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Abstract

The human capacity to recognize complex visual patterns emerges in a sequence of brain areas 

known as the ventral stream, beginning with primary visual cortex (V1). We develop a population 

model for mid-ventral processing, in which non-linear combinations of V1 responses are averaged 

within receptive fields that grow with eccentricity. To test the model, we generate novel forms of 

visual metamers — stimuli that differ physically, but look the same. We develop a behavioral 

protocol that uses metameric stimuli to estimate the receptive field sizes in which the model 

features are represented. Because receptive field sizes change along the ventral stream, the 

behavioral results can identify the visual area corresponding to the representation. Measurements 

in human observers implicate V2, providing a new functional account of this area. The model 

explains deficits of peripheral vision known as “crowding”, and provides a quantitative framework 

for assessing the capabilities of everyday vision.

Introduction

The ventral visual stream is a series of cortical areas that represent spatial patterns, scenes, 

and objects1. Primary visual cortex (V1) is the earliest and most thoroughly characterized 

area. Individual V1 cells encode information about local orientation and spatial frequency2, 

and simple computational models can describe neural responses as a function of visual 

input3. Significant progress has also been made in understanding later stages, such as 

inferotemporal cortex (IT), where neurons exhibit complex object-selective responses4. 

However, the transformations between V1 and IT remain a mystery.

Several observations from physiology and theory can help constrain the study of this 

problem. A key finding is that receptive field sizes increase along the ventral stream. Many 
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models of visual pattern recognition5–10 have proposed that increases in spatial pooling 

provide invariance to geometric transformations (e.g., changes in position or size). In 

addition, it is well established that within individual areas, receptive field sizes scale linearly 

with eccentricity, and that this rate of scaling is larger in each successive area along the 

ventral stream, providing a signature that distinguishes different areas11–13.

We hypothesize that the increase in spatial pooling, both in successive ventral stream areas, 

and with eccentricity, induces an irretrievable loss of information. Stimuli that differ only in 

terms of this lost information will yield identical population-level responses. If the human 

observer is unable to access the discarded information, such stimuli will be perceptually 

indistinguishable; thus, we refer to them as metamers. Visual metamers were crucial to one 

of the earliest and most successful endeavors in vision science —the elucidation of human 

trichromacy. Behavioral experiments predicted the loss of spectral information in cone 

photoreceptors 100 years before the physiological mechanisms were confirmed14. The 

concept of metamerism is not limited to trichromacy, however, and a number of authors 

have used it to understand aspects of pattern or texture vision15–17.

Here, we develop a population-level functional model for ventral stream computation 

beyond V1 that allows us to synthesize, and examine the perception of, a novel type of 

visual metamer. The first stage of the model decomposes an image with a population of 

oriented V1-like receptive fields. The second stage computes local averages of nonlinear 

combinations of these responses over regions that scale in size linearly with eccentricity, 

according to a scaling constant that we vary parametrically. Given a photographic image, we 

synthesize distinct images with identical model responses, and ask whether human observers 

can discriminate them. From these data we estimate the scaling constant that yields 

metameric images, and find that it is consistent with receptive field sizes in area V2, 

suggesting a new functional account of representation in that area.

Our model also provides an explanation for the phenomenon of “visual crowding”18,19, in 

which humans fail to recognize peripherally presented objects surrounded by clutter. 

Crowding has been hypothesized to arise from compulsory pooling of peripheral 

information20–23, and the development of our model was partly inspired by evidence that 

crowding is consistent with a representation based on local texture statistics24. Our model 

offers an instantiation of this hypothesis, providing a quantitive explanation for the spacing 

and eccentricity dependence of crowding effects, generalizing them to arbitrary 

photographic images, and linking them to the underlying physiology of the ventral stream.

Results

The model is motivated by known facts about cortical computation, human pattern vision, 

and the functional organization of ventral stream receptive fields. The V1 representation 

uses a bank of oriented filters covering the visual field, at all orientations and spatial 

frequencies. “Simple” cells encode a single phase at each position; “complex” cells combine 

pairs of filters with the same preferred position, orientation, and scale, but different phase25.
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The second stage of the model achieves selectivity for compound image features by 

computing products between particular pairs of V1 responses (both simple and complex) 

and averaging these products over local regions, yielding local correlations. Correlations 

have been shown to capture key features of naturalistic texture images, and have been used 

to explain some aspects of texture perception17,26,27. Correlations across orientations at 

different positions yield selectivity to angles and curved contours, as suggested by 

physiological studies of area V228–32. Correlations across frequencies encode features with 

aligned phase or magnitude (e.g., sharp edges or lines)17,33, and correlations across positions 

capture periodicity. Finally, local correlations are compatible with models of cortical 

computation that propose hierarchical cascades of linear filtering, point non-linearities, and 

pooling5–9,25,34,35 (see Methods).

Last, we must specify the pooling regions over which pairwise products of V1 responses are 

averaged. Receptive field sizes in the ventral stream grow approximately linearly with 

eccentricity, and the slope of this relationship (i.e., the ratio of receptive field diameter to 

eccentricity) increases in successive areas (see Fig. 1 and Supplementary Methods). In our 

model, pooling is performed by weighted averaging, with smoothly overlapping functions 

that grow in size linearly with eccentricity, parameterized with a single scaling constant (see 

Methods and Supplementary Fig. 1).

