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Abstract
In this paper we describe an application called peFinder for document-level classification of CT
pulmonary angiography reports. peFinder is based on a generalized version of the ConText
algorithm, a simple text processing algorithm for identifying features in clinical report documents.
peFinder was used to answer questions about the disease state (pulmonary emboli present or
absent), the certainty state of the diagnosis (uncertainty present or absent), the temporal state of an
identified pulmonary embolus (acute or chronic), and the technical quality state of the exam
(diagnostic or not diagnostic). Gold standard answers for each question were determined from the
consensus classifications of three human annotators. peFinder results were compared to naive
Bayes’ classifiers using unigrams and bigrams. The sensitivities (and positive predictive values)
for peFinder were 0.98(0.83), 0.86(0.96), 0.94(0.93), and 0.60(0.90) for disease state, quality state,
certainty state, and temporal state respectively, compared to 0.68(0.77), 0.67(0.87), 0.62(0.82),
and 0.04(0.25) for the naive Bayes’ classifier using unigrams, and 0.75(0.79), 0.52(0.69),
0.59(0.84), and 0.04(0.25) for the naive Bayes’ classifier using bigrams.
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1. Introduction
Thromboembolic disease is a vascular disease with a high incidence in the United States,
with estimates of 398,000 cases of deep venous thrombosis (DVT) and 347,000 cases of
pulmonary embolus (PE) per year. Deaths due to PE are estimated to be about 235,000 per
year. The mortality due to untreated, clinically apparent PE is approximately 30%. However,
if correctly diagnosed and anticoagulant therapy is initiated, mortality drops to below 3%
[16]. A large proportion of deaths due to PE are believed to be due to missed diagnoses
rather than failure of therapies. Currently, contrast-enhanced CT pulmonary angiography
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(CTPA) is the standard diagnostic procedure to rule out suspected PE. CTPA exams can
provide exquisite detail but are also liable to artifacts, such as respiratory motion and beam
harding, that can make image interpretation uncertain or effectively impossible, depending
on the severity of the artifacts. Improvements to acquisition hardware and protocols and
development of post-processing schemes are continually being made and evaluated. Such
technological developments and evaluations require the ability to identify and characterize a
large number of CTPA exams.

Currently at our institution, identification of cases requires an honest broker to manually
review the radiology information system to identify exams ordered to rule out PE and then
to access and review the dictated report to determine the characteristics of the resulting
exam. This human bottleneck increases the cost and slows the rate of case identification.
Text processing tools offer the promise of semi-automating this process so that large
numbers of relevant radiology exams can be identified rapidly with less cost. In this paper,
we describe our initial efforts to develop a text processing application called peFinder for
document-level classification of CTPA reports for exams that were ordered to rule out PE.

peFinder relies on identification of features within the report regarding whether the
radiologist suspects a PE, whether a suspected PE is new, and the quality of the radiology
exam. To generate the features, we decided to apply an existing algorithm called ConText
[22]. However, to apply ConText to this new task, we developed a more generalized
implementation of the ConText application and extended the algorithm with properties
relevant to identifying patients with an acute PE in high quality CTPA exams. Con-Text
determines whether a clinical condition is absent or present, whether the condition is
historical, recent, or in the future, and whether the experiencer of the condition is the patient
or someone else. In a previous study [22], Harkema and colleagues showed that ConText,
which was developed for emergency department notes, performed similarly on discharge
summaries but did not perform as well on radiology reports. We believe that determining
whether a new finding is present or absent is a more complex task in radiology reports than
it is in emergency department reports and discharge summaries. Identifying indications of a
new radiology finding, such as a PE, from a radiology report involves integrating
information about whether the finding was seen on the exam, whether the finding is new or
has been seen previously, how certain the radiologist is that the opacity indicates the finding,
and the quality of the radiology study, which if poor could compromise the radiologist’s
impression of the image. Moreover, it is important to be able to distinguish between
mentions of the finding as an observation (which indicates potential presence of the finding)
and mentions of the finding as the reason for exam (which does not indicate presence or
absence of the finding).

We extended the contextual properties assigned by ConText to account for these features in
a more generalized Python implementation of the algorithm called pyConText.

First, we provide a brief background on ConText and the modications we made in the
pyConText implementation. Second, we describe how we built peFinder using features
generated by pyConText. Then we evaluate how well peFinder can classify documents to
answer the following questions: 1) Is a PE present in the exam? 2) Is there uncertainty
related to the disease state? 3) If a PE is present, is it chronic or acute? and 4) Does the exam
exhibit notable quality limitations? We compared peFinder classifications against
classifications made by domain experts and against n-gram document-level classifiers.

2. Background
For some tasks, the challenge in identifying relevant patients is accounting for the myriad of
ways the case definition can be described in text. For example, finding patients with chest
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pain may require dozens of keywords or phrases, such as “angina,” “chest discomfort,” and
“pain when I press on the lower part of the sternum.” In contrast, only a few lexical variants
are commonly used to describe pulmonary embolism in a CTPA exam: for example,
“pulmonary embolism,” “embolus/emboli,” or “PE.” The challenge in identifying PE cases
from CTPA exams is not the lexical variation in describing the condition itself but the ability
to identify the contextual modifiers that determine whether the case represents a new PE.
Once we locate a mention of PE in the exam, we need to know whether the PE is present or
absent, whether the PE is new or pre-existing, how certain the radiologist is of the presence
of a PE, and how reliable the imaging study was in relation to the diagnosis. We
hypothesized that an algorithm accounting for lexical cues surrounding the findings of
interest could successfully identify the modifying information we need.

