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The chromosomes of eukaryotes are organized into structurally and functionally discrete domains that provide
a mechanism to compact the DNA as well as delineate independent units of gene activity. It is believed that
insulator/boundary elements separate these domains. Here we report the identification and characterization of
boundary elements that flank the transcriptionally repressed HMR locus in the yeast Saccharomyces
cerevisiae. Deletion of these boundary elements led to the spread of silenced chromatin, whereas the ectopic
insertion of these elements between a silencer and a promoter blocked the repressive effects of the silencer on
that promoter at HMR and at telomeres. Sequence analysis indicated that the boundary element contained a
TY1 LTR, and a tRNA gene and mutational analysis has implicated the Smc proteins, which encode structural
components of chromosomes, in boundary element function.
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In eukaryotic cells the nuclear DNA is packaged into
chromatin, which compacts the length of the chromo-
somal DNA molecule into a substantially more con-
densed form. This compaction involves a hierarchical
level of organization in which the first and second levels
of packaging involve the formation of nucleosomes and
then the 30-nm fiber, respectively (Widom 1998). The
third and higher levels of compaction possibly involve
the formation of topologically constrained loop domains
(Saitoh and Laemmli 1993).

Cytological and molecular studies of chromosomes
suggest that the domains may be due to the formation of
chromosome loops attached to a proteinaceous chromo-
some scaffold (Gasser and Laemmli 1987). Genetic stud-
ies on position-effect variegation (PEV) in Drosophila in-
dicate that the chromosomes have both transcriptionally
active and inactive domains (Elgin 1996). The identifica-
tion of both structural and functional domains has led to
models in which specific DNA elements act as insula-
tors or boundaries, functionally separating one domain
from another. Studies in Drosophila and chickens have
identified DNA elements that possess insulator function
and impart position-independent expression of a trans-
gene when the gene is inserted into either euchromatin
or heterochromatin (Kellum and Elgin 1998). These in-
sulator elements function to constrain regulatory ele-
ments such as silencers and enhancers. Silencers and en-

hancers modulate promoter activity in an orientation-,
distance-, and gene-promoter-independent manner (Ka-
makaka 1997). Functionally discrete domains could
serve to constrain silencers and enhancers in one domain
from adventitious interactions with genes in neighbor-
ing domains. Indeed, Drosophila insulator elements
block enhancer-promoter interactions when interposed
between two such elements (Geyer and Corces 1992;
Kellum and Schedl 1992).

The HMR locus is a well-characterized transcription-
ally silenced locus in the yeast Saccharomyces cerevi-
siae. Silencing at this locus is achieved by the concerted
action of proteins (Rap1p, Abf1p, Sir1p, and ORC) that
bind inactivation centers called silencers as well as pro-
teins (Sir2p, Sir3p, and Sir4p) that interact with nucleo-
somes in the silent domain (Loo and Rine 1995). DNA
sequence elements called silencers flank the silent loci
and are necessary for silencing. Two silencers called E
and I flank HMR, and each silencer contains binding
sites for various proteins. The HMR-E silencer is suffi-
cient on its own for silencing the HMR locus on a chro-
mosome (Brand et al. 1985). One of the roles of the si-
lencers is to recruit the Sir proteins to the silent loci. The
recruitment and consequent binding of the Sir proteins
to nucleosomes generates a chromatin domain that is
inaccessible to various enzymatic probes and is tran-
scriptionally repressed. Differential restriction enzyme
accessibility studies demonstrate that the heterochro-
matic domain at HMR extends beyond the silencers but
for a limited distance (Singh and Klar 1992; Loo and Rine
1994). The mechanism that prevents the further spread
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of heterochromatin into neighboring euchromatin is not
known.

We have, therefore, undertaken a study to determine
both whether boundary elements exist in S. cerevisiae at
the silenced HMR locus and to understand the molecular
mechanism of how such elements function.

Results

The silenced domain emanates bidirectionally
from the silencers

The silent HMR domain (Fig. 1) is refractory to digestion
by various restriction endonucleases in wild-type cells
but is accessible to these enzymes in sir3 mutants (Loo
and Rine 1994) (see Fig. 2B). This inaccessible domain
(pink box in Fig. 1) is not limited to the region between
the two silencers but extends several hundred base pairs
beyond the silencers.

We employed an in vivo assay to refine the boundary
of the silenced domain and to test how these boundary
elements might function. A set of isogenic strains was
created in which the URA3 gene was inserted at three
specific sites on chromosome III, at varying distances
from the silencer (Fig. 1). Transcriptional repression was
measured by the degree of silencing of the URA3 gene.

