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Abstract
Functional connectivity of the brain has been studied by analyzing correlation differences in time
courses among seed voxels or regions with other voxels of the brain in patients versus controls.
The spatial extent of strongly temporally coherent brain regions co-activated during rest has also
been examined using independent component analysis (ICA). However, the weaker temporal
relationships among ICA component time courses, which we operationally define as a measure of
functional network connectivity (FNC), have not yet been studied. In this study, we propose an
approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data
collected from persons with schizophrenia and healthy controls. We examined the connectivity
and latency among ICA component time courses to test the hypothesis that patients with
schizophrenia would show increased functional connectivity and increased lag among resting state
networks compared to controls. Resting state fMRI data were collected and the inter-relationships
among seven selected resting state networks (identified using group ICA) were evaluated by
correlating each subject’s ICA time courses with one another. Patients showed higher correlation
than controls among most of the dominant resting state networks. Patients also had slightly more
variability in functional connectivity than controls. We present a novel approach for quantifying
functional connectivity among brain networks identified with spatial ICA. Significant differences
between patient and control connectivity in different networks were revealed possibly reflecting
deficiencies in cortical processing in patients.

INTRODUCTION
Developments in functional imaging in the past two decades have allowed for significant
advances in our understanding of the complex relationships and interactions among
distributed brain regions underlying cognition. An active area of neuroimaging research
involves examining the “functional connectivity” of spatially remote brain regions.
Functional connectivity analyses allow the characterization of inter-regional neural
interactions during particular cognitive or motor tasks or merely from spontaneous activity

© 2007 Elsevier Inc. All rights reserved.
Correspondence: Vince Calhoun, Ph.D., The MIND Institute, 1101 Yale Boulevard, Albuquerque, NM 87131, Tel: (505) 272-1817,
Fax: (505) 272-8002, vcalhoun@unm.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2011 September 1.

Published in final edited form as:
Neuroimage. 2008 February 15; 39(4): 1666–1681. doi:10.1016/j.neuroimage.2007.11.001.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



during rest. Previous functional connectivity analysis approaches have relied on choosing
individual seed voxels and subsequently constructing cross-correlation maps of other voxels
with respect to the chosen seed voxels (Biswal, et al. 1995; Biswal, et al. 1997; Cordes, et al.
2002; Cordes, et al. 2000; Lowe, et al. 1998).

Another useful method to examine functional connectivity is independent component
analysis (ICA) (Calhoun, et al. 2001b; Esposito, et al. 2005; Garrity, et al. 2007; McKeown,
et al. 1998), particularly as applied to “resting state” scans, which are relatively easy to
obtain and do not suffer from performance confounds in cognitively-impaired patient groups
(Beckmann, et al. 2005; Greicius, et al. 2004; Kivinienri, et al. 2001). ICA is a method for
recovering underlying signals from linear mixtures of these signals and draws upon higher-
order signal statistics to determine a set of “components” that are maximally independent of
each other (Calhoun and Adali 2006). The use of ICA in these studies effectively finds and
characterizes functional networks in data collected during the performance of a task as well
as in resting state fMRI data. For instance, van de Ven, et al., used spatial differences across
ICA-generated components’ intensity to determine functional connectivity levels (Van de
Ven, et al. 2004). ICA has been found to be useful and able to capture the complex nature of
fMRI time courses while also producing consistent spatial components (Turner and Twieg
2005). Rakapakse et al., performed analyses using structural equation modeling to find
connectivity between regions identified using spatial ICA in healthy individuals while
performing a task (Rajapakse, et al. 2006).

While these techniques are effective for analyzing dysfunctional integration of activations in
various regions’ time series in brains, to date there has been no study of group differences in
the temporal relationship among spatial components. Within a given component, the regions
are by definition strongly temporally coherent due to the ICA assumption of linear mixing.
In this paper we focus not upon these strongly coherent time courses, rather we consider
weaker dependencies among components. In spatial ICA the images are maximally
independent, but the time courses are not independent and can exhibit considerable temporal
dependencies. These temporal dependencies among components are significant, but not as
large as those between regions within a component (were this the case they would likely
have been included within a single component) (Calhoun, et al. 2003). A technique to
determine functional temporal connectivity among components and to evaluate group
differences in these relatively weaker connections is proposed in this paper. In this paper, we
define functional network connectivity (FNC) as the temporal dependency among the ICA
components. In contrast to connectivity studies which focus upon the correlation between a
single seed region of interest and the other brain regions, we focus instead upon the temporal
connectivity among functional networks (components) estimated from ICA.

In order to show the practical relevance of our technique, we apply the methods described in
this paper to compare FNC in patients with schizophrenia versus healthy controls.
Schizophrenia is a chronic, disabling mental disorder that is diagnosed on the basis of a
constellation of psychiatric symptoms and longitudinal course (APA 2000). The disease
impairs multiple cognitive domains including memory, attention and executive function
(Heinrichs and Zakzanis 1998). Although the causes and mechanisms of schizophrenia are
still unclear, a hypothesis of neural network ‘disconnection’ has been proposed. This
proposal assumes that schizophrenia arises from dysfunctional integration of a distributed
network of brain regions (Friston and Frith 1995) or a misconnection syndrome of neural
circuitry leading to an impairment in the smooth coordination of mental processes,
sometimes described as “cognitive dysmetria” (Andreasen, et al. 1999).

Many researchers have examined the possibility of ’disconnection’ in psychiatric groups by
analyzing brain function with functional connectivity methods (Bokde, et al. 2006; Friston
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1995; Friston and Frith 1995; Frith, et al. 1995; Herbster, et al. 1996; Josin and Liddle 2001;
Liang, et al. 2006; Liddle, et al. 1992; Mikula and Niebur 2006). For example, in a sample
of patients with schizophrenia, Liang, et al., found disrupted functional integration of
widespread brain areas, including a decreased connectivity among insula, temporal lobe,
prefrontal lobe and corpus striatum and an increased connectivity between the cerebellum
and other brain areas, during resting-state by analyzing correlations between brain regions
(Liang, et al. 2006). Similarly, Meyer-Lindenberg, et al., reported pronounced disruptions of
distributed cooperative activity in frontotemporal interactions in schizophrenia in selected
regions of interest in positron emission tomography (PET) brain scans on working memory
task (Meyer-Lindenberg, et al. 2001). Other task-related studies reported a lack of
interaction between right anterior cingulate and other brain regions (Boksman, et al. 2005),
disrupted integration between medial superior frontal gyrus and both the anterior cingulate
and the cerebellum (Honey, et al. 2005), as well as reduced functional connectivity in
frontotemporal regions of subjects with schizophrenia (Lawrie, et al. 2002). Although these
studies help identify problems with typical functional integration among important brain
regions, they do not examine patients to see if there is disruption in the relationship of
activity within one large networks of brain regions with another. It follows that patients with
schizophrenia may not only have deficits in the relationship of one brain region to another,
but that their cognitive and behavioral deficits might be related to dysfunction of entire
networks of regions failing to properly communicate with one another.

