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Abstract
A dataset of 55 compounds with inhibitory activity against L. donovani axenic amastigotes and L.
amazonensis intracellular parasites was examined through three-dimensional quantitative
structure-activity relationship modeling employing molecular descriptors from both rigid and
flexible compound alignments. For training and testing purposes, the compounds were divided
into two datasets of 45 and 10 compounds, respectively. Statistically significant models were
constructed and validated via the internal and external predictions. For all models employing
steric, electrostatic, hydrophobic, H-donor and H-acceptor molecular descriptors, the R2 values
were greater than 0.90 and the SEE values were less than 0.22. The models obtained from rigid
and flexible compounds were employed together to obtain a conservative method for predictions.
This method minimized under predictions. Molecular descriptors from the models were then
extrapolated, for the overall predictive devices and the individual compounds, and examined with
regard to inhibitory activity. Information gained from the molecular descriptors is useful in the
design of novel compounds. The models obtained can be employed to predict activities of the
compounds designed and/or form predictions for compounds that exist and have not yet been
examined with biological inhibitory assays.

1. Introduction
Leishmania species cause leishmaniasis, an endemic disease found in tropic and subtropic
regions riddled with poverty and neglect.1–3 This infection is most often in the form of
cutaneous leishmaniasis where the result is visible skin sores, or visceral leishmaniasis
which affects the liver and spleen. Leishmaniasis is primarily transported through the bite of
a female phlebotomine sandfly and millions of new cases are reported annually; although,
the number of reported cases is probably much lower that the number of actual cases
(http://www.who.int/leishmaniasis/burden/magnitude/burden_magnitude/en/print.html).

An estimated half million cases of visceral leishmaniasis occur worldwide annually, and
symptomatic infection usually ends in death in the absence of treatment

© 2011 Elsevier Ltd. All rights reserved
Address correspondence to W. David Wilson. Telephone: +1-404-413-5503. Fax: +1-404-413-5551. wdw@gsu.edu..
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errorsmaybe
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

NIH Public Access
Author Manuscript
Bioorg Med Chem. Author manuscript; available in PMC 2012 August 1.

Published in final edited form as:
Bioorg Med Chem. 2011 August 1; 19(15): 4552–4561. doi:10.1016/j.bmc.2011.06.026.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.who.int/leishmaniasis/burden/magnitude/burden_magnitude/en/print.html


(http://www.who.int/leishmaniasis/visceral_leishmaniasis/en/index.html). Similar to most
parasitic diseases plaguing developing countries, there is a lack of affordable and effective
therapeutics for leishmaniasis. Traditional treatment of this disease is with pentavalent
antimonials such as sodium stibogluconate and meglumine antimoniate, but resistance to
antimonials has become a serious problem in India.4 The current preferred therapeutics
include liposomal amphotericin B (AmBisome), paromomycin, and miltefosine. Single dose
AmBisome has shown outstanding efficacy in treating visceral leishmaniasis in India but
must be given by injection and is relatively costly.5 Paromomycin is effective against
visceral leishmaniasis in India and is relatively inexpensive, but optimal treatment requires
twenty-one daily injections of this drug.6 Miltefosine is effective when given orally for the
treatment of Indian visceral leishmaniasis, but the drug is teratogenic, is more expensive
than paromomycin, and is prone to the development of resistance.7–8 In East Africa,
antimonial regimens remain the first-line treatment for visceral disease.9 Combination
therapy has also been implemented in the last few years for the treatment of visceral
leishmaniasis to reduce treatment duration, total drug doses, and toxic effects.9–10 This
treatment method also reduces the development of resistance against the drugs and is cost
effective.7

While not lethal, cutaneous leishmaniasis is a serious problem in developing countries; this
infection can lead to severe disfiguring skin lesions when untreated.11 The infection is also
most often treated with pentavalent antimonials although liposomal amphotericin B has
recently been shown to be effective in the treatment of cutaneous leishmaniasis.12–12

Pentamidine is used to treat L. guyanensis infections13 but not cutaneous infections caused
by other Leishmania species. Several other drugs for cutaneous leishmaniasis have been
proposed, including allopurinol14, rifampicin15, dapsone16, chloroquine17, and nifurtimox18.

