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Abstract

Under the conditions of ruthenium catalyzed transfer hydrogenation, 2-butyne couples to benzylic
and aliphatic alcohols 1a–1i to furnish allylic alcohols 2a–2i, constituting a direct C-H vinylation
of alcohols employing alkynes as vinyl donors. Under related transfer hydrogenation conditions
employing formic acid as terminal reductant, 2-butyne couples to aldehydes 4a, 4b, and 4e to
furnish identical products of carbonyl vinylation 2a, 2b, and 2e. Thus, carbonyl vinylation is
achieved from the alcohol or the aldehyde oxidation level in the absence of any stoichiometric
metallic reagents. Nonsymmetric alkynes 6a–6c couple efficiently to aldehyde 4b to provide
allylic alcohols 2m–2o as single regioisomers. Acetylenic aldehyde 7a engages in efficient
intramolecular coupling to deliver cyclic allylic alcohol 8a.

Carbonyl vinylation is a convergent protocol for the preparation of allylic alcohols.
Following the seminal work of Oguni (1984) and Noyori (1986),1 enantioselective catalytic
addition of vinylzinc reagents to aldehydes were reported by Oppolzer (1992) and Wipf
(1994).2,3,4 Although such transformations exhibit high stereoselectivity, vinylzinc
generation relies upon stoichiometric alkyne hydrometallation (R2BH or Cp2ZrHCl) with
subsequent transmetallation to zinc using ZnMe2. Thus, alkyne activation requires
successive use of four stoichiometric organometallic reagents (Scheme 1).

Direct metal catalyzed alkyne-carbonyl reductive coupling bypasses the use of multiple
stoichiometric organometallic reagents. This reactivity pattern was first observed in
cyclizations of acetylenic aldehydes catalyzed by rhodium, titanium and nickel, as reported
by Ojima (1994),5 Crowe (1995)6 and Montgomery (1997),7 respectively. Intermolecular
variants of the nickel catalyzed reactions soon followed.8,9 However, while reductive
couplings of this type signal a departure from stoichiometric organometallics, they employ
reductants that generate molar equivalents of metallic byproducts.

Completely atom economical alkyne-carbonyl and imine-carbonyl reductive couplings are
achieved under the conditions rhodium and iridium catalyzed hydrogenation.10,11,12 This
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concept was extended to C-C bond forming transfer hydrogenation, wherein hydrogen
embedded within an alcoholic reactant, typically isopropanol, serves as terminal
reductant.13,14 Most significantly, an alcohol may serve dually as hydrogen donor and
precursor to the carbonyl electrophile, enabling byproduct-free carbonyl addition from the
alcohol oxidation level.10d,13,14a,c,d,15

Under the conditions of ruthenium catalyzed transfer hydrogenation employing RuHCl(CO)
(PPh3)3 as catalyst, carbonyl allylation and propargylation are achieved from the alcohol or
aldehyde oxidation level using conjugated dienes and enynes as surrogates to preformed
allyl and allenyl metal reagents, respectively.14a,c Here, we report the first direct C-H
vinylation of alcohols, which is achieved by way of alkyne-alcohol C-C bond-forming
transfer hydrogenation employing Ru(O2CCF3)2(CO)(PPh3)2 as catalyst.

Recently, we disclosed a method for carbonyl propargylation from the alcohol or aldehyde
oxidation level via enyne-carbonyl transfer hydrogenative coupling employing RuHCl(CO)
(PPh3)3 as catalyst (eqn. 1).14c In subsequent studies, it was found that the regiochemistry of
C-C coupling is altered the upon the use of Ru(O2CCF3)2(CO)(PPh3)2 as catalyst in the
absence of added ligand (eqn. 2). Interestingly, both regioselectivities differ from those
observed under the conditions of rhodium12 or nickel catalysis,16 wherein coupling at the
acetylenic terminus of the enyne is observed.

