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Abstract
The auditory system faithfully represents sufficient details from sound sources such that
downstream cognitive processes are capable of acting upon this information effectively even in the
face of signal uncertainty, degradation or interference. This robust sound source representation
leads to an invariance in perception vital for animals to interact effectively with their environment.
Due to unique nonlinearities in the cochlea, sound representations early in the auditory system
exhibit a large amount of variability as a function of stimulus intensity. In other words, changes in
stimulus intensity, such as for sound sources at differing distances, create a unique challenge for
the auditory system to encode sounds invariantly across the intensity dimension. This challenge
and some strategies available to sensory systems to eliminate intensity as an encoding variable are
discussed, with a special emphasis upon sound encoding.
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1. Introduction
An important feature of biological sensory systems is their ability to extract meaningful
environmental signals under a wide variety of conditions. This ability is necessary for
successful prey acquisition, predator avoidance and mate localization, among other crucial
behavioral tasks. These biological systems perform remarkably well even in the face of
incomplete information, signal degradation or competing signals. Systems capable of
extracting relevant information consistently under extremely variable environmental
conditions are termed robust, and robust sensory pattern recognition is extremely useful for
the survival of many species, including humans.

One stimulus dimension across which sounds are relatively consistently perceived is
intensity or sound level. In other words, as the total power of a target sound is varied over
many orders of magnitude, listeners are able either to correctly identify it or to process it
correctly relative to other similar sounds (Buus and Florentine, 1991; Hanna, von Gierke et
al., 1986; Viemeister and Bacon, 1988). This type of intensity invariance typically
represents a straightforward achievement for artificial pattern recognizers because the
overall stimulus pattern (e.g., the spectrotemporal distribution of sound power) remains
relatively constant as overall power is added to the signal in a linear medium such as air. A
simple signal normalization in the pattern recognizer can therefore enable robust
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identification of the signal relative to changes in its intensity. Intrinsic nonlinearities in
biological sensory systems, on the other hand, often mean that even an operation as simple
as adding power to a signal could alter the neural representation of that signal. These
nonlinearities are particularly strong in the auditory periphery, leaving open the question of
how the central auditory system is able to create a consistent perception of a given sound as
it changes in intensity.

Under environmental conditions, differences in sound intensity are often associated with
differences in sound source distances. In fact, overall sound source intensity is one of the
key stimulus features used to estimate target distance in adult humans (Ashmead, LeRoy et
al., 1990; Litovsky and Clifton, 1992; Mershon and Bowers, 1979; Strybel and Perrott,
1984; Zahorik and Kelly, 2007). Manipulation of sound intensity (and therefore perceived
loudness) leads to systematic errors in distance judgment for virtual sound sources
(Mershon, Desaulniers et al., 1981). Loudness perception itself has received considerable
attention (Glasberg and Moore, 2006; Plack and Carlyon, 1995; Zhang and Zeng, 1997),
while leaving relatively unexplored the mechanism of perceptual invariance across intensity
in the auditory system. The goal of this review, therefore, will be to focus upon some of the
potential strategies available to the nervous system for encoding sensory signals over a wide
dynamic range while still preserving a representation of the signal that can be exploited for
invariant or nearly invariant perception of the corresponding object. Strategies that appear to
be used by the auditory system will be emphasized.

2. Dynamic Range Stitching
No individual coding element (e.g., receptor or neuron) in the sensory systems of higher
animals is capable of encoding the entire intensity range to which the organism is sensitive.
Perhaps the most obvious means of building an invariant representation across a wide
intensity range using discrete elements of much narrower intensity ranges is to construct
these elements such that their individual input-output functions combine to collectively span
the total range of interest. In such a case, one would expect a range of neuronal thresholds
such that combining or “stitching” together individual neuronal responses would allow the
sensory system to represent the full range of intensity normally available to the organism. To
some degree this strategy appears to be used by the auditory system and is depicted
graphically in Figure 1. Threshold measurements made in auditory nerve support the notion
that individual neuronal dynamic ranges are dispersed somewhat across the total intensity
range of hearing (Evans, 1972; Liberman, 1978; Liberman and Kiang, 1978; Sachs and
Abbas, 1974). Thresholds of auditory nerve fibers have classically been evaluated as
absolute spiking rate measures evoked by stimuli versus spontaneous rates, but similar
trends hold true when statistical properties of rate responses are taken into account (Geisler,
Deng et al., 1985; Young and Barta, 1986) and are logically extended when temporal
information in the spike trains is considered (Carney, 1994; Colburn, Carney et al., 2003).