Through several research endeavors, activities and toxicities of series of compounds have
been gathered and such data have been implemented in rational drug design.19–22 These
studies employ biological data of natural and/or synthetic compounds and computational
tools to examine compounds with activity against Leishmania species. Examination of such
compounds has led to the formation of predictive models and from these models the
importance of some molecular structures has been ascertained. Although specific receptor
interaction studies are important, especially when studying mechanisms, intact parasite
studies of inhibition and toxicity are crucial for identifying compounds that will eradicate
the parasite from hosts.23 Such studies of synthetic chalcones and phospholipids display
effective antileishmanial activity for compounds with: (1) a long alkyl chain, (2) bulky
groups at the ends of the alkyl chains, and (3) an electron deficient group.20,24

Our studies examine a biological dataset of synthetic arylimidamides which possess
activities against L. donovani axenic amastigotes and L. amazonensis intracellular parasites.
Inhibitory data, in the form of IC50 values, and Comparative Molecular Field Analysis
(CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) molecular
descriptors were employed with partial least squares (PLS) regression to correlate the
biological data with molecular structures and properties. Predictive models and molecular
descriptor potentials derived from the models contribute to the identification and
understanding of important molecular features that govern the inhibitory actives of
arylimidamides against species of Leishmania.

2. Materials and Methods
Inhibitory data was gathered for arylimidamides with activity against L. donovani axenic
amastigotes and L. amazonensis intracellular parasites. This data was implemented for three-
dimensional QSAR modeling employing rigid and pharmacophore alignments. The
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compounds acquired for this study are from the David Boykin compound library at Georgia
State University, and representative synthetic procedures are found in the literature.25–30

The synthesis of many of the compounds used in this study have been reported29,30 and the
remainder were prepared using the same methodology. All compounds were characterized
by 1H and 13C NMR and by giving satisfactory elemental analysis (C,H,N within ± 0.4% of
theory). The toxicities of some of the most active arylimidamides have been examined
through in vitro and in vivo assays, and the data demonstrate that arylimidamides are
promicing preclinical candidates for the treatment of visceral leishmaniasis.30

2.1. Inhibition Data
Briefly, IC50 (μM) values were determined for compounds of interest using two assays. The
first assay screened against axenic amastigote-like L. donovani, while the second screened
against L. amazonensis intracellular parasites. Screening against L. donovani was conducted
by: (1) culturing Ld1s parasites in potassium-based medium at pH 5.5, 37 °C, (2) incubating
for three days with compounds in a 96-well plate, and (3) adding tetrazolium dye and
quantifying the assay spectrophotometrically as outlined previously.29 Evaluation of
compounds against L. amazonensis intracellular parasites was conducted by: (1) plating
macrophages and allowing the host cells to adhere overnight, (2) adding L. amazonensis
promastigotes transfected with the β-lactamase gene (MOI: 5:1) and incubating overnight,
(3) adding compounds of interest and incubating for 72 hours at 34 °C, (4) adding nitrocefin
in lysis buffer and incubating an additional 3 to 5 hours, and (5) reading the plate at 490 nm
as described earlier.31–32 Experimental IC50 values for L. donovani axenic amastigotes and
L. amazonensis intracellular parasites were obtained for 55 compounds.