Generation of metameric stimuli

If our model accurately describes the information captured (and discarded) at some stage of 

visual processing, and human observers cannot access the discarded information, then any 

two images that produce matching model responses should appear identical. To directly test 

this assertion, we examine perceptual discriminability of synthetic images that are as random 

as possible while producing identical model responses17. First, model responses (Fig. 2a) are 

computed for a full-field photograph (e.g., Fig. 2b). Then synthetic images are generated by 

starting from Gaussian white noise and iteratively adjusting them (using a variant of gradient 

descent) until they match the model responses of the original (see Methods).

Figure 2c–d shows two such synthetic images, generated with a scaling constant (derived 

from the experiments described below) that yields nearly indiscriminable samples. The 

synthetic images are identical to the original near the intended fixation point (red circle), 

where pooling regions are small, but features in the periphery are scrambled, and objects are 

grossly distorted and generally unrecognizable. When viewed with proper fixation, however, 

the two images appear nearly identical to the original and to each other.

Perceptual determination of critical scaling

To test the model more formally, and to link it to a specific ventral stream area, we 

measured the perceptual discriminability of synthetic images as a function of the scaling 

constant used in their generation. If the model, with a particular choice of scaling constant, 

captures the information represented in some visual area, then model-generated stimuli will 

appear metameric. If the scaling constant is made larger, the model will discard more 

information than the associated visual area, and model-generated images will be readily 

distinguishable. If the model scaling is made smaller, the model discards less information, 
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and the images will remain metameric. Thus, we seek the largest value of the scaling 

constant such that stimuli appear metameric. This critical scaling should correspond to the 

scaling of receptive field sizes in the area where the information is lost.

As a separate control for the validity of this paradigm, we examined stimuli generated from 

a “V1 model” that computes pooled V1 complex cell responses36 (i.e., local spectral energy, 

see Supplementary Fig. 2). The critical scaling estimated for these stimuli should match the 

receptive field sizes of area V1. Since the mid-ventral model includes a larger and more 

complex set of responses than the V1 model, we know a priori that the critical scaling for 

the mid-ventral model will be as large or larger than for the V1 model, but we do not know 

by how much.

For each model, we measured the ability of human observers to distinguish synthetic images 

generated for a range of scaling constants (using an “ABX” task, see Fig. 2e and Methods). 

All four observers exhibit monotonically increasing performance as a function of scaling 

constant (Fig. 3). Chance performance (50%) indicates that the stimuli are metameric, and 

roughly speaking, the critical scaling is the value at which each curve first rises above 

chance.

To obtain an objective estimate of the critical scaling values, we derived an observer model 

that uses the same ventral stream representation used to generate the matched images. The 

inputs to the observer model are two images that are matched over region sizes specified by 

scaling s. Assume that the observer computes responses to each of these images with 

receptive fields that grow in size according to a fixed (but unknown) critical scaling s0. 

Their ability to discriminate the two images depends on the difference between the two sets 

of responses. We derived (see Supplementary Methods) a closed-form expression for the 

dependency of this difference on s. This expression is a function of the observer’s scaling 

parameter, s0, as well as a gain parameter, α0, which controls their overall performance. We 

used signal detection theory37 to describe the probability of a correct answer, and fit the 

parameters (s0, α0) to the data of each subject by maximizing their likelihood (see Methods).

The observer model provides an excellent fit to individual observer data for both the V1 and 

mid-ventral experiments (Fig. 3). Critical scaling values (s0) are highly consistent across 

observers, with most of the between-subject variability captured by differences in overall 

performance (α0). As expected, the simpler V1 model requires a smaller scaling to generate 

metameric images. Specifically, critical scaling values for the V1 model are 0.26 ± 0.05 

(mean ± sd), whereas values for the mid-ventral model are roughly twice as large (0.48 ± 

0.02).

Estimation of physiological locus

We now compare the psychophysically estimated scaling parameters to physiological 

estimates of receptive field size scaling in different cortical areas. Functional magnetic 

resonance imaging has been used to measure “population receptive fields” in humans by 

estimating the spatial extent of a stimulus that contributes to the hemodynamic response 

across different regions of the visual field13. Although these sizes grow with eccentricity, 

and across successive visual areas, they include additional factors such as variability in 
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receptive field position and non-neural hemodynamic effects, which may depend on both 

eccentricity and visual area. We thus chose to compare our results to single-unit 

electrophysiological measurements in non-human primates. Receptive field size estimates 

vary systematically, depending on the choice of stimuli and the method of estimation, so we 

combined estimates reported for ten different physiological data sets to obtain a distribution 

of scaling values for each visual area. This analysis yields values of 0.21 ± 0.07 for receptive 

fields in V1, 0.46 ± 0.05 for those of V2, and 0.84 ± 0.06 for those of V4 (mean with 95% 

confidence intervals, see Supplementary Methods). Moreover, for studies that used 

comparable methods to estimate receptive fields in both V2 and V1, the average receptive 

field sizes in V2 are approximately twice the size of those in V1, for both macaque and 

human11,13,38.

As expected, the critical scaling value estimated from the V1 metamer experiment is well 

matched to the physiological estimates of receptive field scaling for V1 neurons. For the 

mid-ventral model, the critical scaling is roughly twice that of the V1 model, is well 

matched to receptive field sizes of V2 neurons, and is substantially smaller than than those 

of V4. We take this as compelling evidence that the metamerism of images synthesized 

using our mid-ventral model arises in area V2.