In the study, we focused on examining FNC differences between a group of patients with
schizophrenia and a demographically-matched control sample. Based upon two of our recent
studies showing less task-specific activation (Calhoun, et al. 2006a) and more high
frequency fluctuations in the default mode (Garrity, et al. 2007) in schizophrenia patients
versus healthy controls, we hypothesized that patients would show increased connectivity
among ICA component networks, possibly reflecting less specialized cognitive processing.
Also, based on a prior study showing delayed hemodynamic brain activity in schizophrenia
(Ford, et al. 2005), we predicted that patients would show increased latency of peak
hemodynamic signal change in each network compared to activity changes in healthy
controls. Although we do not directly test the disconnection hypothesis in this work, the
proposed methods would permit such tests using the proper experimental paradigm. Indeed,
the results of this analysis are consistent with the existence of misconnected neural circuitry
in subjects with schizophrenia, through findings that likely depict an increased dependence
among a wider array of less efficient brain regions in schizophrenia, a possible manifestation
of a generalized cognitive deficit.

Our general approach can be outlined as follows: we first use ICA to extract resting state
network time courses in patients with schizophrenia and healthy controls (Beckmann, et al.
2005; Garrity, et al. 2007). After additional data filtering for noise removal, the time series
between all pair-wise combinations of these networks are further analyzed to determine the
maximal lagged correlation between networks (this was done both to mitigate the impact of
latency difference upon the correlation and also to provide the possibility of evaluating the
latency differences). Significant correlations within groups, differences in correlation
between groups, and differences in lags between groups were computed. A resampling
technique was used to validate the significance of the group differences. We also tested the
robustness of the detected differences in connectivity by testing multiple independent sub-
samples of patients and controls.
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MATERIALS AND METHODS
Participants and Paradigm description

Data from 29 patients with schizophrenia [age 38.36±11.26 years (19–58 years) and 25
healthy controls (age 38.62±11.127 years (20–59 years)] were drawn from IRB-approved
studies, with written subject consents, at the Olin Neuropsychiatry Research Center
(ONRC). Prior to inclusion in the study, healthy participants were screened to ensure they
were free from DSMIV Axis I or Axis II psychopathology [assessed using the SCID-IV
(Spitzer, et al. 1996)] and also interviewed to determine that there was no history of
psychosis in any first-degree relatives. Patients met DSM-IV criteria for schizophrenia on
the basis of a structured clinical interview (SCID-IV) (First, et al. 1995) and review of the
case file. The control group included 18 males and 7 females; the patient group consisted of
22 males and 7 females. Eighty percent of controls and 89.7% of patients were right-handed.
The two groups were matched for mean age (p>0.811), proportion gender (p>0.747) and
handedness (p>0.248). We selected slightly more participants in the patient group due to
reported presence of greater variance in patterns in schizophrenic subjects with different
symptom profiles (Liddle 1992).

Image Acquisition
FMRI scans were collected using a 3.0 Tesla Siemens Allegra scanner, equipped with 40
mT/m gradients and a standard quadrature head coil. The functional scan was acquired using
gradient-echo echo-planar imaging with the following parameters (repeat time (TR) = 1.86s,
echo time (TE) = 27 ms, field of view (FOV) = 24 cm, acquisition matrix = 64×64, flip
angle (FA) = 70°, slice thickness (ST) = 3 mm, gap = 1mm). After excluding the first six
dummy scans, during which magnetization steady state was being reached, 162 scans were
used for analysis. During the scan, all subjects were instructed to rest quietly in the scanner,
without sleeping. Post-scan questionnaire confirmed subjects’ alertness level during the
scan.

Preprocessing
Data were preprocessed using the Statistical Parametric Mapping software package, SPM2
(http://www.fil.ion.ucl.ac.uk/spm/). Data were motion corrected, spatially smoothed with a
10 mm3 full width half-maximum Gaussian kernel, spatially normalized into the standard
Montreal Neurological Institute space, and then converted to the standard space of Talairach
and Tournoux (Talairach and Tournoux 1988) using an algorithm developed by Matthew
Brett (http://imaging.mrccbu.cam.ac.uk/imaging/MniTalairach).

Component Identification
Group spatial ICA was conducted for all 54 participants using the infomax algorithm (Bell
and Sejnowski 1995). Two separate group spatial ICAs were also conducted on controls and
patients to ensure that the resulting components had similar resting state fluctuations in the
two groups as in the resulting components attained from all 54 participants combined. Data
were decomposed into thirty components using the GIFT software
(http://icatb.sourceforge.net/, version 1.3b). Dimension estimation, to determine the number
of components, was performed using the minimum description length criteria, modified to
account for spatial correlation (Li, et al. 2006). Single subject time courses and spatial maps
were then computed (called back-reconstruction), during which the aggregate components
and the results from data reduction are used to compute the individual subject components
(Calhoun, et al. 2001a).
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Component Selection
A systematic process was used to inspect and select the components of interest from the 30
estimated components (Stevens, et al. 2006). The association of each component’s spatial
map with a priori probabilistic maps of gray matter, white matter, and cerebral spinal fluid
within standardized brain space (MNI templates provided in SPM2) helped to identify those
components whose patterns of correlated signal change were largely consisted of gray
matter versus non-gray matter. Components with high correlation to a priori localized CSF
or white matter, or with low correlation to gray matter, suggested that they may be
artifactual rather than representing hemodynamic change. Correlation analysis indicated that
no component corresponded to the spatial distribution of white matter. Visual inspection of
discarded components suggested that they represented eye movements, head motion, or
cardiac-induced pulsatile artifact at the base of the brain. Seven components were selected
as of interest for further analysis.