ConText [22], an extension of the NegEx algorithm [5], is a simple algorithm that looks for
lexical cues in the context of mentions of signs, symptoms, and diseases. If a clinical
condition falls within the scope of a lexical cue, the condition is assigned the property
represented by that cue. For instance, PE in the sentence “No evidence of PE” falls within
the scope of the negation cue “no” and would therefore be assigned the property negated.
The current version of ConText, as described in [22], assigns the following properties:
existence (affirmed, negated); temporal (historical, recent, future/non-specific); and
experiencer (patient, other). We generalized ConText in this study by allowing it to assign
arbitrary, user-defined properties as well as arbitrary, user-defined relationships between
properties.

2.1. Related Work
Others have developed applications similar to ConText for characterizing clinical named
entities. Several algorithms exist for negation detection [30, 15, 24]. Recently, machine
learning classifiers have been applied to the problem of assertion detection in clinical
reports, determining whether a concept is asserted, negated, or uncertain [36], and we are
developing a feature-based machine learning version of ConText. In addition, there is
current work on temporal annotation of clinical text [43, 33, 28]. ConText differs from many
of these other applications in its simplicity, which makes it easy to apply to a variety of
problems but often less accurate than more specialized applications that do not rely only on
lexical patterns. The properties identified by ConText and similar algorithms can be
extremely useful for accurate case detection or characterization from clinical reports.

Clinical research often relies on identifying patients with specified case definitions from the
EMR. Many studies use claims data to identify relevant patients; however, studies relying
solely on structured data often generate inaccurate disease or screening rates [17, 21]. Free-
text clinical documents provide more accurate and complete clinical detail for identifying
patients with a specific case definition. Therefore many studies rely on chart review to
identify relevant cases. Dublin et al. identified 1,410 people with newly-recognized atrial
fibrillation from ICD-9 codes and validated cases by review of medical records to examine
the association of diabetes with risk of atrial fibrillation [14]. Over a two-year period,
Nelson et al. manually reviewed 70,000 chest radiograph reports to study the impact of the
introduction of pneumococcal conjugate vaccine on rates of community acquired pneumonia
[31]. The expense involved in chart review is massive [27, 25]. Text processing methods can
be applied to increase the efficiency of chart review.

Various approaches have been used to classify or retrieve textual documents that match a
specific query or case definition. Medline and Google are two examples of classification
systems using a query submitted by a user. Text classification approaches vary in accuracy
and in sophistication. Boolean keyword-based approaches return a relevant document if the
document includes words or word variants from the query. Statistical retrieval techniques
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attempt to differentiate documents from each other based on the words and their frequencies
in relevant and irrelevant document. The tf/idf weight (term frequency inverse document
frequency) [26] is a standard statistical measure that weights a word’s ability to discriminate
relevant and irrelevant documents in a corpus. A word’s weight increases proportionally to
the number of times a word appears in the document but is offset by the frequency of the
word in the entire corpus. Similarly, a Bayesian text classification algorithm may use the
positive or negative likelihood ratios of a word or a group of words to quantify the word’s
ability to discriminate relevant and irrelevant documents [2]. There are also a number of
symbolic NLP applications designed for or applied to clinical texts, including MedLEE [19],
MPLUS [10], MetaMap [3], Hitex [42], CTAKES
(http://sourceforge.net/projects/ohnlp/files/), Multi-threaded Clinical Vocabulary Server
(MCVS), and ONYX [9]. Symbolic text classification systems use linguistic techniques,
such as part-of-speech tagging, parsing, entity recognition, and relation identification, to
identify relevant information in a document. The relevant information can then be reasoned
with using rules or machine learning algorithms to classify a document. Statistical,
symbolic, and hybrids have been applied to text classification of clinical reports [32, 6, 35,
7, 18, 38].

Statistical techniques are simple to apply but may not accurately capture the relationships
among words in a document. For example, a bag-of-words classifier using n-grams as
features may accurately classify reports describing a PE, but may not do as well at
determining whether the PE was negated: the assumption that two words occuring in the
same document are related is often an inaccurate assumption, as in “Positive for PE. No
other abnormality.” Symbolic techniques attempt to identify modifying information for
clinical conditions, but clinical NLP applications using symbolic techniques can be
cumbersome to implement and use outside of the institution where the application was
developed. Moreover, only recently are researchers making such NLP applications available
for open use by others [42]. Similar to what South and colleagues found [34], when a task
involves a limited number of named entities (as in detection of influenza or of pulmonary
emboli) and relies strongly on contextual properties for successful detection, a more targeted
algorithm like ConText can perform as well as more sophisticated, general-purpose NLP
applications like MedLEE.

3. Methods
The objectives of this study were to create a CTPA report classifier based on a more
generalizable and extensible version of ConText. All research done for this study was
approved by the University of Pittsburgh IRB.

The CTPA report classifier (peFinder) was used to answer the following questions: Was the
patient positive for a pulmonary embolism? Was the pulmonary embolism acute or chronic?
Was there uncertainty regarding the diagnosis of PE? Was the exam of diagnostic quality?

To evaluate the performance of peFinder at answering these questions, we compared its
output to answers provided by human annotators who read the same reports. We also
compared peFinder document classification performance to that of two bag-of-word naive
Bayesian classifiers. Bag-of-words classifiers are frequently used as a baseline comparison
for document-level classification, in large part due to their simplicity. In spite of their
simplicity, bag-of-words classifiers are actually often difficult to beat. [12] Although an n-
gram classifier at the sentence level may have been more accurate than our document-level
classifier, the annotation effort required for a baseline sentence-level classifier would exceed
the effort involved in configuring py-ConText for this task. In this section, we describe
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selection of our dataset, manual report annotation, the adaptations we made to ConText, and
our evaluation process and outcome measures.