Robustness to bottom-up and top-down performance manipulations

If metamerism reflects a structural limitation of the visual system, governed by the 

eccentricity-dependent scaling of receptive field sizes, the effects should be robust to 

experimental manipulations that alter observer performance without changing the spatial 

properties of the stimuli. To test this, we performed two variants of the mid-ventral metamer 

experiment, designed to alter performance through bottom-up and top-down manipulations 

of the experimental task.

First, we repeated the original experiment with doubled presentation times (400 ms instead 

of 200 ms). Fitting the observer model to data from four observers (Fig. 4a), we find that the 

gain parameter (α0) is generally larger to account for increases in performance, but that the 

critical scaling (s0) is statistically indistinguishable from that estimated in the original 

experiment (p = 0.18, two-tailed paired t-test).

In a second control experiment, we manipulated endogenous attention. At the onset of each 

trial, a small arrow was presented at fixation, pointing toward the region in which the two 

subsequently presented stimuli differed most (see Methods). The fitted gain parameter is 

again generally larger, accounting for improvements in performance, but the critical scaling 

is statistically indistinguishable from that estimated in the original experiment (p = 0.30; 

two-tailed paired t-test) (Fig. 4b). In both control experiments, the increase in gain varies 

across observers, and depends on their overall performance in the original experiment (some 

observers already have near-maximal performance).

The full set of critical scalings estimated for all four observers, across all experiments, are 

summarized in Figure 5, along with the physiological estimates for scaling of receptive 

fields. The scaling for the two control experiments are similar to those of the original 

experiment, are closely matched to the scaling of receptive fields found in area V2, and are 
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much greater than the scaling found in the V1 metamer experiment (p = 0.0064, extended 

presentation task, p = 0.0183, attention task; two-tailed paired t-test).

Relationship to visual crowding

Our model implies severe perceptual deficits in peripheral vision, some of which are 

revealed in the well-studied phenomenon known as “visual crowding”18,19. Crowding has 

been hypothesized to arise from pooling or statistical combination in the periphery20–24, and 

thus emerges naturally from our model. Crowding is typically characterized by asking 

observers to recognize a peripheral target object flanked by two distractors at varying target-

to-flanker spacings. The “critical spacing” at which performance reaches threshold increases 

proportional to eccentricity18,19, with reported rates ranging from 0.3 to 0.6. Our estimates 

of critical scaling for the mid-ventral model lie within this range, but the variability across 

crowding studies (which arises from different choices of stimuli, task, number of targets and 

flankers, and threshold) renders this comparison equivocal. Moreover, a direct comparison 

of these values may not even be warranted, because it implicitly relies on an unknown 

relationship between the pooling of the model responses and the degradation of recognition 

performance.

We performed an additional experiment to determine directly whether our mid-ventral 

model could predict recognition performance in a crowding task. The experimental design 

was inspired by a previous study linking statistical pooling in the periphery to crowding24. 

First, we measured observers’ ability to recognize target letters presented peripherally (6 

deg) between two flanking letters, varying the target-to-flanker spacing to obtain a 

psychometric function (Fig. 6a). We then used the mid-ventral model to generate synthetic 

metamers for a subset of these peripherally-presented letter stimuli, and measured the ability 

of observers to recognize the letters in these metamer stimuli under foveal viewing. 

Recognition failure (or success) for a single metamer cannot alone indicate crowding (or 

lack thereof), but average performance across an ensemble of metamer samples quantifies 

the limitations on recognizability imposed by the model.

Average recognition performance for the metamers is well matched to that of their 

corresponding letter stimuli (Fig. 6a), for metamers synthesized with scaling parameter s = 

0.5 (the average critical scaling estimated for our human observers). For metamers 

synthesized with scaling parameters of s = 0.4 or s = 0.6, performance is significantly higher 

or lower, respectively (p < 0.0001; two-tailed paired t-test across observers and conditions). 

These results are consistent across all observers, at all spacings, and for two different 

eccentricities (Fig. 6b).

Discussion

We have constructed a model for visual pattern representation in the mid-level ventral 

stream, based on local correlations amongst V1 responses within eccentricity-dependent 

pooling regions. We have developed a method for generating images with identical model 

responses, and used these synthetic images to show that: (1) when the pooling region sizes 

of the model are set correctly, images with identical model responses are indistinguishable 

(metameric) to human observers, despite severe distortion of features in the periphery; (2) 
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the critical pooling size required to produce metamericity is robust to bottom-up and top-

down manipulations of discrimination performance; (3) critical pooling sizes are consistent 

with the eccentricity dependence of receptive field sizes of neurons in ventral visual area 

V2; and (4) the model can predict degradations of peripheral recognition known as 

“crowding”, as a function of both spacing and eccentricity.

Perceptual deficits in peripheral vision have been recognized for centuries. Most early 

literature focuses on the loss of acuity that results from eccentricity-dependent sampling and 

blurring in the earliest visual stages. Crowding is a more complex deficit39. In a prescient 

article in 1976, Jerome Lettvin gave a subjective account of this phenomenon, describing 

letters embedded in text as having “lost form without losing crispness”, and concluding that 

“the embedded [letter] only seems to have a ‘statistical’ existence.”20 Lettvin’s article seems 

to have drifted into obscurity, but these ideas have been formalized in recent literature that 

explains crowding in terms of excessive averaging or pooling of features21–24. Balas et. al. 