Analysis in GIFT also produced time courses for the 7 selected components for each of the
54 subjects. Prior to computing correlations, component time courses were filtered through a
band-pass Butterworth filter, with cut-off frequencies set at 0.0372 Hz and 0.372 Hz, the
frequency range implicated in previous resting state analysis (Cordes, et al. 2001).

Correlation and lag computation for patients and controls
The ICA algorithm assumes that the time courses of cortical areas within one component are
synchronous (Calhoun, et al. 2004). Though the components are spatially independent,
significant temporal correlations can exist between them. We examined this possibility
directly by computing a constrained maximal lagged correlation. Using this approach, we
computed a correlation and a lag value for each subject.

The time courses from the seven components for all subjects were first interpolated to
enable detection of sub TR hemodynamic delay differences in patients with schizophrenia
(Calhoun, et al. 2000; Ford, et al. 2005). The maximal lagged correlation was then examined
between all pair-wise combinations where the number of combinations of 7 components,
taken 2 at a time results in 7!/(2!(7–2)!) = 21 possible combinations. In other words, let ρ
represent correlation between two time courses, X̄ and Ȳ of dimension T×1 units, where T
represents the number of time points in the time course. Let io represent the starting
reference of the two original time courses, and Δi represent the non-integer change in time
(seconds). Assume X̄ at initial reference point io (X̄io), and Ȳ circularly shifted Δi units from
reference point of io (Ȳio+Δi), then ρio+Δi at this configuration of the two time courses can
be calculated as follows:

The lag between time courses X̄io and Ȳio+Δi is Δi (commonly denoted as δ) in seconds.
Therefore, vectors ρ̄ can be calculated between time courses X̄ and Ȳ, at each instance when
Ȳ is circularly shifted Δi units from −5 to +5 seconds. The maximal correlation value from ρ̄
and corresponding lag, δρ ̄max, was saved for time courses X̄ and Ȳ.

Correlation and lag values were calculated for all subjects and were later averaged for
control and patient group separately, where correlation values represented the dependency of
two (out of 7) resting state networks on each other. Using the Student’s t-test, statistically
significant correlation combinations from the 21 possible combinations were extracted for
patients and controls separately (p < 0.05), resulting in maps of functional network
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connectivity for each group. Lag values corresponding to the significant correlation
combinations were also extracted for each group. These lag values represent the amount of
delay between two correlated component time courses averaged across patients and
averaged across controls. We predicted that patients would exhibit more significantly
correlated functional networks than would controls 
where length represents the number of significantly correlated connections in each group.

Correlation and lag computation for group difference
Five statistically significant differences in correlations values for patients versus controls
were identified using a two sample t-test. To control for multiple comparisons, amore
conservative p-value of p<0.01 [corrected for multiple comparisons using the false
discovery rate (Genovese, et al. 2002)] was used for significance cut-off. We again predicted
that most of the significant connectivity found from group difference would consist of
higher correlation for patients than controls (i.e. ρpatients > ρcontrols).

Furthermore, connectivity combinations with statistically significant (p<0.01) lag
values,δ̄ρ ̄max, were also identified using a two sample t-test of the difference between
averaged control and patient lags. This test not only enabled us to visualize the sequence of
hemodynamic activity between two components in patients versus controls but also revealed
the amount of mean lag during activation from one component to the other for both groups.
Due to the delayed brain activity in patients with schizophrenia found in a previous study
(Ford, et al. 2005), we predicted that patients will show greater lag between significantly
correlated components than controls (i.e. δρcontrol < δρpatient).

Connectivity Validation
Because we used a relatively large sample size of fifty-four subjects, we were able to
validate the results by repeating the experiment on subsets of the data to determine whether
the same types of connectivity were present. Thus, to test for consistency, the methods
described above were repeated twenty times. In each of the twenty trials, functional
connectivity was observed between fifteen randomly selected patients and fifteen random
controls drawn from the full set of 54 subjects. Significant connectivity was recorded for
each group during each trial including significant correlations within groups, differences in
correlation between groups, and differences in lags between groups.

In addition, we used a resampling technique to determine whether the mean correlation in
controls is significantly different than the mean correlation in patients. We randomly
relabeled patients and controls and computed, the mean correlation difference between
shuffled controls and patients group in order to build a null distribution. We then calculated
a student t-test determined whether the result was significantly different than the mean
correlation difference in actual controls and patients group.

RESULTS
Component Selection and Visualization

Figure 1 shows the seven components (A–G) selected for connectivity analysis.Table 1
summarizes the components selected, along with the regions of activation as well as the
Brodmann areas (BA) in which activations occur. The results from the separate patient and
control ICA analyses were similar to what is show in Figure 1 and indeed led to the same
results as the full analysis.

Jafri et al. Page 6

Neuroimage. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Correlation and lag computation for Patients and Controls
Figure 2 shows a functional network connectivity (FNC) diagram for controls in which
significantly correlated components are represented by an arrow. Figure 3 shows a similar
connectivity diagram for patients. The direction of each arrow represents the lag between the
two connected components. For example, in Figure 2, an arrow connects components B and
D, representing that component B lags component D by certain time units. Both controls and
patients show significant connectivity between components B and D, components E and F
as well as between components B and G. Connectivity of components A and F is only found
in patients, while the connectivity of components B and C is only found in controls. The
direction of lag differs between patients and controls for components A and C as well as C
and G. It is also noticed that controls show an additional connection with component B,
while patients show an additional connection with component A.

Correlation and lag computation for group difference
Figure 4 represents the significant correlation found among group differences. In the figure,
a dotted line represents connectivity in which patients had higher mean correlation than
controls, while a solid line represents connectivity with higher correlation for controls. For
example, components A and F, which show significant correlation difference, are connected
with a dotted line to indicate that patients had greater mean correlation values than controls
for this connection.

Figure 5 shows the significant lag among components for group differences. In the figure,
dotted and solid lines are used to represent significant lag networks in patients and controls,
respectively. The arrow in the lines represents the lag between the connecting components.
For example, a dotted line between component D and F shows that in patients, component F
becomes activated after the activation of component D.