Placing the URA3 gene between the two silencers
(∼640 bp to the right of HMR-E) led to near complete
repression of the gene. When placed 475 bp to the left of
HMR-E, URA3 was also repressed, whereas when placed
2840 bp to the left of HMR-E, URA3 was derepressed
completely. Furthermore, transcriptional repression was
SIR3 dependent (cf. SIR with sir3D in Fig. 1). These re-
sults support the previous conclusion about the silenced

domain extending beyond the silencer and provide a con-
venient genetic assay for factors or mutants affecting the
limits of the silenced domain.

The silenced HMR domain could be doubled in size

The heterochromatic domain at HMR spans ∼3.5 kb of
DNA. One hypothesis for the size of the silenced domain
is that the pools of Sir proteins in the cell limit its size
(Renauld et al. 1993). We tested this model by determin-
ing whether an increase in the distance between HMR-E
and HMR-I would lead to concomitant derepression of
HMR and loss of the silenced domain.

Strains were constructed wherein the HMR domain
was increased from 3.5 to 4.5 kb or 7 kb, by inserting
either the TRP1 gene alone, or TRP1 with one copy of an
unrelated fragment of yeast DNA from the coding region
of the HMG2 gene. Examining the expression of the
TRP1 gene monitored silencing in these strains. TRP1
remained repressed even when the domain was expanded
from 3.5 to 7.0 kb (Fig. 2A). This repression was depen-
dent on the Sir proteins, suggesting that the size of the
silent domain was not due to limiting pools of the Sir
proteins, as it can be increased.

To confirm that the repression observed in vivo was
due to the expansion of the silenced domain we utilized
a differential restriction endonuclease accessibility assay
(Loo and Rine 1994). In this assay, nuclei isolated from
wild-type and sirD strains were partially digested with
various restriction enzymes to assay the accessibility of
the DNA to these enzymatic probes. Following diges-
tion, the DNA was analyzed by DNA blot hybridization
as described (Loo and Rine 1994). Mapping the expanded
domain using the differential restriction endonuclease

Figure 1. The silenced domain emanates
bi-directionally from the silencers. (A) A
schematic representation of the 10-kb
BamHI fragment encompassing the HMR
locus with the sites of insertion of the
URA3 gene shown. All coordinates used
in this study are based on the Saccharomy-
ces Genome Database (SGD) coordinates.
Strain numbers are shown in parentheses.
(B) Three sir3D strains, ROY656, ROY834,
and ROY836, in which the URA3 gene
was inserted at SGD coordinates 292140
(∼640 bp to the right of HMR-E), 290921
(∼475 bp to the left of HMR-E), and 288489
(∼2840 bp to the left of HMR-E), respec-
tively, were generated. Strains ROY648,
ROY508, and ROY513 are Sir+ derivatives
of ROY656, ROY834, and ROY836, re-
spectively. Cells were grown in liquid me-
dia, and 3 µl of 10-fold serial dilutions
were spotted on YPD plates (complete), on
supplemented YMD plates lacking uracil
(−Ura), or on supplemented YMD plates
containing 1 mg/ml 5-FOA to assay for
URA3 expression.
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accessibility assay demonstrated that the entire ex-
panded domain was inaccessible to the enzymes in wild-
type cells but not sirD cells (Fig. 2B), confirming the ob-
servations made in vivo with expression of the TRP1
gene. Interestingly, results from the restriction endo-
nuclease assay also demonstrated that the expanded do-
main still terminated at the same DNA sequence as at
the wild-type HMR locus (cf. Fig. 2B, top and bottom).
These results suggest that the silent domain was re-
stricted in space by DNA elements that flank the HMR
locus.

Deletion of the right boundary leads
to a spread of silencing

Because the boundaries of the silent domain were un-

changed even when its size was doubled we speculated
that the presence of a boundary element would restrict
the spread of the silenced domain, and conversely, dele-
tion of this element would lead to the spread of the do-
main.

Previous studies implicated a 500-bp region to the
right of HMR-I as a boundary of the silenced chromatin
(Loo and Rine 1994). To test whether deleting the bound-
ary element led to a spread of silenced chromatin, we
generated strains containing an insertion of the URA3
gene ∼1420 bp to the right of HMR-I. The putative right
boundary (∼1 kb) was either left intact or was replaced
with a 1-kb fragment of unrelated DNA. Additionally,
we overexpressed SIR3 in these strains to see whether
this overexpression led to the expansion of the silenced
domain, as has been observed at telomeres (Renauld et