(2009), in particular, hypothesized that crowding is a manifestation of the representation of 

peripheral visual content with local summary statistics. They showed that human recognition 

performance for crowded letters was matched to that of foveally viewed images synthesized 

to match the statistics of the original stimulus (computed over a localized region containing 

both the letter and flankers).

Our model provides an instantiation of these pooling hypotheses that operates over the entire 

visual field, which, in conjunction with the synthesis methodology, enabled several 

scientific advances. First, we validated the model with a metamer discrimination paradigm, 

which provides a more direct test than comparisons to recognition performance in a 

crowding experiment. Second, the parameterization of eccentricity dependence allowed us 

to estimate the size of pooling regions, and thus to associate the model with a distinct stage 

of ventral stream processing. Third, the full-field implementation allowed us to examine 

crowding in stimuli extending beyond a single pooling region, and thus to account for the 

dependence of recognition on both eccentricity and spacing — the defining properties of 

crowding18.

Finally, the fact that the model operates on arbitrary photographic images allows 

generalization of the laboratory phenomenon of crowding to complex scenes and everyday 

visual tasks. For example, crowding places limits on reading speed, because only a small 

number of letters around each fixation point are recognizable40. Model-synthesized 

metamers can be used to examine this “uncrowded” window (Fig. 7a). We envision that the 

model could be used to optimize fonts, letter spacings, or line spacings for robustness to 

crowding effects, potentially improving reading performance. There is also some evidence 

linking dyslexia to crowding with larger-than-normal critical spacing18,41,42, and the model 

might serve as a useful tool for investigating this hypothesis. Additional examples are 

provided in Figure 7b–c, which show how camouflaged objects, which are already difficult 

to recognize foveally, blend into the background when viewed peripherally.

The interpretation of our experimental results relies on assumptions about the representation 

of, and access to, information in the brain. This is perhaps best understood by analogy to 

trichromacy14. Color metamers occur because information is lost by the cones and cannot be 
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recovered in subsequent stages. But color appearance judgements clearly do not imply 

direct, conscious, access to the responses of those cones. Analogously, our experiments 

imply that the information loss ascribed to areas V1 and V2 cannot be recovered or accessed 

by subsequent stages of processing (two stimuli that are V1 metamers, for example, should 

also be V2 metamers). But this does not imply that observers directly access the information 

represented in V1 or V2. Indeed, if observers could access V1 responses, then any additional 

information loss incurred when those responses are combined and pooled in V2 would have 

no perceptual consequence, and the stimuli generated by the mid-ventral model would not 

appear metameric.

The loss of information in our model arises directly from its architecture — the set of 

statistics, and the pooling regions over which they are computed — and this determines the 

set of metameric stimuli. Discriminability of non-metameric stimuli depends on the strength 

of the information preserved by the model, relative to noise. As seen in the presentation time 

and attention control experiments, manipulations of signal strength do not alter the 

metamericity of stimuli, and thus do not affect estimates of critical scaling. These results are 

also consistent with the crowding literature. Crowding effects are robust to presentation 

time43, and attention can increase performance in crowding tasks while yielding small or no 

changes in critical spacing19,44. Certain kinds of exogenous cues, however, may reduce 

critical spacing45, and perceptual learning has been shown to reduce critical spacing through 

several days of intensive training46. If either manipulation were found to reduce critical 

scaling (as estimated from a metamer discrimination experiment), we would interpret this as 

arising from a reduction in receptive field sizes, which could be verified through 

electrophysiological measurements.

From a physiological perspective, our model is deliberately simplistic: We expect that 

incorporating more realistic response properties (e.g., spike generation, feedback circuitry) 

would not significantly alter the information represented in model populations, but would 

render the synthesis of stimuli computationally intractable. Despite the simplicity of the 

model, the metamer experiments do not uniquely constrain the response properties of 

individual model neurons. This may again be understood by analogy with the case of 

trichromacy: color matching experiments constrain the linear subspace spanned by the three 

cone absorption spectra, but do not uniquely constrain the spectra of the individual cones14. 

Thus, identification of V2 as the area in which the model resides does not imply that 

responses of individual V2 neurons encode local correlations. Our results, however, do 

suggest new forms of stimuli that could be used to explore such responses in physiological 

experiments. Within a single pooling region, the model provides a parametric representation 

of local texture features17. Stochastic stimuli containing these features are more complex 

than sine gratings or white noise, but better controlled (and more hypothesis driven) than 

natural scenes or objects, and are thus well suited for characterizing responses of individual 

cells47.

Finally, one might ask why the ventral stream discards such a significant amount of 

information. Theories of object recognition posit that the growth of receptive field sizes in 

consecutive areas confers invariance to geometric transformations, and cascaded models 

based on filtering, simple nonlinearities, and successively broader spatial pooling have been 
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used to explain such invariances measured in area IT8–10,48. Our model closely resembles 

the early stages of these models, but our inclusion of eccentricity-dependent pooling, and the 

invariance to feature scrambling revealed by the metamericity of our synthetic stimuli, 

seems to be at odds with the goal of object recognition. One potential resolution of this 

conundrum is that the two forms of invariance arise in distinct parallel pathways. An 

alternative possibility is that a texture-like representation in the early ventral stream provides 

a substrate for object representations in later stages. Such a notion was suggested by Lettvin, 

who hypothesized that “texture, somewhat redefined, is the primitive stuff out of which form 

is constructed”20. If so, the metamer paradigm introduced here provides a powerful tool for 

exploring the nature of invariances arising in subsequent stages of the ventral stream.

