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Abstract

The public health and economic consequences of Plasmodium falciparum malaria are once again
regarded as priorities for global development. There has been much speculation on whether
anthropogenic climate change is exacerbating the malaria problem, especially in areas of high
altitude where P. falciparum transmission is limited by low temperaturel-4. The International
Panel on Climate Change has concluded that there is likely to be a net extension in the distribution
of malaria and an increase in incidence within this range®. We investigated long-term
meteorological trends in four high-altitude sites in East Africa, where increases in malaria have
been reported in the past two decades. Here we show that temperature, rainfall, vapour pressure
and the number of months suitable for P. falciparum transmission have not changed significantly
during the past century or during the period of reported malaria resurgence. A high degree of
temporal and spatial variation in the climate of East Africa suggests further that claimed
associations between local malaria resurgences and regional changes in climate are overly
simplistic.

The resurgence of malaria caused by P. falciparum in the East African highlands has been
reported widely (see Supplementary Information). From 1986 to 1998, the tea estates of
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Kericho in western Kenya saw a rise in severe malaria cases from 16 to 120 per 1,000 per
year8. In Kabale, southwestern Uganda, the average monthly incidence has increased from
about 17 cases per 1,000 (1992-96 average) to 24 cases per 1,000 (1997-98 average)’:8.
Gikonko in southern Rwanda has seen annual incidence rise from 160 to 260 cases per 1,000
from 1976 to 1990 (ref. 1). Muhanga in northern Burundi had an average of 18 malaria
deaths per 1,000 during the 1980s, which rose to between 25 and 35 deaths per 1,000 in
1991 (ref. 9). These increases, considered alongside evidence of a global increase in the
average surface temperature of 0.6 °C this centuryl9, have fuelled speculation that
temperature-related increases in transmission of A, falciparum are already manifestl-4.
Although these claims have met with robust counter argument!1.12, there has been no critical
examination of climate change at these sites.

We have investigated long-term trends in meteorological data at these four highland sites
using a 95-year data set of global terrestrial climate1314 (see Supplementary Information).
Reliable data were available for monthly mean temperature, vapour pressure and rainfall
from January 1911 to December 1995. Reliable data for diurnal temperature range (DTR)
spanned the 1950-95 period. We excluded observations from periods when the distribution
of meteorological stations was too sparse for reliable interpolation4. The remaining data
were divided into two sample periods before being examined for trends using augmented
Dickey—Fuller (ADF) test procedures®16,

To make use of the longest series possible from the primary meteorological variables
(Methods), but exclude the anomalous pre-1911 data, we tested monthly mean temperature,
rainfall and vapour pressure from January 1911 to December 1995 (Table 1). To check that
a low signal-to-noise ratio in the monthly data was not causing false rejection of the null
hypothesis of a stochastic trend, the analyses were repeated on average annual data for the
same period (Table 2). The suitability of each month for P. falciparum malaria transmission
depends on a combination of temperature and rainfall conditions!?; the annual numbers of
such months were tested for trends from 1901 to 1995 (Table 2, Fig. 1). In addition, ADF
tests for the period January 1970 to December 1995 were examined for trends in the
monthly data during the period coincident with the reported resurgences in malaria (Table 3,
Fig. 2). These tests also included the additional secondary variables (Methods) of monthly
minimum and maximum temperature (Table 3) to check for trends in temperature range that
might have been masked by analyses of monthly mean data.

The ADF tests indicated that all of the monthly meteorological time series during the two
time periods examined were stationary around a linear time trend (that is, contained no
stochastic trends); therefore, standard statistical distributions could be applied and used to
infer whether time trends were present. If all the time series actually contain random walks,
then we would find no trends, because the #statistics associated with a are not significant.
We adjusted adequately for serial autocorrelation in all tests (Q statistic not significant).