2.2. Preparation of Compounds for Computational Studies
SYBYL 8.133 software was employed to construct all compounds in three-dimensional
space. Compounds were then divided into training and testing datasets. These datasets
consisted of 45 and 10 compounds, respectively. The compounds of the training dataset then
underwent a short molecular dynamics simulation of 1 ns. This system employed SYBYL
8.1 default settings at a constant temperature and volume (NTV). Briefly, (1) the system
temperature was set at 300 K with a coupling constant of 100 fs, (2) Maxwell-Boltzmann
distribution was employed for initial atom velocities, (3) the non-bonded pair list was
updated every 25 fs, and (4) the duration of the molecular dynamics simulations in vacuo
was 1 ns with a time step of 100 fs and a snapshot every 1000 fs. The dynamics snapshots
displayed several low energy structures. Torsional angles of all training dataset compounds
were modified to explore the low energy conformations and modified structures were
minimized to convergence using the Tripos force field, conjugate gradient algorithm, and
Gasteiger-Hückel charges. The termination gradient was 0.01 kcal/(mol Å) and the
maximum iterations were 104.

2.3. Rigid Alignment of Compounds and Resulting Models
Each training dataset of compounds with modified torsional angles was aligned using the
“Align Database” option of the QSAR module in SYBYL. CoMFA (steric and electrostatic)
and CoMSIA (steric, electrostatic, hydrophobic, H-donors and H-acceptors) molecular
descriptors were calculated for the aligned structures and PLS regression was employed to
correlate the molecular descriptors of compounds to experimental average IC50 values. The
number of components was determined by the smallest predicted error sum of squares.
Optimum models employing CoMFA molecular descriptors consisted of three components,
whereas the ones with CoMSIA molecular descriptors employed six.
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2.4. Flexible Alignment of Compounds and Resulting Models
Five compounds with low IC50 values in the L. amazonensis intracellular parasite assay
were employed for flexible compound alignment using the “Align Pharmacophore” option
of the GALAHAD module. Parameters were acquired through the “Suggest from Data”
option and the best 20 models were collected. The highest scoring model with respect to
maximized pharmacophore consensus, maximized steric consensus, and minimized energy
was employed as a template for individual compound alignment of the entire training
dataset. The “Align Molecules to Template Individually” option was selected and
parameters were acquired once more through the “Suggest from Data” option; the “Keep
Best N Models” option was reset to 20. Molecular descriptors were calculated for the
highest scoring model and PLS regression was implemented in the same manner as for the
rigid compounds. The optimum numbers of components were determined as previously
described; models with CoMFA molecular descriptors consisted of three components,
whereas models with CoMSIA molecular descriptors employed six.

2.5. Statistical Analyses
The statistics calculated1 from PLS regression included: a leave-one-out cross-validated
correlation coefficient (Q2), the coefficient of determination (R2), the standard error of
estimate (SEE), the F statistic, a bootstrap R2 (R2

bs), and a bootstrap SEE (SEEbs). The
bootstrap analysis was used to check the stability of the models through cross-validation into
two, five, and ten groups. The average values of the bootstrap analysis are displayed with
the rest of the statistics. A scramble test was also preformed to address chance correlation;
statistics and predictions are reported in Supplemental Tables S2 and S3.

2.6. Testing Datasets and the Conservative Model Method
The models constructed from the rigid and flexible alignments were employed to examine
testing datasets that were aligned via rigid and flexible methods. Of the pIC50 values
predicted, for both training and testing datasets, the more negative pIC50 prediction was
considered the most viable. This method favors over prediction, larger IC50 values, rather
than under prediction.

2.7. Molecular Descriptor Potentials
Molecular descriptor potentials acquired through the mapping of the product standard
deviation with respect to molecular descriptor values and coefficients at each lattice point
were extrapolated from the models. Default levels of contour by contribution were employed
to gather favored and disfavored potentials for overall models. The individual compounds of
the models were analyzed via the contour by actual analysis method. Software output was
used to determine the proper ranges of assigned favored and disfavored contour regions for
individual compounds.

3. Results
The entirety of the dataset, 45 training and 10 testing compounds (Supplemental Table S1
and Table 3), can be represented via the scaffold structure displayed in Figure 1. At each of
the five positions labeled in this figure there are differing atoms or groups: positions one and
four display single atom changes in the form of carbon, oxygen, sulfur, and nitrogen,
whereas positions two, three and five display larger group substituent modifications as
shown in Supplemental Table S1 and Table 3.