3.1 Data Set
We retrospectively identified 4,657 CTPA reports that were ordered to rule out pulmonary
emboli. The reports were identified using radiology procedure codes that are included in the
header of the dictated reports archived in MARS [41]. The reports were all de-identified in a
fully HIPAA-compliant manner using the De-ID software [20]. Using the NegEx algorithm
to process the Impression section of the reports, we identified 449 potentially positive cases
in the set and randomly selected 11% of the remaining reports, for potentially negative
cases. We randomly split the 928 reports into three sets. The first 20 reports were used to
train human annotators on the task. A set of 250 reports was used to develop our automated
classifiers, and the remaining set of 658 reports was held out as a test set. Ultimately, 40
reports were discarded because no user annotations were obtained for them; two failures
were due to anomalies in the Impression section, as will be discussed later, the remaining 38
failures were due to our annotation software skipping the reports. Our final set consisted of
202 development reports and 656 test reports.

3.2. Report Annotation
Three second-year medical students independently annotated the reports using a GUI
interface to a database that we developed. Users were not allowed to edit their annotations.
For each annotator, the first twenty reports were used to train the annotators on the
annotation task. Developers reviewed the annotations and discussed them with the
annotators. The annotation schema for DISEASE/CERTAINTY STATE and QUALITY
STATE are presented in Tables 1 and 2, respectively. We initially captured the TEMPORAL
STATE informally by asking the annotators to provide a free-text comment if there was a
discussion of a chronic PE.

In peFinder, we chose to annotate DISEASE and CERTAINTY STATES separately. Binary
DISEASE and CERTAINTY STATES were generated from the user annotations as follows:
probably positive and definitely positive were collapsed to positive; probably negative,
indeterminate, and definitely negative were considered negative; definitely negative and
definitely positive were considered certain; and probably negative, inderminate, and
probably positive were considered uncertain. After collapsing annotations to binary
values, we generated consensus states for each report by a majority vote of the annotators.

Free-text entries describing the TEMPORAL STATE were often missing; therefore, we
asked annotators to explicitly annotate the TEMPORAL STATE of the consensus disease-
positive cases. The annotation scheme for the TEMPORAL STATE is described in Table 3.
Because of the unavailability of two of the original annotators, two physicians performed the
temporal annotations along with one of the original medical students.

3.3. Generalization of ConText
ConText was developed for the task of identifying the presence of acute clinical conditions
from ED reports. The task of identifying acute PEs seems similar to the task ConText was
initially developed for; however, the implementation of the ConText algorithm would not
accommodate all of the types of knowledge required to perform our task. We hypothesized
that lexical surface patterns may be sufficient for accomplishing our task of identifying acute
pulmonary emboli in CTPA reports, so we developed a new version of ConText. We
implemented the algorithm using the Python programming language in a package named
pyConText. We populated the knowledge structures of the algorithm with all existing
ConText surface cues and supplemented it with a number of new cues relevant for our task.
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The core component of the pyConText algorithm is the domain and syntactic knowledge
incorporated into four-tuples called items. Each item consists of the following elements: 1) a
literal, 2) a category, 3) a regular expression, and 4) a rule.

The items are used by the pyConText algorithm to create tagObjects on a sentence-by-
sentence basis. Each tagObject receives the four attributes of the item used to define it and
adds the following attributes: 1) the actual matched phrase from the text, 2) the character
span within the sentence of the matched phrase, 3) the scope within the sentence of the
tagObject, 4) a collection of other tagObjects modified by the current tagObject, and 5) a
collection of other tagObjects modifying the current tagObject. The relationships between
tagObjects defined within a sentence form the basis for textual inferencing with the objects.

The details of items are described in Section 3.3.1 and the details of tagObjects are described
in 3.3.2.

3.3.1. Description of items—The details of the four-tuple components of items are as
follows:

1. The literal is a lexical cue (word or phrase) relevant for the domain problem.

2. The category defines what the item represents, for example a finding or an
uncertainty term. The categories from the previous implementations of ConText
included finding, negated existence term, conjunction, pseudo-negated
existence term, and temporality term. In pyConText categories are user-defined
and there are no limits to the number of categories that can be used.

As an example, for our PE identification task, we added additional categories exam
feature, exam quality descriptor, and indication for exam. In the previous
version of ConText, all literals (except those with the category finding) act as
modifiers for literals with the category finding. In pyConText, the user can define
modifier relationships among literals in whatever way the task at hand requires.

3. The regular expression is what is used in the program to actually capture the literal
in the text. If a regular expression is not provided in the definition of the item, the
literal is used to directly generate the regular expression.

The previous implementations of ConText attempted to be comprehensive in the
list of literals (e.g., including “rule him out for,” “rule her out for,” “rule patient out
for,” etc.). The use of regular expressions reduces the proliferation of literals and
increases comprehensiveness in matching variant phrases in the text.

4. The rule states how the tagObjects generated from the item will interact with other
tagObjects generated within the sentence. For our task we applied the rules
forward and backward, as in the previous implementation of ConText, and we
added the rule bidirectional. The rule forward means the tagObject generated
from the item can only modify a tagObject to the right of itself in the sentence. The
rule backward is similar but in the opposite direction. A literal with the rule
terminate terminates the scope of another tagObject. Examples of items with a rule
terminate are conjunctions such as “though” and “but.”

pyConText comes with a large number of pre-defined items, based both on literals listed on
the NegEx website (http://code.google.com/p/negex/) as well as additional items we defined
for this project. However, items can easily be created by a user for a specific application.
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3.3.2. tagObject Description—For each item, the regular expression associated with the
item is used to identify any literals in the sentence. When a literal is identified, a tagObject
is created. Attributes of the tagObject include the following:

• the literal for which the tagObject was created (defined by the generating item)

• the actual phrase matched by the regular expression in the text

• the character span of the matched phrase

• the category of the tagObject (defined by the generating item)

• the rule of the tagObject (defined by the generating item)

• the scope of the tagObject’s influence (i.e., the character range in the sentence over
which the tag can operate)

• an empty collection of tagObjects modified by the current tagObject and an empty
collection of tagObjects modifying the current tagObject; these collections are
filled in based on the scope of other tagObjects.