The analyses showed that there were no significant changes in temperature or vapour
pressure at any of the four locations during the 1911-95 period. Rainfall increased only at
Muhanga, and the months suitable for P. falciparum transmission increased only at Kabale.
The average number of months suitable for transmission was consistently low, which
validated the choice of highland locations as areas that are sensitive to climate-mediated
increases in malaria transmission. There were also no changes in any of the meteorological
variables during the period after 1970. Several of the ADF tests repeated with the annual
data indicated the presence of stochastic trends. Because malaria transmission responds to
climate, the presence of a random walk in the climate data could induce a random walk (but
without a significant drift) in the malaria data. But in these cases the #statistic for a is not
significant, and thus there is no systematic drift in the series. At Muhanga, the annual data,
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similar to the monthly data, show a significant increase in rainfall. The absence of long- and
short-term change in the climate variables and the duration of A. falciparum malaria
transmission suitability at these highland sites are not consistent with the simplistic notion
that recent malaria resurgences in these areas are caused by rising temperatures.

Further analysis showed significant spatial and temporal variation in the differences between
mean decadal temperature and rainfall (Fig. 3) and their respective 1901-95 averages.
Positive and negative deviations in a decade can be greater than any of the long-term
differences shown in Table 1; cooling and wetting in the 1960s are particularly evident.
Marked independent and variable changes in meteorological conditions have also been
found in recent analyses of minimum and maximum temperature trends in the East African
subregion, using daily records from 71 meteorological stations between 1939 and 1992 (ref.
17). These complexities warn against attributing local changes in malaria transmission
simply to a regional warming of the East African highlands. For example, the decadal means
from 1971 to 1995 show a general warming and wetting coincident with the resurgence of
malaria in the past two decades, but historical data from Kerichol® show a series of very
severe malaria epidemics in the 1940s—a decade that was substantially cooler and drier than
average. Similar inconsistencies in attributing recent epidemiological changes to climate
have been identified for the highlands of Uganda, Tanzania and Madagascarl2.

If climate has not changed at the four study sites, other changes must have been responsible
for the observed increases in malaria. At Kericho, the evidence suggests that the control of
malaria implemented since the large epidemics of the 1940s (ref. 18) has failed recently
because of a rise in antimalarial drug resistance®19. Like wise, the resurgence of malaria in
the Usambara mountains of Tanzania has been linked to a rise in drug resistance??, casting
doubt on the previous interpretation of local changes in climate caused by deforestation?!. In
southern Uganda, epidemiological changes have been attributed to the shorter-term climate
phenomenon of El Nifio”, which is suggested to cause changes in vector abundance®. At
Muhanga, both land use changes and elevated temperatures have been proposed to have
caused the malaria increases®. In other highland locations in Africa, increases in malaria
have been attributed to population migration and the breakdown in both health service
provision and vector control operations22. Economic, social and political factors can
therefore explain recent resurgences in malaria and other mosquito-borne diseases? with no
need to invoke climate change.

Global climate change continues to generate considerable political, public and academic
interest and controversy, reflected in conflicting statements from international bodies on
climate change and its implications for human health®23 (see Supplementary Information).
We have shown that at four sites in the highlands of East Africa there has been very little
change in any meteorological variables during the past century or during the period of
reported malaria resurgences. In addition, the spatio-temporal variability of the climate in
the region suggests that any links between malaria increases and climate change can only be
examined using data coincident in space and time. The most parsimonious explanation for
recent changes in malaria epidemiology involves factors other than climate change. The
more certain climatologists become that humans are affecting global climates, the more
critical epidemiologists should be of the evidence indicating that these changes affect
malaria.

Meteorological data were obtained from a global 0.5 x 0.5° gridded data set of monthly
terrestrial surface climate for the 1901-95 period13:14. Primary variables of precipitation
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(hereafter rainfall), mean temperature and DTR were interpolated from extensive
meteorological station records using angular distance weighted averaging of anomaly fields
to produce spatially contiguous climate surfaces'314. The secondary variable of vapour
pressure was interpolated where available, and calculated from primary variables where the
coverage of meteorological stations was insufficient. Minimum and maximum monthly
temperature estimates were created from the original climate surfaces by subtracting or
adding, respectively, half the DTR from mean monthly temperature. Time series were
derived for each of the highland study sites using an extraction routine developed in ENVI
(Research Systems) and georeferencing information obtained from Encarta (Microsoft). We
selected subsets of the full climatic data series for trend analysis as described in the main
text.

