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Abstract
This study explores a method to characterize temporal structure of intermittent phase locking in
oscillatory systems. When an oscillatory system is in a weakly synchronized regime away from a
synchronization threshold, it spends most of the time in parts of its phase space away from
synchronization state. Therefore characteristics of dynamics near this state (such as its stability
properties/Lyapunov exponents or distributions of the durations of synchronized episodes) do not
describe system’s dynamics for most of the time. We consider an approach to characterize the
system dynamics in this case, by exploring the relationship between the phases on each cycle of
oscillations. If some overall level of phase locking is present, one can quantify when and for how
long phase locking is lost, and how the system returns back to the phase-locked state. We consider
several examples to illustrate this approach: coupled skewed tent maps, which stability can be
evaluated analytically, coupled Rössler and Lorenz oscillators, undergoing through different
intermittencies on the way to phase synchronization, and a more complex example of coupled
neurons. We show that the obtained measures can describe the differences in the dynamics and
temporal structure of synchronization/desynchronization events for the systems with similar
overall level of phase locking and similar stability of synchronized state.

I. INTRODUCTION
Synchronization of oscillations is a widespread phenomenon in physical sciences and
beyond [1, 2], including physiology [3] and neuroscience [4, 5], and has being studied using
approaches and methods of physics and nonlinear dynamics even in that applied context [6,
7]. In particular, phase synchronization, dynamical phenomena where the phases of
oscillations approach each other with time while both phases may remain chaotic and their
amplitudes remain uncorrelated, appears to be quite common in nature and is well-studied
[1]. It is known that for some parameter values (usually, moderate coupling strength), phase
synchronization can occur in an intermittent fashion [8–10]. It will present itself as an
intermittent phase locking. The phase difference of two oscillators is close to constant
during finite time intervals. These intervals of temporal synchronization epochs are random
and interspersed by desynchronization events which are characterized by varying phase
differences. Different types of intermittent behaviors may take place in different systems
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[10] and transition through intermittency may depend on the geometric structure of chaotic
attractors [11]. Three types of intermittencies have been observed near the onset of phase
synchronization: the type-I intermittency [8], the eyelet intermittency [8, 12], and the ring
intermittency [9].

Different approaches to synchronization analysis exist. One may approach the problem from
the time-series analysis perspective, characterizing how much time-series are correlated in
some particular sense. This view essentially tells how close we are to the synchronized state.
Another approach is to study the stability of the synchronized state, via, for example,
Lyapunov exponents, so that small positive Lyapunov exponents will describe the weak
instability and, potentially, intermittency of synchronization. Lyapunov exponents,
distribution of durations of synchronized episodes etc. are ways to explore the synchronized
state/synchronization manifold. Certain universality of behavior of a weekly unstable
synchronization is expected and is captured by these approaches. Studies of Lyapunov
exponents spectra [13] may go further and explore the synchronous/desynchronous states
dynamics in the vicinity of the saddle-node bifurcation point. However, these approaches
become less powerful when the system is far away from bifurcation point and do not
describe the desynchronized episodes of intermittent or otherwise variable and weak
synchronization in a wide range of parameter space. The desynchronized dynamics
(“reinjection mechanisms” in intermittency terminology) may be not universal and depend
on the peculiarities of the system under study.

If the system is in imperfectly synchronized state, but is still close to synchronization
threshold (the case, which is probably expected in many physics or engineering
applications), it spends most of the time in an almost synchronized state (near
synchronization manifold) and the focus on this state is natural. However, the synchrony can
be weak. In particular, in living systems the synchronization may be very imperfect and
weak, and too strong synchrony (high degree of temporal coordination) may be responsible
for pathological states, such as schizophrenia or Parkinson’s disease [14, 15]. In terms of the
phase space, the system spends relatively small fraction of time near synchronization
manifold in the phase space. Thus even if Lyapunov exponents or distributions of the
durations of synchronized episodes may be informative about this part of dynamics, they do
not tell much about dynamics overall, because it is mostly desynchronized. This calls for the
study of the highly-variable synchrony and for the study of the structure of the phase space
away from the relatively strongly unstable synchronization manifold. One may not expect
much of universality here, but the characterization of this dynamics should be possible.

One approach is to characterize the degree of synchronization for a series of sliding time-
windows and obtain statistical estimates of significance (as in, for example, [16]). This may
reveal important details of synchronized dynamics, not accessible otherwise (as in [17] for
the case of tremor oscillations). However, synchronization is not instantaneous phenomena,
so this approach is not designed to detect changes in the dynamics on the very short time-
scales. Yet, changes of this kind (very intermittent, variable synchronization) have been
observed experimentally and have been conjectured to have functional significance [18, 19].

Another example, where the fine temporal details of synchrony may be relevant may come
from ecological dynamics. Synchronization in ecological dynamics is hardly perfect. It was
conjectured that prolong zero-lag synchronization elevates risks of extinction, so that there is
an interest in these cases (reviewed in, e.g. [20]). One may want to distinguish between the
moderate level of synchrony with few prolong synchronized episodes and many short
synchronized episodes.