The strategy of dynamic range stitching can be also seen in responses in primary auditory
cortex (A1). Figure 2 depicts the distribution of relative tone thresholds measured from over
500 neurons located in awake marmoset monkey A1. The pattern that emerges reflects
essentially the same pattern seen in the auditory nerve, whereby a subset of thresholds is
indeed distributed across a wide intensity range, but the bulk of thresholds trend toward
lower values. Because the average dynamic range of these neurons is around 15 dB, the
overall machinery of auditory encoding appears to be biased largely toward intensities
within 30 dB or so of hearing threshold (Watkins and Barbour, 2010b). This finding is
problematic for two reasons. First, for the “stitching” process to be most effective, the
neuronal dynamic ranges would be expected to span more or less uniformly the complete
intensity range of hearing, which is not the case here. In fact, prima facie evidence for the
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auditory system’s ability to encode loud or moderately loud sounds is surprisingly lacking
from these data. The issue of not having sufficient unsaturated coding elements to account
for observed intensity discrimination capabilities for loud sounds has been explored
previously (Florentine, Buus et al., 1987; Viemeister, 1988a; Viemeister, 1988b). Second, a
Bayesian argument could be made for a nonuniform distribution of individual neuronal
dynamic ranges, but in that case one would expect on efficient coding grounds that these
ranges would match at least approximately the environmental stimulus statistics. While the
distribution of environmental sound intensities to which these animals were exposed is
unknown, it is extremely unlikely to be biased so strongly toward intensities near the
animal’s hearing threshold. In fact, these laboratory animals are reared and housed in a room
with acoustically reflective walls, implying that intensities to which these animals are
regularly exposed are likely to be substantially greater than the intensities regularly
encountered by marmosets in the wild or reared in quiet conditions (Liberman, 1978). Given
this likelihood, the finding of so many low-threshold neurons in the laboratory animals is
even more striking. Therefore, the actual distribution of sound levels that appears to be
represented in A1 does not match even the most basic expectations of actual sound levels
that the auditory system would need to encode.

One proposal to account for this discrepancy for the stitching hypothesis involves invoking a
unique subpopulation of neurons with dynamic ranges more thoroughly spanning the full
intensity range of hearing (Phillips, Semple et al., 1994; Sadagopan and Wang, 2008; Suga,
1992; Suga and Manabe, 1982). The neurons in question have an expanded overall dynamic
range because at intensities greater than a preferred intensity, their responses systematically
diminish, hence the categorization of their input/output functions as “nonmonotonic” or
“intensity-tuned.” The result is an expanded overall dynamic range relative to monotonic or
intensity-untuned neurons. In some cases, the dynamic ranges of nonmonotonic neurons
have been reported to be more uniformly distributed across the full intensity range of
hearing than intensity-untuned neurons (e.g., see Sadagopan and Wang, 2008). In data
collected from marmoset monkey A1 in the author’s laboratory, however, this distribution of
thresholds and dynamic ranges of nonmonotonic neurons is still heavily biased toward lower
intensities, implying that sound level representation in even this subgroup of cortical
neurons is concentrated toward lower intensities (Watkins and Barbour, 2010b). Given that
these animals are likely exposed to more intense sounds on average than animals in the wild,
the finding of so many low-threshold neurons in the laboratory animals is even more
striking.