Connectivity Validation
Twenty trials of the experiment were performed in which ten control and ten patients were
randomly drawn a subjected to a t-test analysis. Figure 6 shows the number of times each of
the 21 combination was selected as significant in the 20 trials for patients (p<0.05). Figure 7
shows the histogram of significant correlations for controls. For example, the connection
between B and G was significant at many instances in both controls and patients. FNC with
default mode (A) and various other components (D, E, and F) were mostly significant in
patients, but not so much in controls. Overall, patients show more variance in the FNC
combinations selected at each of the 20 trials than controls. For example, controls show 12
combinations to have occurred once or never; while in patients, many fewer combinations
occurred once or less than 1 time (8).Similarly, in controls, four combinations occurred 19
or more (20) times, while inpatients, only 1 combination occurred at least 19, or greater,
times.

Furthermore, the group difference analysis was also validated. Figure 8 shows the number of
times the 5 connections in Figure 4 were selected as significant during the 20 trials. The
numbers of times the connections occurred varied from 10 to 13. The validation confirmed
(with 100% accuracy) that patients indeed showed greater correlation in 4 of the 5
connections, while controls showed greater correlation in connections B and G. The
repetition of significant lag analysis in Figure 5 revealed consistent results in that
components D–E and D–F appeared significant (p<0.01) 13 and 14 times, respectively, in
the 20 trials. In the occurrences, component D lagged E in controls 92%, while component
E lagged D in patients 85% of the time. Similarly, component D lagged F in controls 100%,
while component F lagged D in patients 79% of the time.
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Significance levels of group difference analysis were also calculated from the resampling
approach. Table 2 shows resulting significant mean correlation difference between controls
and patients. The columns report results from boot strapping technique in which 13 controls
and patients are randomly shuffled from one group to the other and the means and standard
deviations of the correlation differences are again computed. Finally, a one-sample t-test
was performed to compare whether the mean difference correlation of shuffled groups was
significantly different than the mean difference correlation of actual groups (p>0.01). Out of
21 combinations, the top 5 significantly different combinations (p<3.5E-08, uncorrected) are
the same as the 5 significantly different combinations in Figure 4; in support of our finding
that the patient and control group indeed has significantly different correlations for the 5
combinations selected.

DISCUSSION
ICA was successfully used to identify resting-state components in healthy controls and
patients with schizophrenia and to identify differences in functional network connectivity
among these components. We were able to identify several inter-connected networks present
during resting and then examine temporal dependencies between them by computing the
maximal lagged temporal correlation between the ICA time courses.

The identified resting state networks are included in Figure 1 (a–g). Figure 1a represents the
"default-mode" network, which reflects an ensemble of cortical regions typically deactivated
during demanding cognitive tasks in fMRI studies (Raichle, et al. 2001). Using functional
connectivity, this network can be conceptualized and studied as a "stand-alone" function or
system. Major regions in component A include the precuneus, anterior cingulate and
posterior cingulate gyri. Additional regions include the superior and middle temporal and
frontal gyri, the inferior parietal lobule and parahippocampal gyrus. Briefly, these regions
are thought to be related to subject’s recognition, social communication, working memory
and some auditory demands. The fluctuations in this network have been cited in numerous
studies to increase during resting state and suspend during specific goal-directed behaviors
(Garrity, et al. 2007; Raichle, et al. 2001).

Component B (in Figure 1b), in general, represents resting state hemodynamic activity
fluctuations in the parietal regions. Along with the parietal lobule, significant regions
include postcentral, anterior and posterior cingulate gyri, along with precuneus and middle
frontal cortex. In general, the parietal lobule is used during visuo-spatial interaction. Regions
present in component C include major visual cortical areas, such as the occipital gyrus along
with activations in other areas such as lingual and fusiform gyri, cuneus and precuneus.
Component D includes regions in frontal, temporal and parietal gyri, while component E
shows covarying regions not only in frontal and temporal gyri, but also in subcortical
regions, which include thalamus, caudate, and other basal ganglia regions. The function of
the basal ganglia can be described as a brain relay station where commands, such as “stop
reading”, get forwarded to the appropriate brain regions for processing. The dominant
regions in component D are related to visual perceptual abnormalities reported in
schizophrenia (Levy, et al. 2000).

The medial frontal gyrus dominates component F. Other covarying regions in component F
include anterior cingulate and precentral gyrus as well as superior frontal gyrus. In general,
these regions control the brain’s executive functions and have been cited to show
abnormalities in schizophrenia brains (Chan, et al. 2006). Regions in component G include
superior temporal and inferior frontal gyrus, responsible for auditory processing and
language comprehension, along with insula which is the affective sensory region. Several

Jafri et al. Page 8

Neuroimage. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



studies cite frontal and temporal gyrus as partially responsible for auditory hallucinations
found in schizophrenia (Gaser, et al. 2004).

Apart from just identifying neural networks present during ‘resting state’, the primary
purpose of this paper was to examine functional network connectivity (FNC), or the
temporal relationships among the identified components. Connectivity of the ‘default mode’
component (A) with other components was present more consistently in patients than
controls. Although we did not explicitly examine connectivity strength in relation to
measurements of active psychosis, it is reasonable to speculate that the increased default
mode FNC in patients may be the results of distraction due to hallucinatory experiences and/
or delusional preoccupations. Increased FNC of the default mode with other components in
patients also could indicate greater dependency of brain regions in the default mode network
on the function of other neural circuits (or vice versa) during resting state. We also observed
directional differences in lag among components (i.e. C→A in patients, while A→C in
controls).

There were other group differences in the relationship among component time courses.
Although controls showed greater correlations than patients in one functional network (B–
G), more networks existed in which patient correlations were significantly higher than
controls. This trend of higher correlation in patients (i.e. ρcontrols < ρpatients) might be related
to the attentional deficits in schizophrenia (Jorm, et al. 2005). Controls, on the other hand,
may have a better ability to persist in a single mental state with patients more variable. This
is also consistent with our recent findings showing more rapid fluctuations in the default
mode network in patients verses controls (Garrity, et al. 2007). This idea is indirectly
supported by the significant connection B→C in only controls because the brain regions in
component B have been linked to focused attention and decision making (Paulus, et al.
2002). In addition, reduced fluctuations in frontal and parietal regions have been attributed
as a possible concomitant of deficit symptoms in schizophrenia (Pearlson 2000). In contrast,
brain regions identified in component C assist in visual image processing and recognition
(Kim, et al. 2005). In particular, fusiform gyrus and other object/face recognition areas are
abnormal in schizophrenia (Dickey, etal. 2003). Therefore, the absence of functional
connection between B and C may hint higher order control deficits over sensory association
process in patients that appears intact in healthy controls, however this would need to be
directly tested in a future study.