Ahn et al. Page 2

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Here we expand on the approach of [18] and study a method to analyze intermittent and
weak phase locking from the nonlinear dynamics perspective. This approach is based on the
constructions of the first-return maps for the difference of phases, partition of the resulting
phase space into synchronized and non-synchronized regions and the analysis of transitions
between them. We show that for the case when some overall level of phase locking is
present, one can characterize how this phase locking (properly defined) is gained,
maintained or lost for each cycle of oscillations and what it means in terms of the
organization for the phase space of coupled oscillators system. We do so with examples
drawn from several typical model systems, ranging from simple coupled tent maps to more
realistic conductance-based models of coupled cells. We also show how one can
characterize the differences in the dynamics of coupled systems, which undergo through the
same kind of intermittency and posses the same stability properties of synchronization
manifold.

The structure of this paper is the following. Section II presents the set up of the method.
Section III considers the method as applied to the dynamics of simple coupled maps. Section
IV considers different types of intermittencies for phase synchronization. Section V
illustrates the ideas of the paper for a more complex dynamical system. Finally, in Section
VI we discuss the main ideas behind the method, summarize its properties, and discuss its
applicability and possible further developments.

II. METHODS TO STUDY THE TEMPORAL VARIABILITY OF THE
SYNCHRONIZATION

Suppose that two oscillatory signals allow for a reasonably good reconstruction of their
phases φ1(t) and φ2(t). In a discrete-time version (and thus applicable to experimentally
obtained data) one can consider a standard index to characterize the strength of the phase
locking between these two signals:

(1)

where θ(tj) = φ1(tj) − φ2(tj) is the phase difference. This synchronization index varies from 0
to 1, that is from complete lack of phase locking to perfect phase locking (and does not tell
anything about amplitudes of the signals). One may also compute Lyapunov exponents,
which characterize stability of the synchronization manifold. In general, negative values of
all transversal Lyapunov exponents are not necessarily sufficient to guarantee perfect
synchronization [1], nevertheless their values describe the degree of stability/instability of
the synchronized state and the strength of synchronization.

As we explained in the Introduction, these measures are not designed to describe the fine
temporal structure of the dynamics, which motivates the following approach (its major steps
were sketched by us in [18] and its explanation, validation and properties are presented in
subsequent sections of this paper). First, one needs to confirm that there exist some degree
of phase locking between the phases of two variables x and y. This can be detected, for
example, by computing the Eq. (1) and comparing the resulting value of γ against some kind
of significance value, computed analytically or via surrogates [16]. It should be emphasized
here that our method allows for an analysis of the temporal development of phase difference
if some level of synchrony (some preferred phase-locking angle) is present. It makes no
sense if there were no synchrony between the signals at all.
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Then set up a check point for the phase of y: whenever the phase of y crosses this check
point from below, record the phase value of x, generating a set of consecutive phase values
{φx,i}, i = 1, …, N, where N is the number of such level crossings in an episode under
analysis. Then plot φx,i+1 vs. φx,i for i = 1, …, N − 1. The properties of these plots will
characterize the dynamics of the synchronization. A tendency for predominantly
synchronous dynamics will appear as a cluster of points, with the center at the diagonal
φx,i+1 = φx,i.

After determining the center of the cluster (that is, determining the preferred phase
difference between two signals, at which they have the tendency to be locked) all values of
the phases are shifted to a position with the center of the first region (quadrant) (see Fig. 1).
This step is not necessary and is done here for the uniformity of the analysis. Then we
consider how the system leaves the synchronization cluster and its vicinity and how it
returns back to the synchronization by quantifying transitions between different regions of
the (φx,i, φx,i+1) space.

This phase space is then partitioned into four regions as illustrated in Fig. 1 (let us remind,
that the space of (φx,i, φx,i+1) is in fact torus). While the system is in the first region, it is
considered to be in a synchronized state. Dynamics outside of the first region will be called a
desynchronized state. Thus the synchronized state here is the one, where the deviation from
the preferred phase angle is less than π/2. This is a compromise value: not too small to allow
for some moderate fluctuations of the phases; not too large to allow for the phases to be
sufficiently related and to be involved in some function. It also allows for symmetric
partitioning of the phase space and definition of a few easy-to-compute transition rates (see
below). Some situations may require a different definition of the synchronized state and the
rest of the method will need to be modified. Nevertheless, even though this partition is quite
coarse, it allows for an inspection of the fine temporal details, as we will show below. Four
resulting regions in the phase space are numbered in a clockwise manner (Fig. 1), since this
is the primary direction of the dynamics. An example of the first-return map for two coupled
Lorenz oscillators is presented in Fig. 2 (detailed study of this system with the method
described here is in the Section IV, see Fig. 7).

Transition rates ri (i = 1, 2, 3, 4) for the transitions between four regions of the map are
defined as the number of points in a region, from which the system leaves the region,
divided by the total number of points in that region. For example, r1 is the ratio of the
number of trajectories escaping the first region for the second region to the number of all
points in the first region. While the time-averaged measures of synchrony characterize
whether the synchronization is strong or weak overall, utilization of these rates lets us
explore the dynamics of the synchronization in time.