The precise distribution of auditory neuronal input/output functions notwithstanding, a
particular challenge to inferring auditory system function from these data likely relates to the
discrepancy between how the data are collected in the laboratory compared with the
properties of natural acoustic stimuli. In traditional laboratory studies of input/output (i.e.,
rate-intensity or rate-level) functions, an experimental animal is placed into an acoustic
isolation chamber that enables very low background sound levels during the experiment.
Additional wideband sounds present in an acoustic environment have been shown in many
contexts and throughout the auditory system to affect neuronal dynamic ranges measured by
tones, usually by shifting dynamic ranges toward higher intensities and possibly
compressing them (Aitkin, 1991; Costalupes, Young et al., 1984; Geisler and Sinex, 1980;
Gibson, Young et al., 1985; Phillips, 1985; Phillips and Cynader, 1985; Phillips and Hall,
1986; Ramachandran, Davis et al., 2000; Rees and Palmer, 1988; Sadagopan and Wang,
2008; Young and Barta, 1986). Furthermore, each probe tone in these experiments is
typically presented with sufficient silence between stimulus presentations in order to avoid
the response of one stimulus influencing the response of another. It is widely understood that
the reason for waiting between stimulus presentations and, furthermore, randomizing the
order of stimulus presentations is that the auditory system being probed has memory
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associated with it. In other words, the recent past affects neuronal responses because
auditory neurons adapt to their recent history, thereby prompting experimental data
collection procedures designed to average out these effects. Adaptation is another technique
that sensory neurons can use to encode a larger overall dynamic range using individual
coding elements possessing smaller dynamic ranges.

3. Adaptation
While sensory systems are capable of encoding a wide range of intensities, over relatively
short periods of time a much smaller range of intensities is typically present in the
environment. Figure 3, for example, depicts the mean amplitude ranges present in time
intervals of different lengths for a jungle and an urban recording. Naturally, longer intervals
contain a wider range of amplitudes on average than shorter intervals, which would be true
for the vast majority of sounds. Even at relatively long intervals of several seconds,
however, no more than 1/4 of the total dynamic range of the recording apparatus was
occupied by the stimulus. A logical approach to encoding stimuli over a wide intensity
range, therefore, is to adapt the narrower dynamic ranges of individual coding elements in
response to recent stimulus statistics at an appropriate time scale. The effect would be to
shift the dynamic ranges of coding elements to align with the most common recent signal
values encountered. Depending upon the statistics of the sensory stimulus and the rate of
adaptation, the coding element dynamic ranges could be relatively narrow yet still
effectively encode sensory stimuli over a much greater intensity range. An additional
advantage of this strategy is that it utilizes fixed resources more effectively by shifting many
of them away from sensitivity to events that have an extremely low probability of either
occurring or being detected or both. Adaptive processes could also explain the distribution
of thresholds in Figure 2: adaptive neurons in silent conditions would naturally adapt to have
their lowest thresholds and highest gains.

Adaptative coding strategies are commonly used in biological sensory systems and take
numerous forms. Modulating the amount of signal energy entering the sensory system
transduction apparatus is an approach used by both visual and auditory systems. The
familiar pupillary light reflex represents a negative feedback circuit that constricts the pupil
of the eye in response to bright light (Loewy, 1990). Two acoustic reflexes similar to the
pupillary reflex dampen middle ear vibrations in the face of loud sounds: the tensor tympani
reflex and the stapedial reflex. These reflexes appear to be much more dynamic than the
pupillary reflex, however, contracting rapidly after the onset of loud sounds and
synchronously with the speaker’s own vocalizations (Sellari-Franceschini, Bruschini et al.,
1986; Silman, 1984). Presumably the adaptive nature of these reflexes is well-suited to the
temporal dynamics of natural acoustics, which might reasonably require faster reaction for
acoustic stimulation than the pupillary reflex requires for light stimulation.

Sensory adaptation also commonly occurs in the receptors themselves. Mechanoreceptors of
the somatosensory system, for example, adapt their responses to recent pressure magnitude,
apparently by alterations in their membrane properties that affect depolarization (Nakajima
and Onodera, 1969). Chemical receptors for taste and smell desensitize when a ligand
activating them is present for extended periods of time (Borisy, Hwang et al., 1993; Song,
Cygnar et al., 2008; Wei, Zhao et al., 1998). In the visual system, photoreceptors convert
light energy into a molecular conformational change that signals the presence of a photon.
The photoreceptors become less sensitive upon transducing at a high rate, which occurs at
higher light intensities and can be regulated by additional chemical processes (Kefalov,
Estevez et al., 2005; Pepperberg, 2003). Sound is converted in the mammalian ear into
neuronal signals through a mechanotransduction mechanism whereby cochlear fluid
vibrations are converted into transmembrane ion flows in hair cells of the inner ear through
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special ion channels sensitive to mechanical forces. The mechanical properties of this
transduction mechanism, as well as the chemical properties of the hair cells themselves,
appear to adapt to recent stimulus history in a way that can affect the gain of this mechanism
(Eatock, 2000; Holt and Corey, 2000; Le Goff, Bozovic et al., 2005).