The generation and modification of tagObjects created within a sentence consists of a four
step process: 1) Create tagObjects; 2) Prune tagObjects; 3) Update scope of the tagObjects;
4) Assign modifiers to targets. Each of these steps are now described and illustrated in
detail.

1. Create tagObjects

Figure 1 shows the tagObjects generated for the sentence “No definite evidence of
pulmonary embolism although evaluation of the right lower lobe vessels is
somewhat limited…” In Step 1, 10 tagObjects were created for the literals in the
sentence. The tagObjects in grey were pruned in Step 2, as described next.

2. Prune tagObjects

A tagObject can be a subset of another tagObject. For example, “embolism” and
“pulmonary embolism” both generated tagObjects in the sentence shown in Fig. 1.
Step 2 in pyConText removes any tagObjects that are encompassed by a larger
tagObject. The pruning is applied to all categories of literals.

3. Update Scope of tagObjects

A tagObject can have a scope: tagObjects with a rule of bidirectional have a
default scope of the entire sentence; tagObjects with a rule of forward have a
scope from the end of the tagObject to the end of the sentence; and tagObjects with
a rule of backward have a scope from the start of the tagObject to the beginning of
the sentence. However, the default scope can be modified by other tagObjects
within the sentence. In Step 3, ConText loops through all the tagObjects in the
sentence and updates the scope for each tagObject based on the rule of the other
tagObjects in the sentence. For instance, in the sentence shown in Fig. 1 the scope
of the tagObject with the literal “no definite” extends to the end of the sentence
(character 275). However, because the rule for the literal “although” is terminate,
the scope of the tagObject with the literal “no definite” is adjusted in Step 3 to
terminate at “although” (character 114).

4. Assign tagObjects as targets or modifiers

In the last step, the remaining tagObjects are assigned as target and modifier
objects. In the previous version of ConText, the algorithm assigns modifiers to pre-
annotated targets that are assumed to be clinical conditions. In pyConText, the user
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can specify which category of tagObjects are targets, which are modifiers, and the
desired relationship between targets and modifiers. Any tagObject that is identified
as a target whose matched phrase falls within the scope of a modifier tagObject is
modified by that tagObject. For instance, in the sentence shown in Fig. 1, the
tagObject with the literal “pulmonary embolus” is identified as a target (as are all
tagObjects with category finding), and the tagObject with the literal “no definite”
is identified as a modifier. Since “pulmonary embolism” lies within the scope of
“no definite,” the tagObject for “no definite” modifies the “pulmonary embolism”
tabObject. Because the value for the modifier is probably negated existence, we
know that the pulmonary embolism is believed to be absent with some uncertainty.

3.4. peFinder: a pyConText-based Classifier for CTPA Reports
To identify CTPA reports that describe the presence of an acute pulmonary embolism from
an exam of high diagnostic quality, we developed a document-level classifier called
peFinder. peFinder uses pyConText annotations to perform rule-based classification of
CTPA reports. We implemented peFinder in three steps:

1. Define CTPA-specific items in pyConText:

For peFinder, we defined several items with a number of new categories to
describe the certainty or uncertainty of existence. Specifically, we added categories
of definite negated existence, probable negated existence, and probable
existence (to existing categories of negated and affirmed and removed possible.)
Our creating separate categories for positive and negative uncertainty was
motivated by our observation that different literals are often used to indicate
uncertainty of existence when the polarity is negative than when polarity is
positive. We also supplemented existing items with literals and regular expressions
that occurred in our development reports. For instance, we added literals such as
“documented,” for probable affirmation and “subacute” and “resolution of” for
historical. Finally, we created items with the following new categories, which
were necessary to accomplish our task:

• pe finding: these items represent the PE and include literals such as “pe,”
“embolism,” and “pulmonary embolus.”

• exam: these items represent the terms used by the radiologist to describe
the CT exam and the features of the exam. The literals include terms such
as “bolus timing,” “scan,” “evaluation,” and “study,”

• quality feature: these items represent the adjectives used by the
radiologist to describe limited or non-diagnostic quality of a CT exam.
The literals include phrases such as “suboptimal,” “degraded,” “non-
diagnostic,” and “limited.”

• artifact: these items represent terms used by radiologist to describe
artifacts in the CT exam. The literals include “respiratory motion,” “bulk
motion,” and “artifact.”

• exam indication: these items represent terms used by radiologist to
describe the reason for exam, such as “evaluate for,” or “rule out.”
findings modified by a tagObject with the category exam indication can
be understood to not be actual findings or observations by the radiologist
and are ignored by peFinder.

2. Apply pyConText to CTPA Reports
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We applied pyConText to the Impression sections of CTPA reports, assuming that
the Impression section would contain a relevant summary of the information
regarding the disease state, uncertainty, and exam quality. For peFinder, our targets
included tagObjects with category finding, exam, and artifact. All other categories
could be assigned as modifiers to any of the targets within their scope, with the
exception of quality feature, that could only modify exam (e.g., “suboptimal
evaluation”).

3. Query pyConText Annotations to Answer PE Specific Questions:

pyConText performs sentence-level analyses, providing a collection of sentence-
level annotations of targets and modifiers in each sentence. Document-level
reasoning in peFinder was achieved by aggregating the sentence-level pyConText
annotations into a virtual database and querying the annotations to answer the
following questions:

• DISEASE STATE: Was the patient positive for a pulmonary embolism?

• TEMPORAL STATE: Was the pulmonary embolism new (acute) or pre-
existing (chronic)?

• CERTAINTY STATE: Was there uncertainty regarding the diagnosis of
PE?

• QUALITY STATE: Was the exam quality diagnostic?

The DISEASE STATE for the report was considered positive if there was at least
one finding tagObject in the report that was either unmodified or was modified by
probable affirmation or definite affirmation. If there were multiple finding
tagObjects, as long as one of them was modified by probable or definite
affirmation, DISEASE STATE was considered positive. finding tagObjects
modified by exam indication were ignored.