Biological IC50 values were determined for each compound of the training and testing
datasets through two assays targeting L. donovani axenic amastigotes and L. amazonensis
intracellular parasites. These inhibitory values were averaged and standard errors (n ≥ 3)
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were calculated (Table 3). For modeling purposes, the IC50 values were log transformed into
pIC50 values (pIC50 = −log(IC50)). Figure 2 displays the pIC50 data; experimental values
against the L. donovani axenic amastigotes are shown in green, whereas the values against
the L. amazonensis intracellular parasites are displayed in blue. The standard error of the
data is represented in general by trend lines and the averaged values are shown as triangles
and squares, respectively. Notice that the slopes are very similar with values between 0.96
and 1.0, and R2 values are 0.95 or higher. This displays the relative range of inhibitory
activity and the standard error from the average inhibitory values associated with each
synthetic compound in the training and testing datasets. The pIC50 distribution of data is
also shown in this figure; the inhibitory activity of arylimidamides against L. donovani
axenic amastigotes ranges between approximately −2.5 and 0.5, whereas those active
against L. amazonensis intracellular parasites range between about −1.5 and 1.5.

Compounds examined through biological assays were aligned in three-dimensional
conformations using two methods: (1) rigid alignments of compounds were obtained
through the implementation of the SYBYL “Align Database” option of the QSAR module,
and (2) flexible alignments of compounds were acquired through the use of the
“Pharmacophore Alignment” option of the GALAHAD module. Rigid alignments were
performed on low energy conformations of compounds. Molecular descriptors were then
calculated and PLS regression was employed to construct predictive models from the
descriptors and respective biological inhibitory data. The best computational models formed
consisted of compounds in their most linear conformation with an overall plus one charge.
The plus one value was used, since the arylimidamides have a pKa near 7.

Flexible alignment of compounds employed the five most active compounds against the L.
amazonensis intracellular parasites from the training dataset (Figure 3). Figure 4 displays the
outcome of pharmacophore simulations that lead to PLS regression models employing
flexible compounds. The rotation of the compounds allows for visualization of alignment
and positioning of identified feature potentials. The observed features governing structure
alignment are: (1) four aromatic rings (cyan); (2) N=C–N groups, two positive nitrogens
(red) and a H-donor (magenta); (3) atoms at the one and a two position of Figure 1, two H-
acceptor (green); (4) atoms at a five position, a H-donor or H-acceptor (overlaid magenta
and green equates to dark green). In the next step all of the training and testing compounds
were flexibly aligned to the pharmacophore. These alignments can be viewed in relation to
rigid alignments (Figure 5). Rigid compounds were aligned by N=C–N groups. Notice that
there is a difference in the spatial relationships of the compounds.

Inhibitory activities with structures and properties of the aligned compounds were employed
to construct predictive models through PLS regression methods. The statistics for these
models indicate that CoMSIA molecular descriptors outperform those of CoMFA molecular
descriptors (Table 1). This is shown in higher Q2, R2, and F statistics and lower SEE
statistics for the models constructed with rigid compounds. Models from flexible
compounds displayed higher R2 and F statistics and lower SEE statistics but lower Q2

values. The lower Q2 are attributed to: (1) torsional variability, (2) differences in optimal
low energy structural conformations, and (3) contributions of compound inhibitory
activities.34

The internal (training dataset) and external (testing dataset) predictions of the models are
displayed in Figure 6 where predicted pIC50 values are plotted versus the experimental
pIC50 values. The training dataset of this figure is colored in accordance to Figure 2,
whereas all testing dataset predictions are in red. Although internal predictions were linear,
some testing dataset compounds were more difficult to predict for than others. The variance
in compound prediction differed between the models for compounds of rigid and flexible
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alignments; hence, by taking the most negative prediction of each compound regardless of
rigid or flexible alignment and plotting these values against respective experimental data a
conservative method for prediction can be obtained. The combination of the models reduces
under prediction. Table 3 displays the testing dataset along with experimental average IC50
values, plus or minus respective standard error, along with the conservative model IC50
prediction. The R2