Furthermore, the B–G connectivity shows higher correlation in controls than patients, which
agrees with previous studies since these components are related to mental timekeeping and
self-ordered behavior, commonly disturbed in schizophrenia (Ganzevles and Haenen 1995).
Two of the 4 connections among components in which patients show higher correlation than
controls relate to component E. This is also consistent with previous studies finding
abnormal function of basal ganglia regions in schizophrenia minds show dysfunction and
decreased activations in the basal ganglia (Gaser, et al.2004; Menon, et al. 2001). The
increased connectivity of these networks with that depicted in component E may suggest a
need for dependency on other components to make up for the lack of function in component
E’s regions.

The validation of our results through analysis of subsets of data lends additional support to
our various conclusions. The large-scale (54 subjects) and small-scale (15 subjects/trial for
20 trials) analysis of functional connectivity in controls showed very consistent results. The
five connectivity networks found in the large-scale analysis of correlation group difference
(A and E, A and F, B and G, C and E, C and F) also manifested significantly in the small-
scale analysis of multiple trials; however, the smaller-scale model of the study showed
patients connectivity to be more scattered, with more connections occurring between 3 and
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18 times, than never or always occurring (0–2 or 19–20 times), while control connectivity
was more consistent, with most occurrences either less than 2 times, or greater than 19
times. We had anticipated this greater variance in patterns in schizophrenic subjects on
account of the previously reported differences in patterns of brain activity in patients with
different symptom profiles (Liddle 1992). Regardless of the few differences in the large-
scale and small-scale analysis of correlation, the consistent similarities suggest this
technique may identify important differences between patients and controls, which may also
be useful for classification (although further work is needed to test this). Furthermore, the
repeatability of results between two diagnostic groups also implies robustness of results,
regardless of gender, age or education. Further validation of our results using the resampling
technique confirmed that the mean correlation differences between patients and controls
were indeed significantly different.

Group difference results for lag calculations (Figure 5) were not analyzed in detail because
the lag difference is only meaningful if the correlations between the processes are also
significant (i.e. if the shape of the two time courses is similar). Since the combinations with
significant lag do not also have significant correlations for either controls or patients (i.e.
connections D–E and D–F are not present in Figure 2 or Figure 3), the lags differences are
not reported.

In summary, we describe a general method for studying network connectivity, which is
demonstrated in a study of patients with schizophrenia and healthy controls. In agreement
with our hypotheses, patients showed slightly greater number of significant correlation
connectivity as controls in 54 subject analysis, as well as in individual runs for the 20 trial
validation  Furthermore, patients had higher correlation
values than controls in most of the significant functional networks. We also found increased
functional network connectivity in patients versus controls with respect to the default mode
which has been described as involved in “internal” versus “external” focus (Raichle, et al.
2001). The increased connectivity of other networks to the default mode network may be
related to hallucinations, although future work is needed to confirm this speculation.

An advantage of our approach to study the dependencies between functional networks was
that it allowed us to examine weak, but significant, connectivity among strongly connected
networks. We plan to explore the covariation between the symptom expression and the
outcome measures within the schizophrenia group in future work. Although we used a
correlational approach in this paper, one could also use other dependency measures, such as
mutual information or Granger causality, to study the differences in FNC in healthy controls
versus patients with schizophrenia. Furthermore, structural equation modeling techniques
will be considered in future work to study multiple dependencies among networks. We also
hope to apply this method to ICA results from EEG data and incorporate the newly derived
FNC diagrams with the ones found through fMRI analysis (Calhoun, et al. 2006b; Liu and
Calhoun 2007). Covariations between ICA components has previously been studied using
EEG in the context of a visual task, although in this case short-term covariation was studied
(Makeig, et al. 2004). In summary, we propose a general method for studying functional
network connectivity (weak, but significant temporal dependencies between temporally
coherent networks) and demonstrate it in a study of patients with schizophrenia and healthy
controls. Our approach revealed several novel findings, and may help improve our
understanding of schizophrenia as well as other mental disorders.
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Figure 1. Activation Maps for selected Components
Activation maps for 7 resting state networks selected for correlation and lag analysis
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Figure 2. Functional Network Connectivity in Controls
Solid lines show the significant correlation connections in controls. The arrow represents the
direction of the delay between two components. For example (a → b) represents that
component a lags component b by some calculated seconds among all controls.
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Figure 3. Functional Network Connectivity in Patients
Dotted lines show the significant correlation connections in patients from the 21 possible
correlation combinations. The arrow represents the direction of the delay between two
components. For example (a → b) represents that component a lags component b by some
calculated seconds among all patients.
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Figure 4. Significant Correlation between Group Differences
Out of 21 possible correlation combinations between 7 components, only 5 combinations
passed the two sample t-test (p < 0.01). The solid line represents the significant connectivity
where controls have higher mean correlation than patients, while dotted line represents
connectivity where patients have higher mean correlation. Presence of dotted lines rejects
the hypothesis that controls should have more correlation between two components than
patients.
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Figure 5. Significant Lag between Group Differences
Two sample t-test was also performed for significant lag among the 21 possible networks (p
< 0.01). 2 functional networks show significant lag difference between patients and controls.
Dotted lines show the direction of lag for patients, while solid lines shows the same for
controls.
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Figure 6. Connectivity for Patients over 20 trials
Histogram of significant connectivity found in patients over 20 trials. X-axis represents the
21 possible combinations for correlations, while the y –axis represents the number of times a
particular combination appeared to be significant in the 20 trials.
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Figure 7. Connectivity for Controls over 20 trials
Histogram of significant connectivity found in controls over 20 trials. X-axis represents the
21 possible combinations for correlations, while the y –axis represents the number of times a
particular combination appeared to be significant in the 20 trials.
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Figure 8. Group Difference Correlation over 20 trials
The number of times the 5 connections in Figure 4 were selected as significant during the 20
trials. The solid line represents the significant connectivity where controls have higher mean
correlation than patients, while dotted line represents connectivity where patients have
higher mean correlation.
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Table 1 (a–g)
Regions Activated in Controls and Patients during Resting State

