomal array, absence

of MET-2 does not affect H3K4me2 and H3K9me3 dynamics.

(A–B) Immunolocalization of H3K4me2 (green) and H3K9me2

(blue) in wild-type XX germline nuclei (top panels) versus met-

2(RNAi) XX nuclei (bottom panels) containing the extra-

chromosomal array oxEx229. Germ lines were counterstained

with DAPI (red). White arrows correspond to oxEx229 in late

pachytene nuclei (A) and diakinesis nuclei (B). Array was identified

by size/chromatin condensation (A–C). (C) Immunolocalization of

H3K9me3 (red) in wild-type XX germ lines (top) and met-2(RNAi)

XX germ lines (bottom) carrying oxEx229. Germ lines were

counterstained with DAPI (blue). White arrows correspond to

oxEx229 in late pachytene stage nuclei. Mid-pachytene (MP); Late

pachytene (LP); diplotene (DP); diakinesis (DI). Scale bar = 5 mm.

(TIFF)

Table S1 Candidate genes surveyed for CED-1::GFP(+) nuclei.

Apoptotic bodies were scored by quantifying CED-1::GFP

expressing nuclei per gonad arm. A minimum of 24 gonad arms

was scored for each genotype. Animals were screened by picking

either L4 wild-type XX hermaphrodites or young adult fem-3(lf)

X0 females expressing CED-1::GFP to RNAi feeding plates (see

Materials and Methods) and scored after approx. 48 hrs. syp-

1(RNAi) and him-8(RNAi) were used as positive controls in fem-

3(lf) X0 and wild-type XX germ lines, respectively. Data shown

are means 6 S.E.M., and statistical comparisons between RNAi

knockdown and empty L4440 vector were determined using a

two-tailed Mann-Whitney test; ** denotes p,0.05; * denotes

p,0.001. Abbreviations: SC, synaptonemal complex; CO,

crossover; PC, pairing center; HP, heterochromatin protein;

HAT, histone acetyltransferase; HDAC, histone deacetylase;

HMT, histone methyltransferase; HDMT, histone demethylase.

(XLS)
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