Test and SEETest values for the experimental and predicted conservative
data shown in Table 3 are respectively 0.36 and 0.23 for L. amazonensis intracellular
parasites, and 0.72 and 0.20 for L. donovani axenic amastigotes; the statistics are calculated
on the pIC50 data. When the R2 

Test statistics are calculated on the IC50 data of Table 3 the
R2 Test statistics are 0.59 and 0.93. The statistics give a rough idea of model predictability,
whereas the actual prediction in relation to experimental data shows the model's true ability
to predict with relation to standard error.

From the models employing CoMSIA, three-dimensional molecular descriptor potentials
were determined and viewed as surfaces in relation to the overall models (Figure 7 and
Supplemental Figure S1) as well as individual compounds (Figure 8 and Supplemental
Figure S2). Figure 7 displays the overall CoMSIA molecular descriptors for the rigid and
flexible models. It is evident that each overall model displays different molecular descriptor
potential contributions for the steric, electrostatic, hydrophobic, H-donor and H-acceptor
potentials. This indicates that each model is constructed somewhat differently; although
there are similarities between the results obtained. Using the positions of Figure 1 as a
reference: (1) steric bulk is favored (green) at positions three and five and perhaps not
symmetrically, whereas disfavored steric bulk (yellow) regions are just outside those
favored, (2) positive electrostatic charge is favored (blue) at one, if not both, of the N=C–N
groups near position five, whereas negative charge is favored (red) predominantly at or near
position one and outside one of the N=C–N groups, (3) hydrophobic interactions are favored
(yellow) at positions two and five, whereas disfavored hydrophobic interactions (gray) are
near positions three and outside positions five, (4) H-donor atoms are favored (cyan)
predominantly at or below the five position and disfavored (purple) in areas beyond favored
regions, and (5) H-acceptors are favored (magenta) near the terminal N=C–N groups, and
disfavored (red) below the four position(s) and outside favored N=C–N groups of the
comparison molecule DB766.

With regard to the scaffold structure of Figure 1, Figure 8 displays the molecular descriptor
potentials of individual compounds based on CoMSIA molecular descriptors. The molecular
descriptor potential regions of individual molecules appear to be more consistent within
their respective rigid and flexible models than they were in the overall models of Figure 7
and Supplemental Figure S1. The molecular potentials that resulted were, however, also
fewer, and included favored and disfavored hydrophobic, favored H-donor and favored H-
acceptor potentials.

With the models in Figure 8 and biological data in Supplemental Table S1, it is possible to
examine not only the molecular descriptor potentials with regard to model contribution but
also the contribution of substructures to biological inhibitory activity. To most effectively
describe these findings, it is important that comparisons are made to a compound that is
active in both datasets. DB766, a potential drug candidate against visceral leishmaniasis,35