Voxels above threshold were converted from MNI to Talairach coordinates and entered into a database to
provide anatomic and functional labels for the left (L) and right (R) hemispheres. The volume of activated
voxels in each area is provided in cubic centimeters (cc). Within each area, the maximum t-value and its
coordinate are provided. NS = Not significant

Region Brodmann Area Volume
(cc) L/R

Random Effects: max T (x,y,z)
L/R

Component A: (Default Mode)

Precuneus 31;7;23;39;19 19.9/17.6 26.3(0,−46,31)/26.4(3,−46,31)

Cingulate Gyrus 31;23;24 8.7/5.5 25.4(−3,−43,31)/25.0(3,−42,35)

Posterior Cingulate 31;23;30;29;18 10.6/8.7 24.2(−7,−57,24)/22.2(7,−50,27)

Cuneus 7;30;18;19;23;31;17 6.2/4.5 22.2(−3,−66,32)/22.2(3,−63,32)

Superior Temporal Gyrus 39;22;13;38 8.2/5.4 19.9(−52,−56,28)/22.1(49,−60,28)

Middle Temporal Gyrus 39;19;22;21 4.7/6.1 17.1(−52,−60,24)/20.7(45,−60,28)

Supramarginal Gyrus 40;39 3.8/2.6 20.5(−52,−56,32)/20.1(52,−56,32)

Angular Gyrus 39;40 2.2/2.4 19.2(−52,−60,32)/19.8(52,−60,32)

Inferior Parietal Lobule 40;39;7 5.1/5.2 18.5(−52,−56,36)/19.4(45,−59,36)

Parahippocampal Gyrus 30;27;18;19;36;35 2.5/1.8 15.0(−14,−47,7)/14.9(14,−47,7)

Superior Parietal Lobule 7 0.8/2.7 8.6(−7,−62,53)/14.9(38,−66,45)

Lingual Gyrus 19;18;30 2.8/1.8 14.0(−14,−47,2)/12.6(10,−54,3)

Medial Frontal Gyrus 10;11;8;9;6 11.4/8.4 12.0(0,54,1)/11.7(3,54,1)

Superior Frontal Gyrus 10;9;8;11 8.1/6.4 10.7(−21,43,39)/11.0(7,54,−3)

Superior Occipital Gyrus 39;19 0.0/1.0 NS/10.2(38,−73,29)

Middle Frontal Gyrus 8;9 1.5/1.3 8.8(−24,36,40)/7.1(38,19,40)

Paracentral Lobule 5;31;4;6 1.1/0.4 8.4(0,−38,48)/8.1(3,−38,48)

Anterior Cingulate 32;42 1.1/0.9 7.9(0,47,−2)/8.0(3,47,−2)

Thalamus 0.3/0.4 7.8(−10,−37,10)/6.7(7,−34,2)

Inferior Temporal Gyrus 20;21 1.3/1.2 7.1(−59,−8,−19)/7.0(59,−8,−22)

Fusiform Gyrus 20 0.4/0.1 6.6(−59,−5,−26)/5.8(59,−15,−22)

Insula 13 0.5/0.0 6.3(−28,−40,19)/5.1(28,−40,19)

Caudate Caudate Tail 0.4/0.0 6.1(−24,−40,19)/NS

Component B: Parietal

Superior Parietal Lobule 7;40;5 11.6/10.0 25.8(−7,−65,57)/22.0(3,−65,57)

Precuneus 7;19;39;31 29.1/23.4 25.5(−7,−62,61)/23.6(3,−72,49)

Postcentral Gyrus 7;5;2;40;1;3 10.7/8.7 20.6(−7,−55,65)/20.1(3,−54,69)

Paracentral Lobule 5;31;6;4;7 6.0/3.5 18.5(0,−38,48)/16.8(3,−45,60)

Cingulate Gyrus 31;32;24;23 12.3/5.0 18.2(−7,−45,44)/14.4(3,−32,43)

Inferior Parietal Lobule 40;39;7 17.8/10.9 17.3(−45,−42,52)/13.8(42,−42,52)

Cuneus 19;7;18;31 3.6/3.3 13.7(−10,−66,32)/13.7(7,−76,37)

Angular Gyrus 39 1.7/0.1 13.1(−31,−59,36)/7.4(38,−73,33)
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Region Brodmann Area Volume
(cc) L/R

Random Effects: max T (x,y,z)
L/R

Sub−Gyral 7;31;40;39 0.6/0.9 11.5(−21,−52,56)/11.5(10,−32,43)

Superior Occipital Gyrus 19;39 1.0/0.8 11.0(−35,−77,33)/11.1(35,−77,33)

Middle Frontal Gyrus 9;10;46;6;11 8.1/0.9 10.6(−38,46,27)/6.6(38,42,27)

Medial Frontal Gyrus 6;9;32;8;25 1.4/0.1 10.4(−7,−21,47)/5.8(7,−21,47)

Middle Temporal Gyrus 39;19 0.9/0.1 9.7(−38,−73,29)/5.8(38,−80,25)

Superior Frontal Gyrus 10;9;11 3.8/0.9 9.5(−38,49,22)/6.6(38,39,27)

Supramarginal Gyrus 40 0.9/0.4 8.5(−55,−36,35)/7.4(38,−42,35)

Anterior Cingulate 32;24 1.3/0.3 8.2(−7,32,23)/6.7(3,22,24)

Posterior Cingulate 29;23;30 1.5/0.1 7.9(−7,−44,6)/5.5(3,−33,22)

Superior Temporal Gyrus 22;38 1.0/0.0 7.7(−55,13,−4)/NS

Inferior Frontal Gyrus 9;10;47;46;11;44 1.7/0.1 7.3(−55,18,24)/5.7(24,30,−20)

Parahippocampal Gyrus 30;36;34;35 0.4/0.2 7.1(−7,−40,6)/5.3(31,−32,−25)

Uncus 34;28 0.3/0.0 6.8(−17,6,−19)/NS

Component C: Visual Cortical Areas

Lingual Gyrus 18;19;17;30 17.8/16.8 20.1(−7,−78,0)/23.4(7,−64,3)