(eq. 1)

(eq. 2)

These results suggested the feasibility of using non-conjugated alkynes in transfer
hydrogenative C-C coupling, which would constitute a direct C-H vinylation of alcohols
employing alkynes as vinyl donors. After extensive optimization, it was found that 2-butyne
(200 mol%) and p-nitrobenzyl alcohol 1b (100 mol%) combine to form the desired product
of C-H vinylation, allylic alcohol 2b, in 78% isolated yield simply upon heating in THF
solvent at 95 °C (sealed tube) in the presence of Ru(O2CCF3)2(CO)(PPh3)2 (5 mol%) and
isopropanol (200 mol%). Enone 3b also forms in 12% isolated yield. Under these
conditions, diverse benzylic and aliphatic alcohols 1a–1l are converted to the corresponding
allylic alcohols 2a–2l, accompanied by variable quantities of the corresponding enones 3a–
3l (Table 1). Added isopropanol (200 mol%) was found to minimize formation of enones
3a–3l.

Carbonyl vinylation from the aldehyde oxidation level also was explored. Using isopropanol
as terminal reductant, low conversion was observed. However, in reactions mediated by
formic acid (100 mol%), aldehydes 4a, 4b and 4e were converted to allylic alcohols 2a, 2b
and 2e in good yield, accompanied by products of olefin isomerization 5a, 5b and 5e. Here,
sodium iodide (5 mol%) was found to suppress over-oxidation leading to enone side-
products (Table 2).
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The coupling of nonsymmetric alkynes 6a–6c also was explored from the aldehyde
oxidation level employing aldehyde 4b. Using formic acid as reductant, efficient vinylation
occurs to provide allylic alcohols 2m–2o as single regioisomers. Over-oxidation of 2m–2o
to form enones 3m–3o was not observed. Under the standard conditions cited in Table 1, the
coupling of nonsymmetric alkynes 6a–6c to p-nitrobenzyl alcohol 1b to form allylic
alcohols 2m–2o was less efficient (Table 2). Finally, whereas cyclization of acetylenic
alcohols failed, the reductive cyclization of acetylenic aldehyde 7a proceeds efficiently to
deliver 8a in 84% isolated yield (eqn. 1).

(eqn. 1)

In summary, through C-C bond forming transfer hydrogenation, direct vinylation of alcohols
or aldehydes is achieved using alkynes as vinyl donors in the absence of any stoichiometric
metallic reagents. Future studies will focus on the development of improved second
generation catalysts for the transformations reported herein and related alcohol-unsaturate
C-C couplings.
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Scheme 1.
Selected milestones in carbonyl vinylation.
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Table 2

Ruthenium catalyzed transfer hydrogenative coupling of butyne to aldehydes 4a, 4b and 4e.a

Entry Aldehyde Product R Yield (2:5)

1 4a 2a (5a) Ph 88% (5:1)

2 4b 2b (5b) p-NO2-Ph 78% (10:1)

3 4e 2e (5e) m-MeO-Ph 91% (7:1)

a
See supporting information for detailed procedures.
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Table 3

Ruthenium catalyzed transfer hydrogenative coupling of alkynes 6a–6c to aldehyde 4b (top) and alcohol 1b
(bottom).a

Entry Alkyne (200 mol%) Product Time (hr) Yield (2:3)

1 6a, R1 = Ph 2m (3m) 24 hr 91% (>20:1)

2 6b, R1 = (CH2)2OBn 2n (3n) 16 hr 84% (>20:1)

3 6c, R1 = CH2NHBoc 2o (3o) 13 hr 75% (>20:1)

Entry Alkyne (200 mol%) Product Time (hr) Yield 2 (3)

1 6a, R1 = Ph 2m (3m) 37 hr 62% (12%)

2 6b, R1 = (CH2)2OBn 2n (3n) 13 hr 58% (>1%)

3 6c, R1 = CH2NHBoc 2o (3o) 13 hr 15% (>1%)

a
See supporting information for detailed procedures. Isolated yields refer to pure 2m–2o free of any enone byproduct.
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