The TEMPORAL STATE for the report was considered acute if at least one
positive finding tagObject was unmodified by historical. If all positive finding
tagObjects were modified by historical, the TEM-PORAL STATE was considered
chronic.

The CERTAINTY STATE for the patient was considered uncertain if any of the
following occurred in the report: an exam tagObject was modified by a quality
feature tagObject; or the report contained no tagObject, indicating that no mention
was made of pulmonary emboli; or a finding tagObject was modified by a
tagObject with category probable affirmation or probable negation. probable
affirmation and probable negation concepts were modeled after the instructions
given to the annotators in Table 1, and were designed to be symmetric (e.g. “not
seen” and “seen” expressed uncertain negation and uncertain affirmation
respectively).

The QUALITY STATE was considered non-diagnostic if the report contained an
artifact tagObject or contained an exam tag Object modified by a quality feature
tagObject. We used separate pyCon- Text objects to answer the disease questions
(existence, uncertainty, temporality) and the exam quality questions.

The values for DISEASE STATE, TEMPORAL STATE, CERTAINTY STATE,
and QUALITY STATE can be combined in various ways by a specific application,
depending on the needs of the application. For instance, a screening application
might want to capture all CTPA exams that address pulmonary embolism,
regardless of certainty, temporality, or quality of the exam. For our purpose—
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retrieving high quality images of positive, acute pulmonary emboli for imaging
studies—we may allow some uncertainty but would want to assure that the exam
was high quality and that the pulmonary embolus was acute.

3.5. Evaluation
We compared peFinder’s classifications of the four patient states against consensus manual
annotations that were generated from raw annotations described in Tables 1 and 2 as
follows:

• DISEASE STATE: Patients with reference standard annotations of probably
positive and definitely positive were considered positive

• TEMPORAL STATE: Reference standard annotations for patients as new or
mixed were considered acute

• CERTAINTY STATE: Reference standard annotations of probably positive and
probably negative were considered uncertain

• QUALITY STATE: Reference standard annotations of limited and non-diagnostic
were considered non-diagnostic

From standard contingency tables, we calculated the following outcome values:

• sensitivity: TP/(TP + FN)

• specificity: TN/(TN + FP)

• positive predictive value (PPV): TP/(TP + FP)

• accuracy:(TP + TN)/(TP + FP+TN + FN)

3.6 Baseline Comparison
As a baseline comparison, for every patient state we implemented a naive Bayesian
document classifier trained on unigrams and a document classifier trained on bigrams from
the training set, using the Python package Orange (http://www.ailab.si/orange/). To preserve
generalizability, we limited the number of features to one-tenth of the number of cases in the
training set. The most informative attributes were pre-selected using the Orange filter
orngFSS.FilterBestNAtts.

4. Results
4.1. Rater Agreement

To assess rater agreement we computed the complete agreement fraction (i.e., agreement
among all three raters) and partial agreement fraction (i.e., agreement between two of the
three raters) for each of our annotation states. We computed Fleiss’ Kappa to assess the
overall multi-reader agreement as well as Cohen’s Weighted Kappa Coefficient [11] with
squared weighting for each pair of raters. Kappa values were computed in R
(http://www.r-project.org/). TEMPORAL STATE annotations were performed by a different
set of annotators than the DISEASE and QUALITY STATE annotations; one annotator
(Rater 1) was common between both groups.

The Fleiss’ Kappa coefficients shown in Table 5 were all between 0.76 and 0.87 with p-
values less than 0.00455, indicating very good overall annotator agreement. Pairwise
Cohen’s Weighted Kappa coefficients are shown in Table 6. Again the Kappa coefficients
are high with p-values less than 0.05, indicating very good rater agreement.
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4.2. Baseline Classifier Performance
The combined corpus of the training and testing sets contained 2,511 unique unigrams and
10,078 unique bigrams. In order to reduce over-training, we limited the number unigrams or
bigrams used for each model to be one tenth the number of cases in the training set.

Through feature selection, the most informative unigrams or bigrams were selected prior to
training the baseline classifier and are shown in Tables 7–9.

Tables 10 and 11 show the performance measures for the baseline classifiers.

4.3. peFinder Performance
The performance of peFinder on the test set is shown in Table 12. A true positiveindicates
correctly classifying the patient as follows: DISEASE STATE positive; TEMPORAL
STATE acute; CERTAINTY STATE uncertain; and QUALITY STATE non-diagnostic.

We also measured agreement between peFinder and consensus annotations for the combined
DISEASE and CERTAINTY STATE. Table 6 shows the contingency table for
classifications of pulmonary embolism definitely negative, probably negative, probably
positive, and definitely positive. Rows indicate reference standard annotations, and
columns indicate peFinder annotations. Similar to the inter-rater agreement analysis in
Section 4.1, we calculated weighted (squared) Cohen’s kappa coefficients using R. The
weighted kappa was 0.932 (z=23.4, p-value=0). The close clustering along the diagonal
indicates that a main source of error in the DISEASE STATE of present or absent shown in
Table 13 was differences in interpretation of uncertainty, such as the 33 cases classified as
probably negative by the reference standard and probably positive by peFinder.

4.4. Error Analysis
Six of the DISEASE STATE errors were due to typographical errors resulting in a missed
negation, such as “noevidence of PE.” Most other errors were due to missing literals: Seven
errors resulted from not including “resolved” as a literal with the category negation; three
were due to not including “clinical history” as a literal with the category exam indication.

The majority (n = 23) of errors in CERTAINTY STATE were due to annotators not
following the guidelines for annotating certainty, such as classifying a case as definitely
positive rather than classifying it as probably positive. Errors by peFinder were largely due
to missing literals for indicating uncertainty (n = 13) (i.e., “appreciated,” “is difficult to
completely exclude,” and “possible”). Another source of CERTAINTY STATE errors was
mistakes in other modifiers that indicate uncertainty during the document-level reasoning.
For instance, peFinder did not create a tagObject with category quality for the sentence
“though the timing of the bolus was not ideal” and therefore did not classify the document as
uncertain.