was selected for analyses. With respect to Figure 1, the molecular descriptor potentials for
DB766 include: (1) favored hydrophobic potentials near the aromatic groups, (2) favored H-
donor potentials are displayed below the left side five position (N=C–N group), and (3)
favored H-acceptor potentials are on the N=C–N group opposite the side of the favored H-
donor and extended to the terminal aromatic ring. The IC50 values for this compound against
L. amazonensis intracellular parasites and L. donovani axenic amastigotes are 0.09 and 0.50
μM, respectively. The general structure of DB1867, compared to DB766, differs only by a
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sulfur atom at position one and with this change the compound becomes more linear and
favored hydrophobic interactions are spread to positions one and two (Figure 8). Potentials
for favored H-acceptors are near N=C–N groups and the IC50 values are 0.05 and 0.68 μM,
respectively. DB946 is the only compound in the training dataset to differ from DB766 at
position two; this compound also differs at position three. The methyl groups at position two
fill similar special areas as substituents in position three. Favored hydrophobic potentials
reside in position two, three, and five locations. This compound's IC50 values are 0.11 and
0.37 μM, respectively. DB667 and DB1876 differ from DB766 at position three. DB667
possesses hydrogen atoms at position three and molecular descriptor potentials similar to
those of DB946 (hydrophobic) and DB766 (H-donor and H-acceptor), although the favored
hydrophobic potentials span a greater length for DB667. The IC50 values for this compound
are 0.53 and 1.6 μM, respectively. DB1876 displays large disfavored hydrophobic molecular
descriptor potentials at the three positions. The remaining potentials are favored
hydrophobic potentials near the aromatic rings and favored H-donor and H-acceptor
potentials near the N=C–N group(s). This compound has IC50 values of 2.1 and 28 μM,
respectively. DB1851 differs from DB766 at position four and this change resulted in
favored hydrophobic interactions that span more of the molecule than previous compounds
discussed with H-donor and H-acceptor potentials similar to those of DB1876. The IC50
values for this compound are poor, greater than 10 and 50 μM, respectively. DB1921,
DB1942, and DB1906 all differ from DB766 at the five positions. DB1921 is flanked at the
five positions and has different substituents at the three positions. This compound consists of
potentials similar to DB1876; however, it is also missing most of the favored hydrophobic
and H-acceptor potentials. The IC50 values for this compound are 4.7 and 41 μM,
respectively. DB1942 consists of a longer, more flexible ring structure than DB766 and
consists of disfavored hydrophobic molecular descriptor potentials primarily at the five
positions. Positive hydrophobic potentials are on the inner aromatic rings or the outer rings
near the five position, whereas H-donors are favored on one side of an N=C–N group and H-
acceptors are favored at both N=C–N group(s). This compound has IC50 values of 0.81 and
3.6 μM, respectively. The five positions of DB1906 consist of more rings than DB766. The
molecular descriptor potentials for this compound were similar to those of DB766
(hydrophobic and H-donor) and DB946 (H-acceptor), IC50 values are 0.27 and 1.9 μM,
respectively.

4. Discussion
QSAR studies have previously been employed to determine the importance of chalcone and
phospholipid molecular structures, and predict activities and toxicities for series of
compounds with activity against Leishmania species.19–22 These studies found that potent
antileishmanial activity occurred when compounds possessed a long alkyl chain, bulky
groups at the end of the alkyl chain, and an electron deficient group.20,24 The structures of
chalcones and phospholipids are quite different from each other, and these compounds differ
substantially from the arylimidamides examined in this study (Supplemental Table S1).

4.1. Pharmacophore Selection
The numbered locations of Figure 1 aid in the explanation of inhibition results displayed in
Figure 2 through the interpretation of pharmacophore consensus potentials (Figure 4) and
molecular descriptor contribution potentials (Figures 7 and 8). The pharmacophore
alignment of Figure 4 is calculated using the compounds of Figure 3. By only employing the
most active compounds, the pharmacophore is strictly for compounds of similar structure
and activity. The pharmacophore results suggest the importance of aromatic and positively
charged N=C–N groups, and these results can be examined with respect to the chalcone and
phospholipid results reported previously.19–22 The aromatic rings of the arylimidamides can
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be related to the bulky groups, the positively charged N=C–N groups can be related to the
electron deficient groups, and the linker between the central aromatic rings can be related to
the long alkyl chain. The pharmacophore results show that the linker between the center
aromatic rings does not need to be a ring structure.

4.2. Regression Analyses
PLS regression of calculated molecular descriptor potentials and respective biological
inhibitory values for both the rigid and flexible alignments of compounds presented in
Figure 5 produced statistically significant models. Models employing the CoMSIA
molecular descriptors from rigid structure alignment were the only ones with Q2 values
greater than 0.5 (Table 1). Q2 values greater than 0.5 indicate models with predictability
better than chance.33 What we realize from our models, especially those aligned by flexible
conformations, is that each compound contributes to the entirety of the model and that the
models constructed from molecular descriptors of flexible compounds may be predicting
just as well, if not better, than those constructed from molecular descriptors of rigid
compounds (Figure 6). The rigid models of Figure 6 produce a greater amount of under
prediction than the flexible models. For example, for the rigid model, one of the compounds
active against L. donovani has an experimentally determined pIC50 value of −1.7 and a
predicted value of 0, these IC50 values are 50 and 1, respectively, whereas for the flexible
model the same compound has a predicted pIC50 value of −1.7, the same as the
experimental value.