Further exploring the properties of the dynamics in the space (φx,i, φx,i+1), one may compute
the relative frequencies of desynchronization events of different durations. In the considered
first-return map approach, the duration of a desynchronization event is the number of steps
that system spends away from the first region minus one (because, the point on the map has
two coordinates, one of which is a “future” phase). The shortest duration of the
desynchronization event corresponds to the shortest path 2-4-1 (note that the
desynchronization will always start at the second region by the virtue of our description of
the dynamics). This will correspond to the desynchronization length of one cycle (in other
words, in two cycles the phases are back in a locked state). If we want to consider the
chance of the duration of two cycles, we should consider the path 2-3-4-1. Longer
desynchronization events will have many different paths corresponding to them. We will
systematically compute the relative frequencies of the desynchronization events of different
durations in the Section IV for different systems.
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The transition rates r2,3,4 are related to the durations of desynchronizations. Higher values of
r2,3,4 promote short desynchronization episodes, while their low values promote long
desynchronization events (note that for a well-synchronized dynamics, there may be very
few points in the third quadrant, and numerical estimation of r3 may be unreliable). If
transitions are independent then the relative frequencies of the durations of
desynchronization events can be estimated by multiplying the corresponding rates of the
transitions for different paths. For example, to estimate the probability of a
desynchronization event of the shortest duration we should consider the shortest path 2-4-1
and the corresponding probability is r2r4. This will correspond to the desynchronization
length of one cycle. Longer desynchronizations will require summation of the products of
rates corresponding to longer paths of equal length. In general, this independence (or near
independence) may or may not be in place, but we consider several examples, where the
difference is not large and the rates r2,3,4 really describe the desynchronization durations.

The rate r1 is related to the averaged duration of the laminar phase and thus characterizes the
property of synchronized state. The average duration of the synchronized phase <ℓ> (for an
intermittency near onset of phase synchronization, this quantity usually scales in a universal
manner for specific intermittency types) is inversely proportional to r1:

(2)

and <ℓ>= 1/r1, if <ℓ> is measured in the number of iterations of the map φx,i, which is
essentially the number of cycles of oscillations. The closer r1 is to 1, the more frequently the
synchronized dynamics is interrupted.

Thus the rates permit evaluation of whether the weakness of synchrony is due to a few
relatively long desynchronization events or to large number of short desynchronization
events.

III. COUPLED MAPS EXAMPLE
In this section we consider behavior of rates for different parameter values (and thus for
different transversal Lyapunov exponents of synchronized state and the synchronization
index γ) in a simple system. We consider linearly coupled skew tent maps. This relatively
simple map allows for exact computation of Lyapunov exponents. The properties of the
phase space depend on the parameters in a simple way. Thus we are able to see the
relationship between system’s parameters, dynamics, Lyapunov exponents and the rates ri.
This system is not necessarily an appropriate choice for the study of phase synchronization
as a dynamical phenomenon, when phases are correlated and amplitude are not [21].
However we are not as much concerned with the phase synchronization per se in this sense,
as we are concerned with a simple treatable example of synchronous dynamics here.
Therefore, coupled skew tent maps prove a possibility to illustrate our ideas in a simple
system, where analytical treatment is partially possible.

Consider a skew tent map

(3)

where 0 < a < 1. We will use two such maps with variables x and y. Let us consider the
following coupling:
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(4)

where ε is the coupling strength.

To characterize synchrony between x and y, we consider a new variable

(5)

which will be an analog of the phase difference described above. In these coupled maps,
synchronous state x = y is stable for ε > εc where the critical value εc < 1/2. Note that θ in
Eq. (5) varies between −1 and 1 while the phase variable φi in Fig. 1 varies between −π and
π. In this section, we rescale the phase diagram accordingly to define the transition rates ri.

Two Lyapunov exponents can be computed analytically (see e.g. [1]):

(6)

The first Lyapunov exponent λ(a) corresponds to the motion governed by the one-
dimensional dynamical system x(t + 1) = f(a, x(t)) whose subspace is {(x, y)|x = y}. The
second, transversal Lyapunov exponent λ⊥ (a, ε) characterizes the dynamics transverse to
that invariant subspace. Note that λ(a) is always positive for 0 < a < 1 and has a maximum ln
2 at a = 1/2. Since λ⊥ (a, ε) = λ(a) + ln |1 − 2ε|, the transversal Lyapunov exponent λ⊥ (a, ε)
can change from positive to negative depending on a and ε. Both Lyapunov exponents are
symmetric around a = 1/2. That is, λ(a) = λ(1 − a) and λ⊥ (a, ε) = λ⊥ (1 − a, ε). The
synchronization stability threshold λ⊥ (a, εc) = 0 is reached at .

It is interesting to note that the coupled maps (Eqs. (3) and (4)) have exact solutions when
the system is at a bifurcation point and is not robust. For example, for with a = 1/2 and ε =
1/4 (and thus λ = ln 2 and λ⊥ = 0) initial conditions (x, y) = (0.46, 0.5) lead to a period-20
trajectory and initial conditions (x, y) = (0.044, 0.052) lead to a period-100 trajectory. These
trajectories are not hard to compute, and then one can formally compute ri (r1 = 2/5, r2 =
3/5, r3 = 2/5, and r4 = 2/5 for the former trajectory and r1 = 13/25, r2 = 12/25, r3 = 13/25,
and r4 = 13/25 for the latter). However, the system does not exhibit synchronous behavior,
there is no single preferred value for the difference of variables θ, and computation of rates
is not appropriate.