Annotators did not always follow guidelines for QUALITY STATE annotations either,
accounting for six errors. But again the majority (n = 16) of QUALITY STATE errors were
due to missing literals for indicating limited or non-diagnostic quality, such as “technical
error,” “nondiagnostic,” “compromised,” and “quality is diminished.” Twelve of fourteen
TEMPORAL STATE errors were failures to identify the positive pulmonary embolus as
chronic. Nine of these were due to missing literals such as “interval progression” or “again
noted.” Our development set only had six mentions of chronic pulmonary embolus, whereas
the test set had 30. Other errors were due to spelling errors and difficult cases such as “It is
not clear cut whether these are acute or whether they may be old althoughthere [sic] are
features favoring chronic rather than acute.”
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5. Discussion
We developed a text processing application (peFinder) for classifying CTPA reports with
respect to pulmonary embolism. This classification task was built upon a more generalizable
implementation of ConText that we called pyConText. pyConText can facilitate an
unlimited set of user-defined features and supports user-defined relationships between
features. As such, for peFinder we defined contextual properties related to CTPA such as
pulmonary embolism findings, uncertainty, and exam quality. peFinder showed promising
results as a document classifier compared to consensus annotations from human readers and
compared to simple bag-of-words document classifiers.

Our comparison of the peFinder algorithm to naive Bayes’ classifiers based on unigrams and
bigrams shows the vast improvement that can be obtained by incorporating knowledge about
the context in which the words appear. Similar to other studies based on ConText, our
poorest performance occurred with identifying the temporal state, which was largely due to
the small number of cases in our training set and consequently poor inclusion of relevant
literals. Identifying more literals that indicate a finding is chronic is likely to succeed in
addressing the poor performance for identifying temporal state in radiology reports, whereas
identifying chronic conditions in other free-text reports, such as discharge summaries, is
more complex and can only partially be addressed by adding more literals [29].

One of the most challenging aspects of this study was modeling uncertainty. Radiology
reports have been criticized for being vague or not definitive [4], and the amount of
uncertainty expressed in a report has been shown to be associated with lack of clarity in the
report [8]. In addition to uncertainty due to poor expression by the radiologist, there is
uncertainty intrinsic to the radiological exam being interpreted: first, there may be
uncertainty in the relationship between a finding in the image and the underlying pathology
generating the finding; second, there may be uncertainty regarding whether a finding is real
or simply an artifact of the acquisition. Our guidelines to the human annotators included
both types of uncertainty (see Table 1). However, annotators were not consistent in applying
the guidelines. In retrospect, having reviewers explicitly annotate VISUALIZATION
STATE may have been a better way to capture the uncertainty that accompanies the inability
to visualize a finding. A schema used in a data structuring and visualization system for
neuro-oncology at the UCLA Medical Imaging Informatics Group
(http://www.mii.ucla.edu/r01-neuro-oncology/) annotates for visualization state with
possible values Clearly seen, Appears, and Difficult to Visualize. We suspect that inter-
annotator agreement on uncertainty would have increased if we had separated certainty from
visualization ability.

Another issue related to identification of uncertainty is due to the relationship between
negation and uncertainty. It was not clear whether negation and uncertainty should be
combined into a single feature (e.g., probably absent) or whether the two properties should
be represented individually and their relationship considered after annotation of the
individual properties. In our application of ConText, modifiers interact with findings but not
with each other. However, sometimes one modifier has scope over another modifier. For
example, in our illustrative sentence (see Fig. 1 “No definite evidence of PE”) “no” indicates
negation but does not directly negate the finding “PE;” instead, “no” negates the assertion of
certainty (“definite evidence of”). In other words the certainty that a PE exists is negated,
which indicates that the PE does not exist. Instead of specifying in pyConText that certain
types of modifiers have scope over other types of modifiers, we remained consistent with the
original version of ConText and included a literal for the complete phrase “no definite
evidence of” that resulted in a classification of probably negated. A more elegant solution
would be to specify interactions between modifiers. The current implementation of
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pyConText allows modifiers and targets to be specified and combined in any way the user
desires; therefore, this change would only require splitting apart compound phrases, such as
“no definite evidence of” and allowing uncertainty modifiers to be targets of negation
modifiers. This type of extension would also help address double negatives, such as “cannot
rule out,” in a more principled way.

peFinder does not account for any document structure. Since we were only processing the
Impression section of radiology reports, this limitation did not affect our results; however,
for processing more complex reports, such as history and physical exam reports, the
structure of the report can influence the values assigned to the contextual properties. We are
currently developing a statistical version of ConText that accounts for the lexical features
and scope in the same way as the current version but that can incorporate additional
information, such as the report structure, syntactic relations of modifiers and findings, and
temporal expressions. Uzuner and colleagues [37] compared NegEx against a machine-
learning-based classifier at assertion classification. Similar to Uzuner’s findings, we expect
incorporating additional knowledge will improve ConText’s performance; however, we also
believe that ConText’s performance is respectable in spite of the lack of sophisticated
linguistic modeling. The simplicity and intuitiveness of the algorithm makes it appealing to
apply, especially for developers without extensive training in natural language processing.
And the extension we developed for this study will allow ConText to be applied to a variety
of tasks, increasing its usefulness for assigning properties to annotated concepts.

There are several limitations to this study. We only processed the Impression section of the
report. Consequently, we missed some information about pulmonary emboli. For example,
we reviewed the complete reports for the 31 cases that had a consensus disease state
classification of Indeterminate. Thirteen of the 31 cases were technically non-diagnostic
exams. Of the remaining 18 cases, six discussed PE in the findings section but made no
mention of PE in the Impression. One report made no mention of PE in any part of the
report, and one was stated as being indeterminate as to whether the filling defects in the
exam were embolic events or tumor processes. Unfortunately, we found that for ten of the
cases, our captured Impression sections were missing the first sentence of the actual
Impression section where the PE disease state had been mentioned. This failure to capture
the first sentence was due to variant typesetting that conflicted with the text processing
script used by the honest broker to capture the Impression section.