This approach of adjusting signal gain at the initial stages of processing in order to center
the much lower dynamic ranges of coding elements upon the mean signal intensity is a
logical one and also represents a standard approach deployed in engineered systems. The use
of automatic gain control (AGC) circuits, of which there are many types, has automated
numerous processes of engineered gain adaptation. For example, photographic film and
modern imaging sensors have dynamic ranges far smaller than the intensity ranges found in
nature, hence the need to use an aperture to modulate the total amount of light entering the
camera lens and center the dynamic range of the scene onto the sensor. Photographic camera
apertures previously needed adjustment by hand to avoid overexposing or underexposing
film. Modern cameras virtually all have some kind of light meter coupled to an
electronically controlled aperture through an AGC circuit. AGC circuits are also present in
modern telephones, hearing aids, voice recorders, etc., and simplify the process of using
such devices by insulating the user from the need to adjust gain by hand. One potential
drawback of this approach, however, is that the memory inherent in AGCs introduces a
nonlinearity that can distort some signals excessively.

Downstream adaptation to stimulus statistics can take multiple forms and can occur across
different levels within a sensory system. Raw intensity is largely adapted out early in the
visual pathway, and higher order adaptations such as to stimulus contrast become more
prevalent at later processing stages (Baccus and Meister, 2002; Brown and Masland, 2001;
Chander and Chichilnisky, 2001; Hosoya, Baccus et al., 2005; Kim and Rieke, 2001;
Laughlin, 1989; Rieke and Rudd, 2009; Shapley and Victor, 1978; Smirnakis, Berry et al.,
1997; Solomon, Peirce et al., 2004). This scenario is advantageous for the visual system
because images are formed by contrasts between light and dark areas rather than overall
intensity. A pattern recognizer for a face, for example, would ideally have similar
performance in a dim room as on a bright day so long as sufficient contrast existed in the
image. Early removal of absolute intensity is an evolutionarily adaptive and efficient
solution for extending the dynamic range of individual photoreceptors to create the full
range available to the visual system (Hosoya, Baccus et al., 2005). This intensity
information is still acquired and transmitted to the brain by an alternate pathway, which
enables perceptual judgments of brightness as well as proper function of the pupillary light
reflex.

A similar argument can be made for somatosensation, where changes in absolute pressure
might occur with some low frequency but not represent the most relevant sensory
information. Sitting, wearing clothes or holding an item are all actions that will create
substantial pressures on the mechanoreptors in the skin. While some information about
absolute pressure detected by the skin would be important to represent (e.g., to be able to
pick up an egg without crushing it), the most relevant ongoing information to represent is
likely to be fluctuations in pressure at relatively short time scales (e.g., to determine if a
recently touched surface is smooth or rough). This is equivalent to saying that the AC signal
is likely to carry more useful information than the DC signal or that low-probability (novel)
stimuli may have more behavioral relevance than signals that have been present for some
time.

Adaptation in response to recent stimulus history also occurs in the auditory system and can
be detected in auditory nerve fibers (Relkin and Doucet, 1991; Rhode and Smith, 1985;
Wen, Wang et al., 2009) in addition to more centrally located neurons (Dean, Harper et al.,
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2005; Dean, Robinson et al., 2008; Kvale and Schreiner, 2004; Watkins and Barbour, 2008;
Watkins and Barbour, 2010a). Like adaptation in other sensory systems, auditory adaptation
appears to be present within the transduction mechanism itself (Goutman and Glowatzki,
2007), as well as downstream (Bartlett and Wang, 2005; Nelson, Smith et al., 2009;
Ulanovsky, Las et al., 2004; Xu, Kotak et al., 2007). This adaptation results in neuronal
input/output functions being modified to align their regions of maximum slope more closely
with the most probable stimuli, thereby maximizing discriminability for the most probable
stimuli as well as overall information transmission (Brenner, Bialek et al., 2000; Dean,
Harper et al., 2005; Dean, Robinson et al., 2008; Kvale and Schreiner, 2004). This is
equivalent to saying that the distribution shown in Figure 2 becomes less leftward skewed
(i.e., the mean threshold increases) as the average sound intensity increases. Important
exceptions to this rule have been reported for some response types, however, that preserve
sensitivity to lower probability stimuli of presumably significant behavioral relevance
(Watkins and Barbour, 2008; Watkins and Barbour, 2010a). This sensitivity preservation
could be particularly useful under conditions of multiple concurrent dynamic sounds,
particularly if each sound has a different mean intensity. Consider, for example, how the two
stimuli depicted in Figure 3 would best be encoded by elements of narrow dynamic ranges if
they were present simultaneously.