Methods

Model

The model is a localized version of the texture model of Portilla and Simoncelli (2000), 

which used global correlations to represent homogeneous visual textures.

Multi-scale multi-orientation decomposition—Images are partitioned into subbands 

by convolving with a bank of filters tuned to different orientations and spatial frequencies. 

We use a particular variant known as the “steerable pyramid”, which has several advantages 

over common alternatives (e.g., Gabor filters, orthogonal wavelets), including direct 

reconstruction properties (beneficial for synthesis), translation invariance within subbands, 

and rotation invariance across orientation bands17. A Matlab implementation is available at 

http://www.cns.nyu.edu/~lcv/software.php. The filters are directional third derivatives of a 

lowpass kernel, and are spatially localized, oriented, anti-symmetric, and roughly one octave 

in spatial frequency bandwidth. We use a set of 16 filters – rotated and dilated to cover four 

orientations and four scales. In addition, we include a set of even-symmetric filters of 

identical Fourier amplitude (Hilbert transforms of the original set)17. Each subband is 

subsampled at its associated Nyquist frequency, so that the effective spacing between filters 

is proportional to their size. Each filter pair yields two phase-sensitive outputs representing 

responses of V1 simple cells, and the square root of the sum of their squared responses 

yields a phase-invariant measure of local orientation magnitude, representing responses of 

V1 complex cells17,25.

Mid-ventral model—The second stage of the model computes products of pairs of V1 

responses tuned to neighboring orientations, scales, and positions. Specifically:

1. Products of responses at nearby spatial locations (within +/− three samples in each 

direction), for both the simple cells (capturing spectral features such as periodicity), 

and complex cells (capturing spatially displaced occurrences of similarly oriented 

features).

2. Products of complex cell responses with those at other orientations (capturing 

structures with mixed orientation content, such as junctions or corners) and with 

those at adjacent scales (capturing oriented features with spatially sharp transitions 

such as edges, lines, and contours).
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3. Products of the symmetric filter responses with phase-doubled filter responses at 

the next coarsest scale. These phase relationships between filters at adjacent scales 

distinguish lines from edges, and can also capture gradients in intensity arising 

from shading and lighting17.

It is worth noting that these products may be represented equivalently as differences of 

squared sums and differences (i.e., 4ab = (a + b)2 − (a − b)2), which might provide a more 

physiologically plausible form25. We also include three marginal statistics (variance, skew, 

kurtosis) of the low-pass images reconstructed at each scale of the course-to-fine process, as 

was done in the original texture model17. All of the model responses are pooled locally (see 

next section).

Pooling regions—Pairwise products are spatially pooled by computing windowed 

averages (i.e., local correlations). The weighting functions for these averages are smooth and 

overlapping, and arranged so as to tile the image (i.e., they sum to a constant). These 

functions are separable with respect to polar angle and log eccentricity, which guarantees 

that they grow linearly in size with eccentricity (see examples in Supplementary Fig. 1). 

Weighting in each direction is defined in terms of a generic “mother” window, with a flat 

top and squared cosine edges:

These window functions tile when spaced on the unit lattice. The parameter t specifies the 

width of the transition region, and is set to 0.5 for our experiments. For polar angle, we 

require an integer number Nθ of windows between 0 and π. The full set is:

where n indexes the windows, wθ is width. For log eccentricity, an integer number of 

windows is not required. However, to equate boundary conditions across scaling conditions 

in our experiments, we require that the outermost window is centered on the radius of the 

image (er). And for computational efficiency, we also do not include windows below a 

minimum eccentricity (e0 – approximately half a degree of visual angle in our experiments). 

For eccentricities less than this, pooling regions are extremely small, and constrain the 

model to reproduce the original image. Between the minimum and maximum eccentricities, 

we construct Ne windows:
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n indexes the windows, we is the width,. The number of windows Ne determines the ratio of 

radial width to eccentricity, and this value is reported as the scaling (e.g. Fig. 4–5). Although 

this specification requires an integer number of windows between the inner and outer 

boundary, we can achieve an arbitrary scaling by releasing the constraint on the endpoint 

location (e.g. when synthesizing images based on psychophysical estimates of critical 

scaling, Fig. 6–7). For each choice of scaling, we choose an integer number of polar-angle 

windows (Nθ) that yields an aspect ratio of radial width to circumferential width of 

approximately 2. There are few studies on peripheral receptive field shape in the ventral 

stream, but our choice was motivated by reports of radially elongated receptive fields and 

radial biases throughout the visual system49,50. Future work could explore effects of both the 

scaling and the aspect ratio on metamericity.

The windows must be applied at different scales of the pyramid. For each window, we create 

an original window in the pixel domain, and then generate low-pass windows to be applied 

at different scales by blurring and sampling the original (i.e., we construct a “Gaussian 

pyramid”). The full set of two dimensional windows are approximately invariant to global 

rotation or dilation: shifting the origin of the log-polar coordinate system in which they are 

defined would reparameterize the model without changing the class of metameric stimuli 

corresponding to a particular original image.

V1 model—The model for our V1 control experiment uses the same components described 

above. We use the same linear filter decomposition, and then square and pool these 

responses directly, consistent with physiological experiments in V136. This model does not 

include the local correlations (i.e. pairwise products) used in the mid-ventral model. Both 

the V1 model and the mid-ventral model collapse the computation into a single stage of 

pooling, instead of cascading the mid-ventral model computation on top of a V1 pooling 

stage (and previous stages, such as the retina and LGN). This kind of simplification is 

common in modeling sensory representations, and allowed us to develop a tractable 

synthesis procedure.