Cuneus 30;18;23;17;19;7;31 21.6/20.9 20.8(−14,−67,16)/23.3(10,−64,7)

Posterior Cingulate 30;31;23;29;18 8.1/6.9 21.0(−14,−64,16)/22.6(10,−64,11)

Precuneus 31;23;19;18;7;39 12.7/11.9 19.6(−10,−67,20)/19.5(7,−70,20)

Middle Occipital Gyrus 18;19;37 13.9/12.3 18.2(−14,−88,17)/18.1(21,−88,13)

Inferior Occipital Gyrus 18;17;19 3.8/3.9 12.5(−21,−89,−7)/16.8(21,−85,−3)

Parahippocampal Gyrus 19;18;30;37;36;27 5.7/3.3 16.1(−21,−58,−5)/13.9(21,−58,−1)

Fusiform Gyrus 19;18;37;20 10.4/6.0 15.8(−24,−61,−4)/14.7(24,−65,−4)

Superior Occipital Gyrus 19;39 1.3/1.0 14.5(−28,−80,25)/12.0(31,−80,25)

Middle Temporal Gyrus 39;19;37;22;21 8.6/8.9 14.2(−42,−74,12)/12.0(38,−74,16)

Sub−Gyral 19;39 0.4/0.2 10.0(−14,−44,−5)/13.2(17,−55,−5)

Inferior Temporal Gyrus 37;19;20 1.1/1.0 10.4(−49,−68,0)/9.5(42,−71,0)

Cingulate Gyrus 31 0.4/0.2 10.1(0,−60,24)/9.3(3,−60,28)

Superior Temporal Gyrus 22;41;39;21;42;29;13 6.0/9.1 8.9(−55,−27,5)/9.7(49,−34,6)

Transverse Temporal Gyrus 41;42 0.3/1.2 6.3(−49,−27,10)/9.5(45,−30,10)

Superior Parietal Lobule 7 0.3/0.3 7.6(−24,−73,45)/7.8(24,−73,45)

Insula 29;13;22;40 0.0/0.5 NS/7.8(45,−27,14)

Precentral Gyrus 6;4 0.0/0.9 NS/5.8(59,−5,33)

Component D: Frontal Temporal Parietal

Superior Parietal Lobule 7;40 8.2/10.2 14.1(−42,−59,53)/16.8(38,−59,53)

Inferior Parietal Lobule 40;7;39 12.3/14.8 13.4(−42,−55,53)/15.7(45,−55,53)

Precuneus 7;19;39 5.7/9.9 11.9(−42,−69,41)/15.3(28,−69,49)

Angular Gyrus 39;40 1.9/2.1 9.5(−45,−66,36)/11.9(45,−63,36)

Postcentral Gyrus 5;40;2;1;3;7 1.9/4.5 9.8(−59,−38,52)/10.8(42,−45,60)

Middle Frontal Gyrus 11;10;46;47;9;6;8 9.7/20.3 10.1(−38,54,−14)/10.7(45,40,−17)
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Region Brodmann Area Volume
(cc) L/R

Random Effects: max T (x,y,z)
L/R

Sub-Gyral 39;10;37;40 0.0/0.4 NS/10.4(31,−59,40)

Inferior Frontal Gyrus 47;46;10;44;9;45;11 1.5/8.6 9.4(−45,37,−17)/9.4(52,38,2)

Superior Frontal Gyrus 8;11;10;9;6 1.8/3.1 7.4(−35,50,−14)/9.2(42,16,49)

Middle Temporal Gyrus 39;20;21;37 2.2/4.3 8.6(−62,−45,−13)/8.9(49,−60,32)

Supramarginal Gyrus 40;39 0.6/1.1 7.6(−55,−56,36)/8.9(52,−49,36)

Cuneus 19;7 0.0/0.5 5.2(−28,−83,37)/8.7(28,−83,37)

Superior Occipital Gyrus 19;39 0.2/0.6 6.6(−38,−77,33)/8.6(35,−77,33)

Superior Temporal Gyrus 39;38 0.3/0.9 5.8(−55,−63,28)/8.3(49,−56,32)

Inferior Temporal Gyrus 20;37 1.1/1.5 7.9(−59,−48,−13)/7.6(62,−51,−9)

Precentral Gyrus 9;4;6 0.0/0.6 NS/7.4(45,19,36)

Fusiform Gyrus 37 0.1/0.3 5.7(−55,−52,−13)/6.2(55,−48,−17)

Medial Frontal Gyrus 8;6 0.2/0.1 6.0(0,33,40)/5.6(3,33,40)

Component E: Frontal Parietal Subcortical

Inferior Parietal Lobule 40;39;7 15.2/6.0 14.5(−49,−49,40)/9.7(45,−52,44)

Insula 13;47 1.5/0.4 13.6(−31,17,−5)/9.1(31,17,−5)

Middle Frontal Gyrus 10;46;11;6;8;9;47 39.4/6.0 13.5(−35,51,2)/9.2(35,47,−6)

Inferior Frontal Gyrus 47;46;10,45;13;9;44 15.6/1.5 13.0(−31,20,−5)/9.2(38,48,2)

Supramarginal Gyrus 40 4.0/1.1 12.7(−42,−46,35)/8.3(38,−46,35)

Superior Frontal Gyrus 10;8;6,9;11 19.9/2.0 12.7(−31,54,−3)/8.3(28,51,−6)

Sub-Gyral 47;40;10;39;8;37;9;32 1.0/0.6 12.6(−35,48,2)/9.4(35,48,2)

Angular Gyrus 39 1.4/0.3 11.5(−38,−59,40)/6.5(35,−59,36)

Precentral Gyrus 9;6;44 1.9/0.0 11.4(−42,19,40)/NS

Extra-Nuclear 47;13 0.5/0.4 11.3(−31,17,−8)/8.7(31,17,−8)

Precuneus 39;19;7;31 5.3/1.7 10.8(−38,−63,36)/7.0(31,−63,40)

Claustrum 1.3/0.6 10.7(−28,17,−1)/7.7(28,13,−4)

Superior Parietal Lobule 7;40 3.9/1.9 10.7(−38,−55,48)/9.5(38,−59,49)