We numerically iterate the coupled maps (Eqs. (3) and (4)) and compute the rates ri for
different a and ε. We vary a from 0.125 to 0.35 with step size 0.025 and ε = (1 − kaa(1 −
a)1−a)/2 where k varies from 1.05 to 1.45 with step size 0.05 (with this set-up λ⊥ = ln k).
Fig. 3 shows the relationship between λ⊥ and the rates ri. Each dot represents a different pair
of (a, ε). Since λ⊥ characterizes the evolution of the trajectory transverse to the invariant
subspace {(x, y) | x = y}, the smaller λ⊥ corresponds to less unstable manifold and more
synchronized dynamics, which results in the smaller r1. As λ⊥ decreases, the points (x, y)
coalesce to the diagonal line x = y in the (x, y) plane. This shortens the duration of
desynchronization events and increases the reinjection probability to the synchronous state.
Thus, r1 tends to decrease while r2,4 tend to increase as λ⊥ decreases. However, one can
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clearly see that the same value of λ⊥ may correspond to drastically different rates and thus to
different timing of synchronized/desynchronized dynamics.

If there is no point in the given region, then the transition rate at that region is undefined. As
λ⊥ decreases, the system spends less and less time in desynchronous regions. This makes the
number of points in the third region extremely small (or sometimes zero). Thus numerically
computed values of r3 are less reliable in this case (or are undefined, as is the case of r3 for
small λ⊥ in Fig. 3(c)).

We now consider some specific parameter values to show that the transition rates can
effectively discriminate two different systems with identical λ⊥ and similar γ. Fig. 4(a)
shows coupled skew tent maps for a = 0.3 and a = 0.7. Their two Lyapunov exponents are
exactly the same because of their symmetry around a = 1/2, but the maps are clearly
different and their dynamics are different. Fig. 4(b) illustrates how coinciding transversal
Lyapunov exponents λ⊥ (stability property) and synchronization indices γ (average strength
of phase locking) for both maps depend on ε. For these values of a the threshold value of
coupling is εc ≈ 0.2286.

However, Fig. 5 shows that the rates ri for a = 0.3 and a = 0.7 are different and sometimes
substantially different for a range of ε ∈ (0, 0.15). The values of the rate r1 are essentially
the same, as one may expect, because r1 is related to the stability of synchronized state,
which is the same for both cases. The other rates present a different picture. The system with
a = 0.7 (thin solid line in Fig. 5) has higher r2,3,4 for almost all range of ε than those of a =
0.3 (thick solid line), which suggests the stronger tendency for shorter desynchronization
events.

As the coupling εincreases to synchronization threshold value, the rates r2,3,4 are undefined
while r1 decreases to zero. This is expected because the system spends most of (if not all)
the time in the vicinity of the synchronized manifold. Thus, the dynamics is mostly
synchronized and the rates are not much relevant. The rate r1 ≈ 0 at ε ≈ 0.15 < εc ≈ 0.2286.
This probably happens because our partition of the phase space of the first-return map for
the phase difference implies that r1 = 0 and dynamics is synchronous when the deviation
from the complete synchrony θ = 0 is less than 1/2. But θ(t) can still fluctuate in some
smaller limits, which is what happens for ε in the interval of about (0.15, 0.2286).

This simple case illustrates that although the stability of the synchronization manifold is the
same for two systems, their dynamics can be substantially different. Lyapunov exponents
and synchronization index γ naturally are unable to capture the differences. However, the
analysis using the transition rates can distinguish two different systems and provide the
temporal details of dynamical behaviors.

IV. ANALYSIS OF THREE DIFFERENT INTERMITTENCY TYPES
Intermittently synchronized dynamics can be observed near boundary of synchronization. So
far, three types of intermittencies near the onset of phase synchronization have been
observed: the type-I intermittency [8], the eyelet intermittency [8, 12], and the ring
intermittency [9].

In this section, we will study these three types of intermittent behaviors in coupled chaotic
oscillators with techniques described in Section II. First, we will look at the type-I and the
eyelet intermittencies in bidirectionally coupled Rössler oscillators and bidirectionally
coupled Lorenz oscillators. And then, we will look at the eyelet and the ring intermittencies
in unidirectionally coupled Rössler oscillators.
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Intermittency types are characterized by the probability distribution of the laminar
(synchronized in our context) phase length ℓ and the scaling behavior of the mean laminar
phase length <ℓ>. As far as the type-I and the eyelet intermittencies are concerned, coupled
Rössler oscillators and coupled Lorenz oscillators with small frequency detuning show the
same scaling properties of synchronous episodes near and away from the point of bifurcation
[8, 12]. However, we will show that there are important differences in timing of dynamical
behavior.