Synthesis

Metameric images are synthesized to match a set of measurements made on an original 

image. An image of Gaussian white noise is iteratively adjusted until it matches the model 

responses of the original. Synthesizing from different white noise samples yields distinct 

images. This procedure approximates sampling from the maximum entropy distribution over 

images matched to a set of model responses17. We use gradient descent to perform the 

iterative image adjustments. For each set of responses, we compute gradients, following the 

derivations in Portilla and Simoncelli (2000) but including the effects of the window 

functions. Descent steps are taken in the direction of these gradients, starting with the low-

frequency subbands (i.e., coarse-to-fine). For autocorrelations, gradients for each pooling 

region are combined to give a global image gradient on each step. Gradient step sizes are 

chosen to stabilize convergence. For the cross correlations, single-step gradient projections 

are applied to each pooling region iteratively.
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We used 50 iterations for all images generated for the experiments. Parameter convergence 

was verified by measuring one minus the mean squared error normalized by the variance. 

For samples synthesized from the same original image, this metric was 0.99 ± 0.015 (mean 

± standard deviation) across all images and scalings used in our experiments. As an 

indication of computational cost, synthesis for a scaling of s = 0.5 took approximately 6 to 8 

hours on a linux workstation with 2.6 GHz dual Opteron 64-bit processor and 32 GB RAM. 

Smaller scaling values require more time. The entire set of experimental stimuli took 

approximately one month of computing time to generate.

Synthesis sometimes required more steps to converge for artificial stimuli, such as those 

created for the crowding experiments (Fig. 6), so we used 100 iterations for those syntheses. 

In addition, for the text images (Fig. 7), whose pixels are highly kurtotic (due to a nearly 

binary distribution of pixel values), we obtained cleaner and more stable synthesis results by 

imposing global kurtosis and skew once, over the whole image, on each synthesis iteration.

Experimental stimuli

Stimuli were derived from four naturalistic photographs, three from the authors’ personal 

collection, and one courtesy of Rob Miner. One image depicts a natural scene (trees and 

shrubbery), and the other three depict people and man-made objects. Psychophysical results 

were similar for the four images. For each photograph, we synthesized three images for each 

of six values of the scaling parameter s. Piloting showed that performance was at chance for 

the smallest value tested, so we did not generate stimuli at smaller scalings, which would 

have been computationally taxing because of very large number of pooling regions. The V1 

model was simpler, allowing us to synthesize stimuli for three smaller scaling values.

Psychophysics

Eight observers (ages 24–32, six male, two female) with normal or corrected-to-normal 

vision participated. One observer was an author; all others were naive to the purposes of the 

experiment. Four observers participated in the metamer experiments (described in this 

section), and five observers participated in the crowding experiments (described below). 

One observer participated in both. Protocols for selection of observers and experimental 

procedures were approved by the human subjects committee of New York University and all 

subjects signed an approved consent form.

Four observers participated in all four metamer experiments. Along with the main 

experiment (with our mid-ventral model), there were three control experiments (V1 model, 

extended presentation time, and directed endogenous attention). Two observers (S3 and S4) 

were tested with eye tracking (see below), with stimuli presented on a 22” flat screen CRT 

monitor at a distance of 57 cm. Two observers (S1 and S2) were tested tested without eye 

tracking, with stimuli presented on a 13 “ flat screen LCD monitor at a distance of 38 cm. In 

both displays, all images were presented in a circular window subtending 26 deg of visual 

angle and blended into the background with a 0.75 deg wide raised cosine. A 0.25 deg 

fixation square was shown throughout the experiment.
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Each trial of the “ABX” task (Fig. 3) used two different synthesized image samples, 

matched to the model responses of a corresponding original image. At the start of each trial, 

the observer saw one image for 200 ms. After a 500 ms delay, the observer saw the second 

image for 200 ms. After a 1000 ms delay, the observer saw one of the two images, repeated, 

for 200 ms. The observer indicated with a key press whether the third image looked more 

like the first (“1”) or the second (“2”). During the experiment, observers received no 

feedback regarding the correctness of their responses. Before the experiment, each observer 

performed a small number of practice trials (~5), with feedback, to become familiar with the 

task.

In the mid-level ventral experiment, we used four original images and six scaling conditions, 

and created three synthetic images for each original / scaling combination. This yielded 12 

unique ABX sequences per condition. In each block of the experiment, observers performed 

288 trials, one for each combination of image (4), scaling (6), and trial type (12). Observers 

performed four blocks (1152 trials). The V1 experiment was identical, except that it 

included 9 scaling conditions, resulting in 384 trials per block. Observers performed three 

blocks (1152 trials). Blocks were performed on different days, so the observer never saw the 

same stimulus sequence twice in the same session. Psychometric functions and parameter 

estimates were similar across blocks, suggesting that observers did not learn any particular 

image feature.

We performed two further control experiments using the stimuli from the mid-ventral 

metamer experiment. The first of these was identical to the main experiment except that 

presentation time was lengthened to 400 ms. Each observer performed either two or three 

blocks (576 or 864 trials). The second experiment was also identical to the main experiment 

except that at the beginning of each trial a small line (1 deg long) emanating from fixation 

was presented for 300 ms, with a 300 ms blank period before and after. On each trial, we 

computed the squared error (in the pixel domain) between the two to-be-presented images, 

and averaged the squared error within each of six radial sections. The line cue pointed to the 

section with largest squared error. Each observer performed two blocks (576 trails).