Unique psychophysical phenomena can be used to infer adaptive physiological mechanisms
(Wolfson and Graham, 2007; Wolfson and Graham, 2009) and, conversely, physiological
evidence for adaptive phenomena can be used to predict the existence of particular
psychophysical phenomena (Zeng, Turner et al., 1991). In the latter case, neurophysiological
experimental results indicated that high-spontaneous rate (low-threshold) auditory nerve
fibers recover from adaptation induced by a loud preceding sound an order of magnitude
faster than low-spontaneous rate (high-threshold) fibers (Relkin and Doucet, 1991). This
kind of experimental protocol is termed forward-masking to signify that the output of
interest is the threshold shift or “masking” induced forward in time by a preceding stimulus.
Very shortly following a loud sound, then, psychophysical hearing thresholds are masked
because all the neuronal thresholds have been shifted upward (Figure 4A,B). Waiting a bit
longer, however, (up to 400 ms in these experiments) creates in intriguing situation where
the most sensitive neurons have almost completely recovered their initial thresholds while
the least sensitive neurons have not yet begun to recover (Figure 4C). The result is about a
20 dB “coding gap” where almost all of the auditory neurons are either saturated or
nonresponsive. A straightforward prediction of this neurophysiological finding is that
psychophysical thresholds would be expected to be elevated at this intermediate intensity
range for the time scales in question. Thresholds for greater or lesser intensities than the gap
location would be lower, thereby creating a nonmonotonic threshold curve as a function of
intensity. When intensity discrimination thresholds were measured in human listeners
shortly after an intense masking stimulus, this hypothesis was borne out robustly (Zeng,
Turner et al., 1991). Given that intensity-tuned neurons all the way to auditory cortex appear
to be the primary inheritors of high-spontaneous rate/low-threshold auditory nerve fiber
activity (Watkins and Barbour, 2010b), these central neurons might be expected to have
distinct adaptive properties, as well. This prediction has been shown to be correct, leading to
the surprising finding that intensity-tuned neurons adapt in such a way not to maximize
encoding of overall stimulus statistics, but to maximize encoding of the particular case of
soft sounds preceded by loud sounds, much as in the case of the forward masking paradigm
(Watkins and Barbour, 2008; Watkins and Barbour, 2010a). The complete role of these
neurons in encoding dynamic acoustic stimuli remains the subject of further investigation.

Peculiar adaptations such as these bear upon issues of efficient coding with limited resources
and sensory discrimination across stimulus intensity but do not directly address the issue of
invariance in perception across intensity. In fact, given the previous discussion that the
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neural code actually changes depending upon the temporal stimulus context and multiple
strategies to implement optimal stimulus encoding, achieving an invariant neural
representation across intensity likely represents a considerable challenge for downstream
circuits to implement. This task is made considerably more difficult in the auditory system
because of the intensity-dependence of neuronal receptive fields beginning at the auditory
periphery.

4. Variation in Neuronal Responses Across Intensity
The nature of the mechanical vibrations in the cochlea leads to a map of acoustic frequency
onto position along the cochlea. The nonlinear nature of cochlear mechanics leads to an
alteration in vibration pattern as sound intensities increase such that cochlear auditory filters
become less selective to frequency (i.e., filters have increasing bandwidth) as stimulus
intensity increases (Glasberg and Moore, 1990; Kiang, Watanabe et al., 1965; Liberman and
Kiang, 1978). Potentially compounding this situation is a finding in songbird auditory
neurons that not only does the spectral filter change with intensity, but so can the temporal
filter, most likely due to additional nonlinearities (Nagel and Doupe, 2006). While intensity
represents a straightforward stimulus parameter to normalize out in engineered linear
systems (or even in some engineered nonlinear systems such as those with automatic gain
control circuits), the auditory system presumably must dedicate substantial neural resources
toward inverting nonlinearities introduced in the auditory periphery by the sensory
transduction apparatus.