There was some inhomogeneity in our annotators. Three of the five annotators were second-
year medical students, whereas the remaining two were experienced physicians (a
pathologist and infectious disease specialist). The disease, uncertainty, and quality
annotations were done by the medical students. The temporal annotations were done by one
of the medical students and the two physicians. For the temporal annotation, agreement
between the medical student and the physicians was notably lower than agreement between
the two physicians; this may indicate the medical students used less domain knowledge for
the annotations.

Abujudeh, et al. [1] reviewed over 2000 reports for CTPA exams to rule out PE and found
that 62% of all reports mentioned motion artifact as a limitation in image quality and 28% of
reports mentioned contrast enhancement as a limitation in image quality. Despite the high
incidence of technical limitations, conclusive diagnoses were still frequently made. In the
accompanying editorial, Hatabu and Hunsaker [23] conclude that radiologist tend to over-
describe quality limitations, even when they do not seem to impact the certainty of
diagnosis. Since our analysis of image quality lumped together “limited” and “non-
diagnostic” quality descriptors and inferred diagnostic uncertainty in the presence of sub-
optimal quality, our analysis likely overestimates the number of cases with uncertainty.
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Our selection of unigram and bigram naive Bayes’ classifiers may be criticized for their
simplicity, since neither sentence boundary information nor sentence contextual information
is used. Nonetheless, bag-of-words classifiers are common baseline document-level
classifiers and perform remarkably well, in general, as has been pointed out by experts in the
field (e.g. “The story that it’s hard to beat an n-gram language model is fairly ubiquitous.”
http://nlpers.blogspot.com/2006/06/beating-n-gram.html). Trigram models often perform
better than bigram and unigram models, but require large training sets to avoid sparse
feature vectors. Finally, we did not pre-process our text. There were a large number of
concatenated words in our corpus. We were able to work through some of these errors by
using regular expressions, but running a spell-checker prior to processing would be a
preferred solution.

pyConText provides a flexible framework for processing information in free-text reports and
showed high sensitivity and specificity for identifying disease state, uncertainty, and
technical quality of the exam related to pulmonary embolic disease. peFinder is currently
being used to identify exams for a research project developing algorithms for computer-
aided detection of PE depicted in CTPA studies. We also have interest in using peFinder as a
quality assurance tool to assess changes in incidence of limited or nondiagnostic scans as
improved technologies (e.g. intelligent power injectors, faster CT scanners) are introduced
into our hospital system. The pyConText framework is flexible, and we were able to quickly
customize it to build an application in an entirely different domain: to identify personal and
family history of mesothelioma and ancillary cancers in history and physical exam reports
[39, 40]. This customization essentially consisted of creating new items relevant for the new
domain, including additional negation terms and cancer terms to be used as findings, and
defining new categories such as anatomic location to be used as modifiers.

We believe pyConText is sufficiently general that many tasks involving identification of
targets and their modifiers could be accomplished using pyConText without further
generalizations to the implementation. To apply pyConText to another task, one would add
new values to the lexicons of targets and modifiers, as we did with the mesothelioma study.
For example, to apply pyConText to assessing colorectal cancer screening rates [13] one
would create a new target item for a colorectal exam and new categories for modifiers, such
as patient consent for an exam (e.g., “patient refused colorectal exam”) and when an exam
was scheduled (e.g., “Exam scheduled for next Wednesday”). Unlike the previous version of
ConText, which was specific to a few particular targets and modifiers, the task of adapting
pyConText to other problems is now one of creating specialized lexicons and implementing
them within an existing general framework. The ultimate success of the application of the
algorithm to any particular problem depends partly on the coverage of the lexicon created by
the user and partly on the suitability of the algorithm itself, which is based on regular
expressions without consideration of deeper linguistic features.

6. Conclusion
We developed an application called peFinder that performed well at identifying diagnostic
CTPA reports that describe pulmonary emboli. peFinder’s success is contingent on the
ability to identify whether a PE is present or absent, to determine whether there is
uncertainty about the presence of a PE, to conclude whether the PE is acute or chronic, to
ignore mentions of PE in the context of the reason for exam, and to understand whether the
exam was of diagnostic quality. To assess this information, peFinder implemented
pyConText for assigning modifiers to targeted concepts and then performed queries based
on their relationships. pyConText provides an extension of the existing ConText algorithm.
The extension accommodates user specification of the modifier types and can provide a
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more accurate model of the relationship between a modifier and the concept it modifies,
which promises to make ConText more useful for a variety of text processing tasks.

The pyConText code can be obtained from the NegEx website
http://code.google.com/p/negex/.
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Figure 1.
After the pruning stage, six of the ten tagObjects generated by pyConText for the example
sentence were kept (white boxes in figure). The tagObject with the literal “although”
terminates the scope of “no definite evidence.” However, “no definite evidence” modifies
“pulmonary embolism,” which is still within its scope, indicating that the pulmonary
embolism is probably negated. The tagObject for “evaluation” is modified by “limited.” A
tagObject was created for “evaluation of,” but the shorter, overlapping one (“evaluation”)
was not pruned, because the tagObjects have different categories.
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Table 1

DISEASE/CERTAINTY STATE Annotation Schema for CTPA Reports

Value Example Criteria

definitely negative Absence of pulmonary embolism is explicitly
stated, as in “No PE”

probably negative Mention of PE is modified as in “No evidence,”
“Not excluded,” “No PE identified/seen”

Indeterminate Pulmonary embolism not discussed (e.g. exam
described as non-diagnostic)

probably positive Mention of PE modified by terms such as “consis-
tent with,” “worrisome for,” “likely”

definitely positive Presence of pulmonary embolism explicitly stated,
as in “PE”
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Table 2