Eye tracking

Two observers (S3 and S4) were tested while their gaze positions were measured (500 Hz, 

monocular) with an Eyelink 1000 (SR Research) eye tracker, for all four metamer 

experiments. A 9-point calibration was performed at the start of each block. We analyzed 

the eye position data to discard trials where the observer broke fixation. We first computed a 

“fixation” location for each block by averaging eye positions over all trials. This was used as 

fixation, rather than the physical screen center, to account for systematic offset due to 

calibration error. We then computed, on each trial, the distance of each gaze position from 

fixation. A trial was discarded if any gaze position exceeded 2 deg from fixation. We 

discarded 5% of trials for the first observer (across all four experiments), and 17% for the 

second. Using a more conservative (1 deg) threshold increased the number of discarded 

trials, but did not substantially change psychometric functions or critical scaling estimates. 

By only including trials with stable fixation, we ruled out the possibility that systematic 
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differences in fixation among scaling conditions, presentation conditions, or models, could 

account for our results.

Fitting the psychometric function

We assume an observers‘ performance in the ABX experiment is determined by a 

population of mid-ventral neurons whose receptive fields grow with eccentricity according 

to scaling parameter s0, and their performance depends on the total squared difference of 

those responses computed on the two presented images. Because each response is a spatial 

average, we can approximate the squared difference as a function of the scaling s used to 

synthesize the images, relative to the observer’s critical scaling s0 (see Supplementary 

Methods):

The gain factor, α, controls the discriminability, and is expected to differ for each model 

parameter. If we assume the overall discriminability of the two images arises from a 

weighted average of these squared differences across all model parameters, it will have the 

same functional form, with an overall gain factor of α0.. We used simulations to validate this 

approximation. Signal detection theory37 predicts performance in the ABX task as a 

function of d2,

where Φ is the cumulative distribution function of the Gaussian. We fit values of the gain 

factor (α0) and the critical scaling (s0) for each subject, by maximizing the likelihood of the 

raw data. Bootstrapping was used to obtain confidence intervals for parameters.

Crowding

Five observers participated in the crowding experiments (one of whom also participated in 

the metamer experiments). Each observer performed two tasks: a peripheral recognition task 

on triplets of letters, and a foveal recognition task on synthesized stimuli. In the former, each 

trial began with a 200 ms presentation of three letters in the periphery, arranged along the 

horizontal meridian. Letters were uppercase, in the Courier font, and 1 deg in height. The 

“target” letter was centered at 6 deg eccentricity, and the two “flanker” letters were 

presented left and right of the target. All three letters were drawn randomly from the 

alphabet without replacement. We varied the center-to-center spacing between the letters, 

from 1.1 deg to 2.8 deg (all large enough to avoid letter overlap). Observers had 2 s to 

identify the target letter with a key press (1 out of 26 possibilities, chance = 4%). Observers 

performed 48 trials for each spacing. For each observer, performance as a function of 

spacing was fit with a Weibull function by maximizing likelihood. Spacings of 1.1, 1.5, and 

2 deg corresponded to approximately 50%, 65%, and 80% performance respectively; these 

spacings were used to generate synthetic stimuli for the foveal task (see below). To extend 

our range of performance, two observers were run in an additional condition (8 deg 
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eccentricity, 0.8 letter size, 1 deg spacing) yielding approximately 20% performance. For 

these observers, the same condition was included in the foveal task.

We used the mid-ventral model to synthesize stimuli matched to the letter triplets. To reduce 

the number of images that had to be synthesized (computational cost is high for the small 

scaling parameters), we synthesized stimuli containing triplets along eight radial arms, but 

eccentricity, letter size, font, and letter-to-letter spacing were otherwise identical. For each 

image of triplets we generated nine different synthetic stimuli: three different spacings (1.1, 

1.5, 2 deg) for each of three different model scalings (0.4, 0.5, 0.6) centered roughly around 

the average critical scaling estimated in our initial metamer experiment. We synthesized 

stimuli for 56 unique letter triplets; letter identity was balanced across the experimental 

manipulations. On each trial of the foveal recognition task, one of the triplets from the 

synthesized stimuli was presented for 200 ms, and the observer had 2 s to identify the 

middle letter. The observer saw each unique combination of triplet identity, spacing, and 

scaling only once. Trials with different spacings were interleaved, but the three different 

model scalings were performed in separate blocks (with random order).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Physiological measurements of receptive field size in macaque. (a) Receptive field size 

(diameter) as a function of receptive field center (eccentricity) for visual areas V1, V2, and 

V4. Data adapted from Gattass et al. (1981) and Gattass et al. (1988), the only studies to 

measure receptive fields in all three macaque ventral stream areas with comparable methods. 