Under prediction is a problem that needs to be addressed since predictive models such as the
ones constructed in this study can be employed to scan potential candidates for synthetic
drug design. Often synthetic measures are costly and time consuming; hence, it is better to
synthesize only compounds expected to have better inhibitory activity. To minimize under
prediction, the minimum pIC50 predictions from the rigid or flexible models were plotted
against the average experimental values. These data are shown as the conservative
predictions of Figure 6. In this column we see that under predictions are no longer occurring
for these models, yet there are still over predictions. Over predictions, as long as they are
few, are not as problematic since these values are larger and synthesis will most likely result
in experimentally determined inhibitory activity better than calculated.

4.3. Molecular Contributions
A previous study focused on synthetic phospholipids that employed CoMSIA molecular
descriptors found that steric and hydrophobic interactions governed the model.20 Similarly,
our model was governed by hydrophobic interactions; yet, this contribution of molecular
descriptor interactions was followed by H-donor, H-acceptor, steric and then electrostatic
(Table 2). When the overall CoMSIA potentials for each molecular descriptor are visualized,
it is easier to design modifications to the compounds. Figure 7 allows for comparison
between the models and overall analyses. It is important to realize that molecular descriptor
potentials are unique to each model; hence, no two models are the same. Positive
electrostatic potentials indicate the importance of the N=C–N groups, whereas the steric and
hydrophobic potentials show the importance of the rings and substituents. To fully
understand molecular descriptor contribution in relation to biological inhibitory data, it is
important to analyze the potentials of individual compounds, a selected set of which are
shown in Figure 8. These potentials display much more consistency than those for the
overall models of Figure 7.

4.4. Employing Results
An exciting feature of this type of study is that new compounds can be designed by
employing the data acquired from the pharmacophore (Figure 4) and extrapolated molecular
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descriptor potentials (Figures 7 and 8). To do this, the basic pharmacophore must remain
intact and the potentials of the overall models and those of individual compounds should be
used for guidance. Since the importance of hydrophobic, H-donor and H-acceptor atoms are
clearly displayed as essential potentials for the individual compounds in Figure 8, this is a
good place to begin. The favored hydrophobic potentials of the four aromatic rings exhibit
significance (Figures 7 and 8); and these are also seen as important in the pharmacophore
(Figure 4). Hence, it appears imperative that the four rings remain a constant in our initial
modeling efforts. H-bond donors appear to be important to regions near the N=C–N groups
(Figures 7 and 8). One of the N=C–N groups is shown as essential in the pharmacophore
(Figure 4). Likewise, H-bond acceptors appear to be significant to the region including and
between the N=C–N groups and the N of the outer most aromatic rings (Figures 7 and 8).
One such region was identified in the pharmacophore (Figure 4). Based on these
observations, new compounds have been designed and activity predictions have been
obtained (Figure 9). The ranges include the smallest and largest prediction obtained via the
models constructed of rigid and flexible compound structures. These are interesting new
structure types and can initial compound form this set will be synthesized in due course.