All auditory nerve fibers exhibit an increasing bandwidth with increasing intensity, resulting
in a filter shape resembling a “V” when response is plotted as a function of both intensity
and frequency. Many central auditory neurons also share this response characteristic, even in
auditory cortex. Another set of central auditory neuronal response classes, however, has
been described by numerous authors as “level tolerant” because their bandwidths remain
relatively constant with sound level or intensity (Ehret and Schreiner, 1997; Sadagopan and
Wang, 2008; Suga and Manabe, 1982; Suga and Tsuzuki, 1985; Sutter, 2000). In some cases
these neurons have a monotonic rate-intensity profile, while in others they are nonmonotonic
or intensity-tuned. Taken together, these three classic response types have been classified as
“Type V,” “Type I,” and “Type O” responses based upon the shape of their frequency
response areas, with the latter two corresponding to level-tolerant neurons (Ramachandran,
Davis et al., 1999). Model neurons of all three classes with the same characteristic
frequency, threshold and bandwidth at 10 dB above threshold are depicted graphically in
Figure 5.

Type I and type O neurons are not present in the auditory nerve and must therefore be
created by neural circuitry in the auditory system. Sadagopan and Wang (2008) have
suggested that the express purpose for the creation of these neurons is to counter the
frequency-dependent nonlinearities in the cochlea that give rise to intensity-dependent
bandwidths in the auditory nerve. This is a compelling hypothesis that is consistent with the
additional hypothesis that auditory receptive field bandwidths gradually narrow along the
ascending auditory pathway from the periphery to primary auditory cortex (Suga, 1995).
Neural pathways in other sensory systems tend to produce increasing receptive field sizes
more centrally through divergent projections, so the unique nature of the frequency-
dependent nonlinearities in the auditory system may be the driving force behind the putative
narrowing of auditory receptive fields. Questions remain regarding these hypotheses,
however. Auditory neurons with nonmonotonic input/output functions are nonexistent in
auditory nerve but become steadily more common at higher auditory centers until they
represent a majority of the neurons in A1 (Watkins and Barbour, 2010b). Of considerable
interest, however, is the sizable minority of neurons that still exhibit Type V responses
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similar to those observed in the auditory nerve. Why would this type of response be valuable
for the auditory system to retain all the way to cortex if a major purpose of the intervening
circuitry was to eliminate that type of response?

Furthermore, the type of decoder necessary to extract intensity-invariant natural stimuli from
any of these three neuronal subpopulations is not entirely clear. Figure 6 depicts a plausible
map of characteristic frequency, bandwidth and threshold of model neurons in a square grid
representing A1 (Chen, Watkins et al., 2010). This version of the map assumes a uniform
distribution of thresholds, as depicted in Figure 1. By combining the models of neuronal
responses depicted in Figure 5 with the map in Figure 6, a graphic depiction can be obtained
of the spatial activity of neurons driven by any particular stimulus. In fact, one could
imagine performing a functional imaging experiment on a similarly arrayed collection of
real neurons to discern the pattern of activation for different stimuli. A simulated version of
such an experiment was done in this case for two steady-state vowels at two different
intensities. Each model neuron was assumed to act as a simple linear integrator of stimulus
energy falling within its frequency response area (i.e., the dark areas plotted in Figure 5).
Population response patterns for each neuronal subtype were calculated separately, as was a
mixture of all three types combined in equal proportion. The results can be seen in Figure 7.

The vowel-driven population response patterns for linear Type V and Type I neurons appear
to be rather similar to one another for a given stimulus, especially at higher sound levels.
This finding was somewhat surprising given the extremely wide bandwidths of Type V
neurons at higher intensities, but could potentially be brought about by the wideband nature
of the stimulus. Type V neurons do result in a sparser population response at lower
intensities, as would be expected from their tapered frequency response areas at the lowest
intensities. Type O neurons represent a sparser population at higher intensities. Because of
the nature of the model, however, all three neuronal classes exhibit overcomplete
representations of the stimuli. Noticeable is how similar the response patterns of all the
subtypes and the pooled population are to perceptually different stimuli at the same
intensity. Additionally, the response patterns to the same stimuli at different intensities
exhibit little resemblance to one another. For any vowel, type O responses show a unique
pattern of activation at different intensities. The similarities between Type O responses to
different vowels at the same intensity, however, are just as striking as the differences
between responses to the same vowels at different intensities, raising a logical question
regarding what kind of advantage for downstream decoding the “place code” Type O
neurons might provide relative to other response classes (Shamma, 2003). In fact, a level-
invariant decoder based upon Type O responses would not have a fundamentally different
structure than for Type I and possibly even Type V responses.