To investigate whether a combination of meteorological conditions, or the occurrence of
extreme meteorological events, was changing to facilitate transmission, we categorized
months as suitable for malaria transmission using threshold figures defined for the highland
regions of Kenya24: that is, mean monthly temperature above 15 °C and total monthly
rainfall exceeding 152 mm. Two consecutive months of such conditions are required to
develop a population of infective mosquitoes. The numbers of suitable months for
transmission were summed for each year and tested from 1901 to 1995.

Statistical theory

If a time series can be characterized as the sum of a stationary stochastic process and a linear
time trend, then the appropriate test for a trend is to regress the series on a linear trend and
carry out a #test on the slope. If the series is a random walk, or a more complex
stochastically trending process, the critical levels for the distribution of the #score in this
regression are much greater than usual® and alternative tests should be used. Because many
climate time series contain a stochastically trending component28, the nature of the series
must be explored before testing for climate change.

In the first-order autoregressive model:
yi=a+py; 1 +Bt+€& (1)

where a, fand p are regression parameters, &;is normally distributed with mean zero, and ¢
is a deterministic time trend. If the autoregressive parameter, p, is <1, the effects of the
shocks introduced by the error term e;fade over time. In addition, if 8is zero the variable y
has a constant mean and is stationary. If Bis not zero, then yis non-stationary, but
subtraction of St from both sides of equation (1) would yield a stationary process with g
distributed normally; in this case yis called a trend-stationary variable.

If p=1 (a unit root in the autoregressive process) and =0, then yis a random walk. The
random walk may also have a deterministic drift term (a # 0). In either case, however, the
series is non-stationary and classical regression inference does not apply. The non-standard
distributions of a, #and p have been tabulated!16.

Statistical methods

We estimate the following generalization of equation (1):

4 12
Ay=a+B+yyi-1 +Z§1Ay,_1 +Z“J'd/+€f 7
i=1 j=1
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which allows for higher order autoregressive terms through the lagged dependent variables
and for seasonal effects by way of the centred dummy variables, gj, that model monthly
variations in climate for the monthly meteorological series. The coefficients ;sum to zero.
We chose the number of lags, p, using the adjusted /2 statistic. The maximal number of
lags, p, considered was 12 for the monthly and 4 for the annual series. }4.1 has been
subtracted from both sides of equation (2) and therefore = (o — 1). The null hypothesis is
that 5 = 0, which implies that yis a random walk with drift a; the alternative hypothesis is
that yis a trend-stationary variable with slope 8. The critical value for the ADF £statistic
associated with y at the 5% level is —3.45. Values of the #statistic for a more negative value
of ythan this critical value indicate that the series is not a random walk and vice versa. If
the null hypothesis is rejected, then the #statistics associated with a and g are normally
distributed. If the unit root hypothesis is accepted, then these statistics also have non-
standard distributions. The correct test for a trend is, then, the #test on a in a version of
equation (2) that omits the linear trend. Its critical value at the 5% significance level is 2.54.
Because meteorological time series may be noisy and result in the ADF test incorrectly
rejecting the null hypothesis that y = 0 (ref. 27), we present the £statistic for a, even when
the stochastic trend hypothesis is formally rejected. The tests were also repeated on annual
data for the full time period to check whether the reduction in noise caused by annual
averaging affected the results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Number of months suitable for P. falciparum malaria transmission defined by the Garnham

criteria (temperature > 15 °C and rainfall > 152 mm in two consecutive months)24. Shown
are annual observations from 1901 to 1995 for Kericho (a), Kabale (b), Gikonko (c) and

Muhanga (d).
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Figure 2.

Meteorological time series from Kericho. a, Minimum (bottom), mean (middle) and
maximum (top) monthly temperatures, plotted with a 13-point moving average (thick line)
to show the long-term movement in these data. b, Total monthly rainfall, plotted with a 13-
point moving average (thick line). For a comprehensive version with time series for all four
highland sites, see Supplementary Information.
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Figure 3.

Spatio-temporal variation in temperature and rainfall in East Africa. a, Mean monthly
temperature for the 1901-95 period, and deviations from this long-term average by decade
(1940-95). The four sites are indicated: 1, Kericho; 2, Kabale; 3, Gikonko; 4, Muhanga. b,
Mean monthly rainfall for the 1901-95 period, and deviations from this long-term average
by decade (1940-95).
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