5. Conclusion
For this study, a biological dataset of synthetic arylimidamides and their activities against L.
donovani axenic amastigotes and L. amazonensis intracellular parasites were employed for
pharmacophore and three-dimensional QSAR modeling. The pharmacophore alignment
displayed important features, and the three-dimensional QSAR was performed with and
without these findings. The data from the models developed are being used to design novel
compounds; whereas the models themselves are being implemented to estimate activities for
known and designed compounds of interest. In summary, by employing three-dimensional
QSAR it is possible to scan for potentially active compounds both efficiently and
conservatively through the use of predictive models. The models are used to designed
compounds and respective IC50 activities can be predicted.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Scaffold structure for compounds with biological inhibitory data for L. donovani axenic
amastigotes and L. amazonensis intracellular parasites. The numbered positions on the
scaffold identify the locations where compounds differ, and these serve as a guide for
explanation of model findings. All training dataset structures and respective inhibitory data
can be viewed in Supplemental Table 3 (Appendix). There is an overall plus one charge on
these compounds; protonation takes place on the N-C=N groups between the aromatic rings
with labeled position 4 and the groups at position 5.
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Figure 2.
Biological pIC50 data of synthetic arylimidamides active against L. donovani axenic
amastigotes (green) and L. amazonensis intracellular parasites (blue). The negative log
values of average experimentally obtained IC50 data, displayed in Supplemental Table 3
(Appendix B) and Table 3, and these values plus and minus respective standard deviations
are all plotted against the negative log value of average experimentally obtained IC50 data.
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Figure 3.
Five of the most active compounds against L. amazonensis intracellular parasites and L.
donovani axenic amastigotes.

Collar et al. Page 14

Bioorg Med Chem. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
GALAHAD potentials as identified by simulations employing the compounds of Figure 3.
The identified features are color coded: cyan, hydrophobes; magenta, donor atoms; green,
acceptor atoms; red, positive nitrogens.
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Figure 5.
Final training (top) and testing (bottom) datasets: flexible alignments (left) and rigid
alignments (right).
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Figure 6.
Internal (blue and green) and external (red) predictions. The internal predictions are those
for the training compounds and external predictions are for the testing dataset of
compounds. The L. amazonensis experimental versus predicted results are shown in blue
(left) and those for L. donovani in green (right). The experimental versus predicted results
from top to bottom are predictions from implementing rigid (top) and flexible (center)
compounds. The conservative predictions (bottom) are essentially the more negative of the
two pIC50 predictions resulting from the models with rigid and flexible compounds. Since
the scale observed is the negative log of the IC50, this method reduces under prediction.
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Figure 7.
Overall models with CoMSIA molecular descriptor surfaces for both rigid and flexible
structure alignments of compounds active against L. amazonensis; DB766 is displayed as a
reference compound. Favored potentials from steric to H-acceptor molecular descriptors are
green, blue, yellow, cyan, and magenta, whereas disfavored potentials from steric to H-
acceptor molecular descriptors are yellow, red, gray, purple, and red. Results for L. donovani
can be found in Supplemental Figure S1.
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Figure 8.
CoMSIA findings with respect to Figure 1 and molecular descriptor potentials of Figure 7.
The favored hydrophobic potentials have been changed to orange to improve visualization
and insure that steric potentials were not displayed. The left most column consists of
numbers correlated to positions of Figure 1. The column to the right consists of the
compounds name. This is followed by the compounds and their respective molecular
descriptor potentials for each the final models. To improve compound visibility, the results
for only L. amazonensis are shown above. Results for L. donovani can be found in
Supplemental Figure S2.
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Figure 9.
Compounds designed to illustrate use of the pharmacophore data of Figure 4 and the
CoMSIA molecular descriptor fields of Figures 7 and 8. The ranges are the smallest and
largest predicted values obtained from the models constructed of rigid and flexible
compound structures.
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Table 2

Contribution of CoMSIA molecular descriptors for rigid and flexible models employing structures of training
dataset compounds and respective biological activities.

Rigid Alignment Flexible Alignment

L. amazonensis L. donovani L. amazonensis L. donovani

Steric 0.15 0.14 0.13 0.13

Electrostatic 0.11 0.08 0.14 0.15

Hydrophobic 0.47 0.43 0.33 0.34

H-Donor 0.15 0.21 0.20 0.21

H-Acceptor 0.12 0.14 0.20 0.17
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