Superior Temporal Gyrus 39;22 1.2/0.1 9.7(−38,−56,32)/6.0(31,−53,32)

Medial Frontal Gyrus 9;6;10;8;32 6.9/0.2 9.2(−10,36,31)/6.6(24,44,6)

Cingulate Gyrus 31;32;23;24;6 5.4/0.7 8.8(−7,−25,34)/7.1(3,−26,30)

Anterior Cingulate 32;10;24;42;9 4.1/0.3 8.7(−14,35,23)/5.9(24,41,2)

Postcentral Gyrus 2;1;40 0.6/0.0 8.5(−55,−29,39)/NS

Middle Temporal Gyrus 39;37;21;20;22 3.9/0.2 8.3(−45,−60,32)/5.2(55,−51,−5)

Lingual Gyrus 18 0.3/0.7 5.6(−3,−83,−19)/7.7(10,−79,−19)

Lentiform Nucleus 1.6/1.3 7.6(−24,17,−1)/7.6(21,17,−8)

Inferior Temporal Gyrus 20;37 0.9/0.0 6.6(−49,−28,−10)/NS

Posterior Cingulate 23 0.2/0.0 6.5(−7,−29,26)/NS

Thalamus 0.1/0.4 5.4(−14,−6,9)/5.9(10,−7,0)

Caudate 0.3/0.3 5.9(−14,14,−1)/5.9(10,7,0)

Fusiform Gyrus 37;18;19 0.0/0.2 5.8(−45,−34,−6)/5.6(17,−83,−22)
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Region Brodmann Area Volume
(cc) L/R

Random Effects: max T (x,y,z)
L/R

Component F: Frontal

Superior Frontal Gyrus 8;6;9;10 31.7/30.1 24.1(0,23,49)/21.6(3,23,49)

Medial Frontal Gyrus 8;6;9;10;32 18.7/17.4 23.2(0,26,48)/22.3(3,19,45)

Cingulate Gyrus 32;24;6;31;23 11.4/8.4 20.1(0,29,32)/21.2(3,29,32)

Anterior Cingulate 32;24;33;42 6.1/5.2 17.7(0,35,23)/17.8(3,35,23)

Middle Frontal Gyrus 9;8;6;10;46;11;47 27.2/29.5 14.2(−45,19,40)/16.6(38,26,36)

Precentral Gyrus 9;6;4;44 4.8/9.7 13.6(−45,19,36)/16.5(38,22,36)

Sub-Gyral 8;32;9;6;4;40 1.4/1.6 11.7(−14,23,44)/12.2(17,26,44)

Paracentral Lobule 31;6 1.0/0.5 11.4(0,−11,42)/8.8(3,−11,46)

Inferior Frontal Gyrus 9;45;44;47;46;6;13 6.8/11.5 10.1(−52,12,33)/11.3(49,18,24)

Superior Temporal Gyrus 38;22;39 0.0/1.1 5.5(−49,20,−12)/7.8(52,17,−8)

Caudate 2.7/1.9 7.6(−14,−3,17)/7.4(14,4,12)

Inferior Parietal Lobule 40;39;7 0.0/4.2 NS/7.4(45,−52,40)

Thalamus 1.2/1.2 7.0(−14,−3,13)/6.8(10,−3,13)

Postcentral Gyrus 3;4 0.0/1.0 NS/6.6(21,−28,55)

Supramarginal Gyrus 40 0.0/0.5 NS/6.5(52,−49,36)

Lentiform Nucleus 0.3/0.2 6.5(−14,4,8)/5.7(14,0,8)

Insula 47;13 0.0/0.3 6.5(−14,4,8)/5.7(14,0,8)

Component G: Temporal

Insula 13;47;29;40;22;45 7.2/8.4 28.2(−42,10,−4)/20.1(45,0,0)

Inferior Frontal Gyrus 47;45;13;44;10;46;9 11.1/8.3 26.7(−42,13,−4)/16.8(42,13,−4)

Superior Temporal Gyrus 22;38;42;41;13;29;21 19.7/17.3 26.0(−49,10,−8)/22.6(52,0,0)

Extra-Nuclear 13;47 0.6/0.7 23.9(−42,10,−8)/16.7(42,6,−8)

Claustrum 3.4/4.7 20.8(−35,10,−1)/18.7(38,−7,−3)

Transverse Temporal Gyrus 42;41 1.4/1.7 20.0(−59,−17,9)/18.7(59,−17,9)

Postcentral Gyrus 40;43;2;1;3 4.2/3.9 19.9(−62,−23,18)/18.3(62,−23,14)

Precentral Gyrus 6;44;13;43 3.9/4.5 17.8(−49,−10,9)/19.4(55,4,8)

Sub-Gyral 13;21;38 1.0/0.9 19.1(−42,3,−8)/15.9(42,0,−8)

Middle Temporal Gyrus 21;22;38;39 3.0/1.1 17.9(−59,0,−4)/15.2(59,−4,−4)

Inferior Parietal Lobule 40 2.2/2.6 17.3(−62,−23,22)/14.2(55,−33,22)

Lentiform Nucleus 2.3/1.8 12.6(−31,3,0)/11.4(31,−10,−3)

Cingulate Gyrus 32;24 2.1/0.6 10.9(0,9,41)/9.7(3,9,41)

Middle Frontal Gyrus 47;11;46 0.5/0.3 10.7(−49,37,−2)/9.2(45,34,−5)

Subcallosal Gyrus 34 0.0/0.2 NS/9.9(24,3,−11)

Anterior Cingulate 32;24;42 1.8/0.6 9.6(−3,32,19)/8.6(0,38,2)

Medial Frontal Gyrus 32;6 0.3/0.1 9.5(0,6,45)/8.2(3,6,45)

Thalamus 0.4/0.3 9.4(−7,−13,5)/9.1(3,−13,5)

Parahippocampal Gyrus 0.0/0.4 8.9(−31,−1,−11)/9.1(31,−4,−11)

Caudate 0.1/0.1 8.4(−10,4,4)/8.8(35,−17,−7)
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Region Brodmann Area Volume
(cc) L/R

Random Effects: max T (x,y,z)
L/R

Superior Frontal Gyrus 6 0.2/0.0 8.5(−3,6,49)/NS
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