Known flaws exist in this computational model that remove it somewhat from physiological
reality. Realistic silence-adapted threshold distributions were not taken into account, for
example; had they been, though, the model would predict even more population activity for
the vowel stimuli. Furthermore, adaptation phenomena were not taken into account in this
model. Cortical neurons are also unlikely to be purely linear integrators of sound energy at
different frequencies and intensities, especially for wideband sounds such as those used
here. In fact, studies of auditory receptive fields using wideband stimuli at different
intensities have revealed intensity invariance, even in the auditory nerve (Barbour and
Wang, 2003; Calhoun, Miller et al., 1998; Valentine and Eggermont, 2004; Yu and Young,
2000). This phenomenon is apparently mediated by adaptive processes away from a
neuron’s characteristic frequency (Blake and Merzenich, 2002). In like fashion, songbird
vocalizations appear to be extracted reliably across intensity by some auditory neurons
(Billimoria, Kraus et al., 2008). Frequency-dependent nonlinearities in the cochlea therefore
result in intensity-dependent neuronal bandwidths, which appear to be most prominent when
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measured with pure tones in isolation and are not as prominent when other stimuli are used.
The question remains whether the neurons that account for invariance in perception across
intensity have already been identified in A1 and are simply in need of proper experimental
probing to reveal this fact, or if more downstream circuits must be involved to decode the
A1 responses. In any case, Figure 7 remains a graphic testament to the nature of the problem
the auditory system must solve. Stated another way that can be used to formulate specific
research questions, what nonlinearities can be added to this linear model to create an
intensity-invariant neural code?

One interesting parallel can be made between the auditory system and another sensory
system along these lines. Like the auditory system but unlike somatosensation or vision,
receptors in olfaction also lose specificity at higher odorant concentrations, and this
phenomenon has actually been visualized by real functional imaging studies like the one
simulated in Figure 7 (Ng, Roorda et al., 2002). Like the auditory system, downstream
neural circuitry appears to be performing a sparsification on the stimulus representation,
resulting in more narrowly “tuned” neurons than receptors. One proposal for how this might
occur is that some downstream circuits are specialized to evaluate ratios of odorant
concentrations rather than absolute concentrations (Uchida and Mainen, 2007). This idea
could be the olfactory equivalent of the observation that central auditory neuron receptive
fields tend to maintain the same bandwidth when measured by wideband stimuli.
Nevertheless, the auditory and olfactory systems are still quite capable of processing single
tones and single odorants in isolation, so this hypothesis is unlikely to account for the full
abilities of the respective sensory systems. Modern methods of dynamical systems analysis
may begin to reveal solutions to invariant stimulus encoding across stimulus intensity not
with individual neurons but with dynamic networks of continually interacting neurons
(Galan, Weidert et al., 2006; Stopfer, Jayaraman et al., 2003).

5. Concluding Remarks
The process by which images are parsed for behaviorally relevant content may be referred to
as “object recognition.” The process by which this task takes place over noisy variations in
signal power is known as “robust object recognition.” While a physical object may persist
unaltered in the environment, variations in lighting, distance, viewing angle, orientation and
intervening objects can dramatically alter the initial visual representation of that object.
Nevertheless, the higher visual systems of many animals implement astounding robust
object recognition engines.