We consider two coupled chaotic Rössler oscillators:

(7)

where ω1,2 are the natural frequencies of each chaotic oscillator and ε1,2 measure the
strengths of the linear coupling. The phase difference is obtained by

(8)

We also consider two coupled chaotic Lorenz oscillators:

(9)

where γ1,2 are parameters for the frequency detuning of each chaotic oscillator and ε
measures the strength of the linear coupling. As in [8], by defining a new variable

 a phase can be defined on the (u, z) plane. The phase difference is obtained by

(10)

where (û1, ẑ1), (û2, ẑ2) are unstable fixed points in the middle of the trajectories rotating in
the (u, z) plane.

A. Type-I intermittency
In coupled Rössler oscillators, let us assume that the difference between ω1 and ω2 is small
and the systems are bidirectionally coupled with ε1,2 = ε. When ω1 = 1.015 and ω2 = 0.985,
Lee et al. [8] found the first critical value εt = 0.0276 where θ increases in a nearly periodic
sequence of 2π jumps. They showed that for ε < εt, the mean laminar phase length <ℓ>
obeys the scaling rule

(11)
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In coupled Lorenz oscillators, let us again assume that the difference between γ1 and γ2 is
small. When γ1 = 1.5 and γ2 = −1.5, Lee. et al. [8] also found the first critical value εt = 6.7.
The phase desynchronization occurs with 2π phase slip, but it shows ±2π irregular phase
jumping behaviors which are different from coupled Rössler oscillators. However, the
probability distribution of the laminar phase length ℓ and the scaling rule of the mean
laminar phase length <ℓ> are the same as coupled Rössler oscillators. The scaling rule
together with the corresponding probability distributions of synchronous episodes suggest
that these two systems are in the type-I intermittency.

Figs. 6 and 7 show the rates ri and the relative frequencies of the desynchronization events
of different durations for a range of coupling strength. By comparing Fig. 6 with Fig. 7, one
can tell that two coupled systems exhibit different temporal features of the dynamics.

In Fig. 6(b), the probability of the long desynchronization events (longer than 5 cycles of
oscillations) is in the range of about (0.8, 0.9) while in Fig. 7(b), this probability is in the
range of about (0, 0.25). This is true, in particular, for similar values of γ. Since coupled
Rössler oscillators have high probability of long cycles, two oscillators spend long time in
the desynchronized state once the trajectory leaves synchronous state. However it does so
very rarely. Coupled Lorenz oscillators (Fig. 7) present a different temporal dynamics. Short
desynchronization cycles prevail and the comparable values of γ are reached with a larger
number of short desynchronized episodes.

The relative frequencies of desynchronization events of different durations can be close to
the relative frequencies estimates from the transition rates like Figs. 7(b) and 8(b) or can be
different from these estimates like Figs. 6(b) and 9(b). The transitions between regions are
not necessarily independent (or near independent). However, the estimated relative
frequencies of desynchronization events of different durations still show some similar
tendencies.

B. Eyelet intermittency
As the coupling strength increases further from the first critical value εt, exponentially rare
2π phase jumps for coupled Rössler oscillators and irregular ±2π phase jumps for coupled
Lorenz oscillators can be observed before the second critical value εc where the phase
synchronization is established. Since the phase slips are rare, the scaling rule and probability
distributions are different from those of the type-I intermittency. Lee et al. [8] found the
second critical values εc = 0.0286 for coupled Rössler oscillators and εc = 12 for coupled
Lorenz oscillators. Note that other parameter values ω1,2 and γ1,2 are the same as in the type-
I intermittency. For εt < ε < εc, the mean laminar phase length <ℓ> obeys the scaling rule

(12)

The scaling rule and the corresponding probability distribution of the laminar phase length
suggest both systems are in the eyelet intermittency. Since the eyelet intermittency features
the longer laminar phase than that of the type-I intermittency, r1 is smaller than that of the
type-I intermittency.

Note that when ε > εc, the system is in the first region of the first-return map for phases, that
is in the synchronous region, and the rates r2,3,4 are undefined while the rate r1 = 0.
However the phase difference may fluctuate in some smaller limits and synchronization
index γ may still be below 1.
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Figs. 6(a) and 7(a) show that the transition rates ri of both coupled Rössler oscillators and
coupled Lorenz oscillators are characteristically distinct from one another near and away
from the second critical value εc. In fact, the rate r3 for coupled Rössler oscillators is
substantially smaller than that of coupled Lorenz oscillators for all range of ε. This small
value of r3 together with small value of r2 ∈ (0.25, 0.4) for coupled Rössler oscillators
implies that these two oscillators spend substantially longer time in the desynchronous state
once the trajectory leaves synchronous state than coupled Lorenz oscillators do. The rates
r2,3,4 for coupled Lorenz oscillators show substantial variability while those for coupled
Rössler oscillators do not. Therefore the temporal structure of synchronized/desynchronized
events is different in bidirectionally coupled Rössler oscillators and Lorenz oscillators even
though the overall synchrony can be similar.