The size-to-eccentricity relationship in each area is well described by a “hinged” line (see 

Supplementary Methods for details and an analysis of a larger set of ten physiological data 

sets). (b) Cartoon depiction of receptive fields with sizes based on physiological 
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measurements. The center of each array is the fovea. The size of each circle is proportional 

to its eccentricity, based on the corresponding scaling parameter (slope of the fitted line in 

panel a). At a given eccentricity, a larger scaling parameter implies larger receptive fields. In 

our model, we use overlapping pooling regions (linear weighting functions) that uniformly 

tile the image and are separable and of constant size when expressed in polar angle and log 

eccentricity (Supplementary Fig. 1).
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Figure 2. 
Mid-ventral model, metameric stimuli, and experimental task. (a) In each spatial pooling 

region, the image is first decomposed using a population of model V1 cells (both simple and 

complex), varying in their preferred orientation and spatial frequency. Model responses are 

computed from products of the filter outputs across different positions, orientations, and 

scales, averaged over each of the pooling regions. (b) An original photograph of the 

Brunnen der Lebensfreude in Rostock, Germany (courtesy of Bruce Miner). (c–d) Image 

samples, randomly selected from the set of images that generated model responses identical 
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to those of the original (panel b). The value of the scaling parameter (used to determine the 

pooling regions of the model) was selected to yield 75% correct performance in 

discriminating such synthetic images (see Fig. 4). The two images, when viewed with 

fixation at the center (red dot), should appear nearly identical to the original and to each 

other, despite gross distortions in the periphery (for example, a woman's face is scrambled, 

and dissolves into the spray of the fountain). (e) Psychophysical “ABX” task. Human 

observers viewed a sequence of two synthetic stimuli, each randomly selected from the set 

of all images having model responses matched to an original image, followed by a third 

image that was identical to one of the first two. Observers indicated which of the first two 

images matched the third.
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Figure 3. 
Metamer experiment results. Each panel shows, for an individual observer, the proportion of 

correct responses in the ABX task, as a function of the scaling parameter (ratio of receptive 

field diameter to eccentricity) of the model used to generate the stimuli. Data are averaged 

over stimuli drawn from four naturalistic images. Dark gray points: mid-ventral model (see 

Fig. 2). Light gray points: V1 model (see Supplementary Fig. 2). Shaded region, 68% 

confidence interval obtained using bootstrapping. Gray horizontal line: Chance performance. 

Black lines: Performance of observer model with critical scaling and gain parameters chosen 

to maximize the likelihood of the data for each individual observer (see Methods and 

Results). r2 values for the fits indicated at the bottom of each plot.
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Figure 4. 
Metamer control experiments. Each column shows data and fitted psychometric functions 

for an individual observer. Both experiments use stimuli generated by the mid-ventral 

model. (a) Metamer experiment with extended presentation time. Light gray points: 400 ms 

presentation time. Dark gray points: 200 ms presentation time (replotted from Fig. 3). 

Shaded region: 68% confidence interval obtained using bootstrapping. Gray horizontal line: 

chance performance. (b) Metamer experiment with directed attention. Light gray points: 

observers were directed with an attentional cue indicating the region with the largest change 

(see Methods). Dark gray points: undirected attention (replotted from Fig. 3). Shaded region: 

same as panel a.
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Figure 5. 
Summary of fitted critical scaling parameters for all experiments. Error bars: 95% 

confidence intervals on parameter estimates obtained through bootstrapping. Colored 

horizontal lines: receptive field scaling as measured physiologically in each visual area, 

based on a meta-analysis combining across ten data sets (see Supplementary Methods for 

details and references). Thickness of lines indicates 95% confidence interval.
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Figure 6. 
Crowding experiment. (a) Recognition performance for two different kinds of stimuli: 

peripherally viewed triplets of letters, and foveally viewed stimuli synthesized to produce 

model responses identical to their corresponding letter triplets. Black dots: average 

recognition performance for a peripheral letter between two flankers, as a function of letter-

to-letter spacing (n = 5 observers). Black line: best fitting Weibull function. Gray shaded 

region: 95% confidence interval for fit obtained through bootstrapping. Synthetic stimuli 

were generated for spacings yielding approximately 50%, 65%, and 80% performance, 

based on the average psychometric function. Colored dots: average recognition performance 

for model-synthesized stimuli (foveally viewed). Different colors indicate the scaling 

parameter used in the model (purple: 0.5, orange: 0.4, green: 0.6). Error bars: standard 

deviation across observers. (b) Comparison of recognition performance for the peripheral 

letter triplets (from the psychometric function in panel a) and the foveally-viewed synthetic 

stimuli (colored dots from panel a). Each point represents data from a single observer for a 

particular spacing and scaling. Two observers performed an additional condition at a larger 

eccentricity (not shown in panel a), to extend the range of performance levels (the six left-

most points).
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Figure 7. 
Effects of crowding on reading and searching. (a) Two metamers, matched to the model 

responses of a page of text from the first paragraph of Herman Melville’s “Moby Dick”. 

Each metamer was synthesized using a different foveal location (the letter above each red 

dot). These locations are separated by the distance readers typically traverse between 

fixations (Pelli et al., 2007). In each metamer, the central word is largely preserved; farther 

in the periphery the text is letter-like but scrambled, as if taken from a non-latin alphabet. 

Note that the boundary of readability in the first image roughly coincides with the location 
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of the fixation in the second image. We emphasize that these are samples drawn from the set 

of images that are perceptually metameric; although they illustrate the kinds of distortions 

that result from the model, no single example represents “what an observer sees” in the 

periphery. (b) The notoriously hard-to-find “Waldo” (character with the red and white 

striped shirt) blends into the distracting background, and is only recognizable when fixated. 

Cross-hairs surrounding each image indicate the location of the fovea used by the model 

during synthesis. (c) A soldier in Afghanistan wears patterned clothing to match the stoney 

texture of the environment, and similarly blends into the background.
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