QUALITY STATE Annotation Schema for CTPA Reports

Value Example Criteria

diagnostic No description of exam

limited Discussion of one of the following factors as influ-
encing evaluation of the study: motion, artifact,
bolus timing, other specific limitation

non-diagnostic A term meaning “non-diagnostic” explicitly used
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Table 3

TEMPORAL STATE Annotation Schema

Value Example Criteria

new Mention of previously undocumented acute PE

old Mention of previously documented PE; mention of
resolved PE; description of chronic PE

mixed Both old and new PE mentioned
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Table 4

Complete and Partial Agreement Fractions: DISEASE STATE, CERTAINTY STATE, QUALITY STATE,
and TEMPORAL STATE

DISEASE CERTAINTY QUALITY TEMPORALITY

Full Agreement 0.847 0.938 0.906 0.915

Partial Agreement 0.142 0.06164 0.0930 0.0785
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Table 5

Multi-reader Agreement

State Kappa

Disease 0.847

Quality 0.87

Uncertainty 0.787

Temporal 0.762
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Table 6

Inter-rater Agreement

DISEASE CERTAINTY QUALITY TEMPORALITY

Rater 1 and Rater 2 0.958 0.916 0.937 NA

Rater 1 and Rater 3 0.944 0.840 0.860 NA

Rater 2 and Rater 3 0.944 0.886 0.903 NA

Rater 1 and Rater 4 NA NA NA 0.753

Rater 1 and Rater 5 NA NA NA 0.706

Rater 4 and Rater 5 NA NA NA 0.87
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Table 7

Twenty Selected Features for Baseline Classifier: DISEASE STATE

Unigrams Bigrams

“at” “atelectasis” “con-
veyed” “ct” “discussed”
“embolism” “evidence”
“findings” “large” “left”
“lobe” “lower” “mid-
dle” “negative” “no”
“positive” “time” “to”
“upper” “were”

“at the” “bilateral pul-
monary” “conveyed to”
“discussed with” “evi-
dence of” “left lower”
“lobe pulmonary” “lower
lobe” “no pulmonary”
“positive pulmonary”
“pulmonary emboli”
“pulmonary embolism”
“right lower” “right
middle” “the left” “the
posterior” “the time”
“time of” “to the” “were
discussed”
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Table 8

Twenty Selected Features for Baseline Classifier: CERTAINTY STATE

Unigrams Bigrams

“a” “and” “as” “at”
“embolism” “evidence”
“for” “groundglass”
“infiltrate” “is” “me-
diastinal” “negative”
“new” “no” “of” “pul-
monary” “right” “the”
“upper” “with”

“a new” “a pulmonary”
“at the” “cannot be” “ct
evidence” “emboli can-
not” “evidence of” “for
pulmonary” “mild inter-
stitial” “new pulmonary”
“no evidence” “no pul-
monary” “of a” “of pul-
monary” “of the” “pul-
monary emboli” “right
hilar” “scan suggested”
“suggested after” “very
limited”
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Table 9

Twenty Selected Features for Baseline Classifier: QUALITY STATE

Unigrams Bigrams

“airspace” “artifact”
“be” “but” “central”
“definite” “due” “em-
boli” “evaluation”
“large” “left” “may”
“mild” “motion” “no”
“patient” “scan” “study”
“suboptimal” “to”

“but no” “cannot be”
“central pulmonary”
“definite evidence”
“due to” “emboli are”
“evaluation for” “faxed
to” “for pulmonary”
“highly suspicious”
“motion and” “motion
artifact” “no definite”
“pulmonary emboli”
“pulmonary embolism”
“study due” “subopti-
mal due” “suboptimal
study” “suspicious for”
“the left”
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Table 10

Naive Bayes Unigram Baseline Classifier Performance on the Test Set

State PPV Sensitivity Specificity Accuracy

DISEASE 0.77 (155/202) 0.68 (155/228) 0.89 (381/428) 0.82 (536/656)

QUALITY 0.87 (88/101) 0.67 (88/131) 0.98 (512/525) 0.91 (600/656)

CERTAINTY 0.82 (207/253) 0.62 (207/333) 0.86 (277/323) 0.74 (484/656)

TEMPORAL 0.25 (1/4) 0.04 (1/25) 0.99 (200/203) 0.88 (201/228)
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Table 11

Naive Bayes Bigram Baseline Classifier Performance on the Test Set

State PPV Sensitivity Specificity Accuracy

DISEASE 0.79 (170/214) 0.75 (170/228) 0.90 (384/428) 0.84 (554/656)

QUALITY 0.69 (68/98) 0.52 (68/131) 0.94 (495/525) 0.86 (563/656)

UNCERTAINTY 0.84 (195/232) 0.59 (195/333) 0.89 (286/323) 0.73 (481/656)

TEMPORAL 0.25 (1/4) 0.04 (1/25) 0.99 (200/203) 0.88 (201/228)
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Table 12

peFinder Classification Performance on the Test Set

State PPV Sensitivity Specificity Accuracy

DISEASE 0.83 (223/269) 0.98 (223/228) 0.89 (382/428) 0.92 (605/656)

QUALITY 0.96 (113/118) 0.86 (113 /131) 0.99 (520/525) 0.96 (633/ 656)

CERTAINTY 0.93 (313/ 336) 0.94 (313/ 333) 0.93 (300/ 323) 0.93 (613 /656)

TEMPORAL 0.90 (18/20) 0.60 (18/ 30) 0.99 (196 /198) 0.94 (214/228)
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Table 13

Agreement on DISEASE/CERTAINTY STATE Combinations

def. neg. prob. neg. prob. pos. def. pos.

def. neg. 130 2 0 1

prob. neg. 6 224 33 6

prob. pos. 0 3 30 5

def. pos. 0 2 19 169
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