Now let us also consider unidirectionally coupled Rössler oscillators for the eyelet
intermittency. We use Eq. (7) with ε1 = 0 and ε2 = ε. When control parameters ω1 = 0.93 and
ω2 = 0.95, Hramov et al. [12] found two critical values εt = 0.0345 and εc = 0.042. They
showed that when ε ∈ (εt, εc), the intermittent behavior of unidirectionally coupled Rössler
oscillators can be classified as the eyelet intermittency. Note that this intermittent behavior
can be also treated as the type-I intermittency with noise [12].

During the eyelet intermittency, rate r3 in Fig. 8(a) experiences substantial variation while
that in Fig. 6(a) keeps almost the same level. Rate r4 in Fig. 8(a) also shows relatively large
variation while that in Fig. 6(a) does not. Note that rates r1 for both systems are almost the
same. The large variations also can be observed in the durations of desynchronization events
for several cycle lengths (1, 2, > 5) in Fig. 8(b) while almost no variation in Fig. 6(b) is
observed. Therefore, their temporal structures of synchronized/desynchronized events are
different even though the overall synchrony can be similar.

C. Ring intermittency
For the ring intermittency, we consider unidirectionally coupled Rössler oscillators. As in
[9], we use Eq. (7) with ε1 = 0, ε2 = ε, and control parameters ω1 = 1.0, ω2 = 0.95. The
frequency mismatch between two oscillators is larger than those of the type-I and the eyelet
intermittencies discussed in the previous sections. To explore the synchronization behavior
more clearly, [9] used the transformation of coordinates, x̂ = x2 cos(φ1) + y2 sin(φ1) and ŷ =
−x2 sin(φ1) + y2 cos(φ1), and plotted the limit cycle in the (x̂, ŷ) plane. Then the trajectory on
this transformed plane looks like a ring.

Below the boundary of phase synchronization regime (when ε < εc), the dynamics of the
phase difference θ(t) is persistently and intermittently interrupted by sudden phase slips (2π
jumps). As ε increases further, the limit cycle starts to enclose the origin near the first
critical point and the phase destruction begins. Two critical values εt = 0.1097 and εc = 0.124
were observed [9], such that (i) the phase synchronization occurs for ε > εc, (ii) the (ring)
intermittent behavior occurs for εt < ε < εc, and (iii) the asynchronous dynamic occurs for ε <
εt.

Fig. 9(a) shows that during the ring intermittency, the rate r1 slowly decreases. However the
rates r2,3 change drastically during the ring intermittency while r4 is an almost constant
during this parameter regime. These changes of the rates imply that the probabilities of long
cycles are getting smaller as the coupling strength increases (see Fig. 9(b)). On the other
hand, the probabilities of short desynchronizations (lasting for one or two cycles of
oscillations) are getting higher.
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Now let us compare the ring intermittency in Fig. 9 with the eyelet intermittency in Fig. 8.
Both systems are unidirectionally coupled Rössler oscillators, but with different control
parameters ω1,2.

Since the phase slips in the eyelet intermittency are rare, as one can expect, rate r1 in Fig.
8(a) has much smaller value than that in Fig. 9(a). Rate r4 in Fig. 8(a) has slightly lower
value than that in Fig. 9(a). Rate r2 in Fig. 9(a) shows huge fluctuation while that in Fig. 8(a)
does not. The probability of long desynchronization events (Cycle> 5) for the ring
intermittency is close to zero while that in the eyelet intermittency starts to decrease from
high level (> 0.5). Thus, long desynchronization events are dominant for the eyelet
intermittency while short desynchronization events are dominant for the ring intermittency.

V. COUPLED NEURONS EXAMPLE
Intermittency and intermittent and otherwise imperfect synchronization can be observed in
the brain in different conditions (for example, see [17, 18, 22, 23]). Thus it will be useful to
apply the method to more realistic neural-like model systems to study what rates ri may
reveal about synchronized dynamics. We consider two mutually coupled neurons described
by a single-compartment conductance-based Hodgkin-Huxley type equations. We couple
these neurons through inhibitory synapses. The details for this kind of a model can be found
in, for example, [24]. The equations for each cell can be written as:

(13)

where IL = gL(v − EL), INa = gNam3(v)h(v − ENa), IK = gKn4(v − EK) represent leak, sodium
and potassium currents respectively. Independent Gaussian white noise W with zero mean
and standard deviation of 2.12 is added to both neurons. I0 is an external current. x stands for
three different gating variables m, n and h with the following α(v) and β(v):

(14)

The term Isyn represents the synaptic current. For a cell i ∈ {1, 2}, the synaptic current Isyn,i
= gsyn,i(vi − vsyn)sj where j ∈ {1, 2}\{i}. The synaptic variable s (the fraction of activated
synaptic channels) is modeled by the first-order kinetic equation in the form:

(15)

where H∞(x) = 1/(1 + exp[−x/σs]) is a sigmoidal function. The parameter values are the
following: Cm = 1, gNa = 120, ENa = 50, gK = 36, EK = −77, gK = 0.3, EL = −54.4, vsyn =
−85, I0 = 10, ϕ = 0.35, θv = 0, σs = 5, α = 2, and β = 0.05. Both cells are self-oscillators in
the absence of coupling (gsyn,i = 0). Voltages v for both neurons exhibit spiky time-series
(sequence of action potentials) and were filtered to the gamma-band (30 – 80 Hz). The
Hilbert transformation was used to define the phases and then first-return maps were
constructed. Fig. 10 shows that the synchronization index γ changes slowly for a range of
values of gsyn,2 (for fixed gsyn,1 = 0.1), but the rates ri exhibit more substantial variations
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depending on gsyn,2. As can be seen from Fig. 10(a, d), the rates r2,4 are changing
substantially with the similar γ. This implies that the rates describe the fine temporal
structure of synchronization/desynchronization events. The rates (and thus the fine temporal
structure of synchronous/desynchronous dynamics) may be more affected by noise than
synchronization index γ (Fig. 10). Especially for small values of coupling gsyn,2 overall
degree of phase locking is not influenced by small noise. However the rates r2,3,4 experience
substantial variations and thus corresponding timing of synchronization/desynchronization
events is dependent on the noise level. Therefore, exploring the fine temporal structures of
coupled oscillators in experimental data may provide some help in constraining multiple
alternatives in modeling studies, like in [19].

VI. DISCUSSION
We studied the first-return maps of the phase-difference between two oscillatory signals. If
there is some phase locking is present on the average, we can study the phase-locking
relationship on each cycle of oscillations. The phase space of this map is partitioned into
four regions and the transition rates ri between regions are computed. These transition rates
characterize the details of temporal dynamics, which are missed by standard synchronization
measures (such as γ in Eq. (1)).

Using a series of characteristic model systems, such as coupled skew tent maps (for which
the values of Lyapunov exponents can be computed analytically), coupled Rössler and
Lorenz oscillators, and coupled Hodgkin-Huxley neuronal models, we showed that the
aforementioned transition rates provide a complimentary description of synchronized
dynamics. They describe the dynamics away from the synchronized state, so that even if the
stability (transversal Lyapunov exponent) of synchronization manifold and time-series based
measure of synchrony (such as a phase-locking index) are the same, the rates will capture
the details of desynchronization events. In an extreme case, the same level of synchrony
may be reached with a relatively rare but long desynchronization events and numerous short
desynchronization events. The rates allow for discrimination of this alternative.

The duration of desynchronization events can be computed from this approach and is related
to the rates (although not necessarily defined by them completely). The traditional analysis
of intermittent behavior, including intermittency near synchronization onset, considers
duration of laminar (i.e. synchronized in the case of synchronization) episodes. These
distributions are universal and depend on the type of intermittency. But the same
intermittency type in different systems can naturally have different dynamics of
synchronization/desynchronization events (as reinjection mechanism is not defined by the
type of intermittency). We showed how the rates are able to capture this difference and
corresponding difference in the timing of synchronized/desynchronized dynamics.

From the phase-space-based approach point of view, the system spends a substantial fraction
of time away from the synchronization manifold, in other parts of the phase space. Therefore
the stability of this manifold and the bifurcations that it can experience provide incomplete
information about the dynamics. The introduced rates ri can help to fill this gap. In the time-
series based approach, the global synchronization measures are not designed to describe the
relationship between phases on each cycle of oscillations. The approach considered here
allows to inspect the phase locking at each cycle of oscillations (naturally, only if some
synchronization level is present overall). Recent experimental and modeling results [18, 19]
indicate that the fine temporal structure of synchronization is important. Here we used
standard test systems to explain how the analysis of this structure works.

Ahn et al. Page 12

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The methodology considered here can be applied to any appropriate data with some level of
phase locking regardless of the mechanisms of synchronous dynamics. We clarified here
what this method yields in terms of characterization of the phase space and in terms of the
fine temporal structure of phase locking. However, we think in future studies the method
maybe used as a tool to study some mechanisms of synchrony or at least distinguish between
different mechanisms of synchrony (in particular when parameters of coupling cannot be
changed in experiment).

We would like to conclude the paper with four notes regarding the method. First, we want to
reiterate that for this kind of analysis the signals should be phase-locked on average. The
synchrony is essentially non-instantaneous phenomenon. Only if there is a preferred phase-
locking angle, we can follow deviations from it on each cycle (and that is yet another reason
for necessity of computations of the global synchronization measures or synchrony measure
over moderate size time-window, like in [16]).

Second, the partitioning of the phase space of the φx,i map into four parts is somewhat
arbitrary. It simplifies the computation of rates, as there are only four of them. It also implies
that if the phases do not deviate from more than π/2, they are considered in synchrony. This
appears to be a reasonable assumption for some systems (for example, smaller tolerance
maybe easily destroyed by noise and fluctuations, larger tolerance is less likely to be
acceptable for information transmission in the synchronized system). However in certain
applications a finer partitioning may be necessary. This is apparently possible to implement,
although the rates will be harder to interpret. Moreover, the major idea of the considered
approach - to study how the phase difference deviates from the preferred phase-locking
angle - can be considered not only in a discrete-time framework as we did here, but also can
be generalized to continuous time.

Third, the approach developed here is agnostic to the presence or absence of noise in the
time-series. Noise surely can contribute to the generation of imperfect phase locking and
affect the transition rates (as in the example in the previous Section). The properties of noise
may be reflected in the transition rates and the considered methodology may be a tool to
study the effect of noise on synchronous dynamics. This appears to be an important subject
for future research.