An equivalent ability to segregate individual sound sources from interfering acoustic
stimulation is possessed by the auditory system. The rules by which invariant perception is
achieved by these two systems are likely to differ, but the result is similar. The intensity
domain is one arena likely to differ substantially between vision and audition. Retinotopic-
specific nonlinearities do not dramatically distort early visual representations the same way
that frequency-specific nonlinearities distort early auditory representations. Intensity
therefore reflects an intriguing stimulus parameter to ponder from the perspective of robust
sound recognition and a challenging one to probe effectively. It is likely that in the process
of peeling away the neural mechanisms underlying perceptual invariance of sounds in the
face of variable intensity, other rules of stimulus encoding affecting perception will also be
elucidated. The result will be an improved understanding of the neural representation of
complex sounds available to downstream cognitive processes to assess, interpret and
ultimately act upon.
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Figure 1. Dynamic Range Stitching
One strategy to cover a wide overall intensity with a sensory system is to stitch individual
coding elements together such that their more limited individual dynamic ranges combine to
cover the total range of interest. This particular collection of 5 sigmoidal input/output
functions is capable of collectively and equivalently encoding intensities from near 0 dB up
to 100 dB, although each individual function would only be able to encode a relatively
narrow range of intensities.
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Figure 2. Probability density function of thresholds measured from 544 neurons in awake
marmoset primary auditory cortex
These measures demonstrate some neuronal coverage over a wide intensity range but a
heavy skew toward the lowest intensities. The relative thresholds plotted are computed by
subtracting out absolute thresholds of hearing at each frequency as determined by the
collective neuronal responses. The curve plotted is the best difference of single exponentials
that fits the actual data. Details of this data set can be found in (Watkins and Barbour,
2010b).
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Figure 3. Ranges of sound amplitude over varying interval durations
The temporal dynamics of natural sounds yield short-term fluctuations in stimulus
amplitude. In both of these two examples of 20-minute ambient recordings made in two
different settings, the mean amplitude range of recordings as a fraction of the maximum
possible range steadily increases as longer sliding interval durations are used to calculate the
averages. At short intervals under 1 s, less than 10% of the recording apparatus’s total input
range was used on average to make the recording. For intervals of 20 s, this value was closer
to 25%.
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Figure 4. Effects of a loud sound on the auditory system’s ability to encode subsequent tones
Two classes of neurons contribute to the population of auditory nerve fibers. One class
exhibits high spontaneous rates, low thresholds and rapid recovery from forward masking.
The other class exhibits low spontaneous rates, high thresholds and slow recovery from
forward masking. A. In silence the two groups span a wide intensity range with their
collective dynamic ranges. B. After a loud preceding stimulus (100 ms, 900 – 1000 Hz noise
at 90 dB SPL), both groups adapt toward higher intensities. C. Because the low-threshold
neurons recover from the effects of the loud tone more quickly than the high-threshold
neurons, for a short time the auditory system is relatively “deafened” to intermediate
intensities, as probed by tones (25 ms, 1000 Hz) of different intensities presented within 400
ms following the offset of the masker. (Adapted from Zeng, Turner et al., 1991)
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Figure 5. Classic auditory response types as a function of sound frequency and intensity
Pure tones varied in frequency and amplitude (intensity) are typically used to evaluate
responsiveness of auditory neurons. Auditory nerve responses all exhibit some form of
increasing frequency bandwidth as intensity increases, referred to as a Type V response.
Central auditory neurons may have Type V responses or intensity-independent bandwidths.
If the input/output function of one of these latter neurons uniformly increases or saturates
with increasing intensity, it is referred to as a Type I neuron. If, on the other hand, neuronal
output diminishes above a particular best intensity, it is referred to as a Type O neuron.
(From Chen, Watkins et al., 2010)
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Figure 6. Neuronal feature maps in a model of primary auditory cortex
Self-organizing feature map algorithms were used to create plausible maps in A1 of
neuronal characteristic frequency, receptive field bandwidth and response threshold
(Watkins, Chen et al., 2009). A1 is depicted here as a square grid of neurons, and the three
maps shown all exist superimposed upon the same grid. Neurons in the bottom right corner
of the grid, for example, would respond to intermediate frequencies with relatively high
bandwidths and relatively low thresholds. (From Chen, Watkins et al., 2010)
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Figure 7. Simulated functional imaging results for two vowels at two different intensities
Simulated functional imaging experiments for the A1 feature maps in Figure 6 applied to the
neuronal subtypes depicted in Figure 5. In this case two steady-state vowels (spectra shown
in insets) were presented to the model network at two different intensities. At low
intensities, Type V neurons are actually the most selective and result in the least overall
activation. They become the least selective at high intensities, however. Type I neurons
might be expected to be visibly more selective than Type V neurons at high intensities, but
do not appear to be so with these wideband sounds. Type O neurons unsurprisingly show no
change in selectivity at different intensities. The most striking result is that in all neuronal
subpopulations and their combination, activity patterns are most similar between two
perceptually different stimuli at the same intensity.
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