Fourth, if the system is very close to synchronization threshold, this analysis may not
necessarily be very informative, because the system will spend most of the time in the
synchronized state. However, as we mentioned in the Introduction, synchronization in living
systems may be highly variable. In this case, synchronized events may be relatively rare
and/or relatively short (although they may still be significant functionally). Thus the
approach considered here (as well as its variations) have a potential to describe functionally
important temporal features of synchronization/desynchronization dynamics.
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FIG. 1.
Diagram of the (φx,i, φx,i+1) first-return map. The arrows indicate all possible transitions
from one region to another and the expressions next to the arrows indicate the rates for these
transitions.
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FIG. 2.
An example of the first-return map for two coupled Lorenz oscillators. All four first-return
plots have the same data points (gray circles), but each subplot (a–d) presents the evolution
of points from one region (I, II, III, and IV, respectively). If a point evolves from one region
to another region, then we represent it as ○–*. If a point evolves within the same region,
then we represent it as ○–○. Thus each plot shows the transitions from a corresponding part
of the phase space. We can compute the transition rates r1,2,3,4 from the panels (b), (d), (c),
and (a), respectively.
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FIG. 3.
We varied parameters a and ε to compute the transversal Lyapunov exponent λ⊥ and rates ri.
The rate r1 (r2) and λ⊥ have a positive (negative) relation. Rates r3 and r4 present more
spread and more complex relationship with λ⊥.
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FIG. 4.
(Color online) (a) Two skew tent maps for a = 0.3 (thick solid line) and a = 0.7 (thin solid
line), respectively. (b) Transversal Lyapunov exponent λ⊥ (dash-dotted line) and two
synchronization indices γ (thick solid line for a = 0.3 and thin solid line for a = 0.7). Two γ
values are almost the same. Transversal Lyapunov exponent λ⊥ decreases as ε increases and
crosses 0, when γ approaches 1.

Ahn et al. Page 18

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 5.
(Color online) Transition rates for the linearly coupled skew tent maps for a = 0.3 (thick
solid line) and a = 0.7 (thin solid line). We used 350000 iterations and removed the first
50000 iterations. Differences in the rates r2,3,4 are clearly visible.
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FIG. 6.
(Color online) Synchronized dynamics of bidirectionally coupled Rössler oscillators in
dependence on the coupling strength ε. Two critical values for intermittencies are εt =
0.0276 and εc = 0.0286. (a) Rates ri and synchronization index γ. (b) Relative frequencies of
the desynchronization events of different durations (durations are measured in cycles of
oscillations, i.e. in the number of iterations of the φx,i map, see Section II ). Thick solid line
represents the actual relative frequencies of the desynchronization events of different
durations, while thin solid line represents the relative frequencies, which would be there
under assumption of independent transition rates. The longer cycles of desynchronization
are dominant relative to short cycles.
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FIG. 7.
(Color online) Synchronized dynamics of bidirectionally coupled Lorenz oscillators in
dependence on the coupling strength ε. Two critical values for intermittencies are εt = 6.7
and εc = 12. (a) Rates ri and synchronization index γ. The behaviors of the rates and the
durations of desynchronization events are different from coupled Rössler oscillators. (b)
Relative frequencies of the desynchronization events of different durations (durations are
measured in cycles of oscillations, i.e. in the number of iterations of the φx,i map, see
Section II). Thick solid line represents the actual relative frequencies of the
desynchronization events of different durations, while thin solid line represents the relative
frequencies, which would be there under assumption of independent transitions. Unlike Fig.
6, short desynchronization events dominate the dynamics.
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FIG. 8.
(Color online) Eyelet intermittency in unidirectionally coupled Rössler oscillators with
parameters ε1 = 0, ε2 = ε, and control parameters ω1 = 0.93, ω2 = 0.95. Two critical points
are εt = 0.0345 and εc = 0.042. (a) Rates ri and synchronization index γ. (b) Relative
frequencies of desynchronization events of different durations. Thick solid line stands for
actual duration, while thin solid line represents the estimates from the transition rates. The
intermittent behavior is different from the bidirectionally coupled Rössler oscillators.
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FIG. 9.
(Color online) Ring intermittency in coupled Rössler oscillators with parameters ε1 = 0, ε2 =
ε, and control parameters ω1 = 1.0, ω2 = 0.95. The ring intermittency occurs between εt =
0.1097 and εc = 0.124. (a) Rates ri and synchronization index γ. (b) Relative frequencies of
desynchronization events of different durations. Thick solid line stands for actual duration,
while thin solid line represents the estimates from the transition rates.
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FIG. 10.
(Color online) Rates ri and synchronization index γ for varied gsyn,2 with fixed gsyn,1 = 0.1.
Although the levels of the synchronization index γ are similar, the rate r2,4 experience more
substantial variation depending on the synaptic strength gsyn,2. Small noise also exerts some
influence on the rates, which is not as prominent in γ. Thick solid line is the noiseless case
and thin solid line is for the noise W.

Ahn et al. Page 24

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