Figure 2. (A) The 3.5-kb silenced HMR domain can be expanded to 7 kb. sirD strains carrying insertions (at SGD coordinate 293032)
of either (1) 1-kb of the TRP1 gene (ROY49 and ROY1075) or (2) 1 kb of the TRP1 gene plus 2.5 kb of the HMG2 coding sequence
(ROY55 and ROY1080) were generated. Strains ROY803, ROY84, ROY1076, and ROY 1079 are Sir+ derivatives of strains ROY49,
ROY55, ROY1075, and ROY1080, respectively. All cells were grown in liquid media and 3 µl of 10-fold serial dilutions were spotted
on either YPD plates (+Trp) or on YMD plates lacking tryptophan (−Trp) to assay for TRP1 expression. Strain numbers are shown in
parentheses. (B) Differential restriction endonuclease digestion analysis of the expanded silenced HMR domain. Nuclei isolated from
wild-type and sirD strains were digested with various restriction endonucleases. The DNA following purification was digested with
a second restriction endonuclease and analyzed by DNA blot hybridization. For each site tested the band corresponding to wild-type
cells is present on the left and the sirD strain is on the right.
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al. 1993). The effect of deleting this putative boundary
element was analyzed by monitoring the expression of
the URA3 gene (Fig. 3). In the presence of an intact
boundary element, the URA3 gene was insulated from
the repressing chromatin and was active (Fig. 3). How-
ever, when the putative element was deleted, the URA3
gene was significantly repressed, indicating that the si-
lenced chromatin had expanded to repress the URA3
gene. The silencing of the URA3 gene was dependent on
the normal mechanisms that function at HMR, as it re-
quired the presence of the Sir proteins.

Boundary elements block the spread
of silenced chromatin

A key characteristic of a boundary element is the ability
of these elements to confer position-independent expres-

sion on a gene by blocking the spread of silenced chro-
matin. We therefore asked whether the boundary ele-
ment could block the spread of silencing when inserted
between a silencer and a gene promoter.

In the first series of experiments (Fig. 4A), we inserted
DNA fragments containing either the left or right bound-
ary elements or a similarly sized stuffer fragment in both
orientations between the HMR-E silencer and the
MATa1 gene at the wild-type HMR locus on a plasmid.
To determine whether the putative boundary elements
were capable of blocking the spread of silencing from the
HMR-E silencer, we monitored expression of the MATa1
gene by a mating assay. In a wild-type MATa cell, the
MATa1 gene at HMR is repressed and the MATa cell is
capable of mating with a MATa cell, giving rise to dip-
loids. However, if the MATa1 gene at HMR is dere-
pressed, the MATa cell is unable to mate and fails to
form diploid colonies. Monitoring the expression of the
MATa1 gene indicated that the gene remained repressed
in all of the cases analyzed. This result indicated either
that HMR-I was sufficient to silence MATa1, or neither
boundary was capable of blocking repression from
HMR-E.

Previous experiments established that silencing of
HMR does not require HMR-I in strains with a fully
functional HMR-E (Brand et al. 1985). Therefore, in the
second set of experiments, we deleted HMR-I such that
silencing could initiate only from the HMR-E silencer.
Inserting the left or right boundary elements between
the HMR-E silencer and the MATa1 gene resulted in the
expression of the MATa1 gene, suggesting that both el-
ements blocked the spread of silencing (Fig. 4; bottom).
In contrast, the stuffer fragment was unable to block the
spread of silencing. Further analysis indicated that the
right boundary fragment was more proficient at mediat-
ing boundary function than was the left fragment (Fig. 4,
bottom). Potentially, this difference in effectiveness
could result from either inefficient insulator function of
the left boundary, or perhaps the fragment used did not
encompass the entire boundary element.

The HMR boundary element blocked the spread
of telomere position effect

We tested whether the right boundary element could
function to block the spread of telomere position effect.
S. cerevisiae telomeres possess silenced chromatin,
which emanates from the TG1–3 repeats and spreads for
∼4.5 kb. The URA3 gene was silenced when inserted
close to the telomere on chromosome 5 as reported pre-
viously (see Fig. 5A; Gottschling et al. 1990). We inserted
the right boundary element between the telomere and
the URA3 gene and analyzed URA3 expression. The
presence of the boundary element in either orientation
blocked the spread of silenced chromatin, leading to the
expression of the URA3 gene, whereas insertion of a
stuffer fragment of the same size did not (Fig. 5A).

The boundary element did not function in trans

In Drosophila it has been reported that insulator activity

Figure 3. Deletion of the right boundary leads to a spread of
silencing. (A) A schematic depiction of the URA3 insertion at
HMR in strains with (ROY687 and ROY853) or without
(ROY852 and ROY850) the right boundary element. (B) ROY853
is a sir3D strain carrying a URA3 insertion between SGD coor-
dinates 295027 and 295277 (∼1420 bp to the right of HMR-I)
with an intact right boundary element. ROY687 is isogenic to
ROY853 except that it is Sir+. In strain ROY850 (sir3D), the
putative right boundary element (between nucleotides 293957
and 294977) was deleted and the URA3 gene with a 1-kb frag-
ment of pUC18 stuffer DNA inserted between nucleotide
295027 and 295277. ROY852 is a Sir+ version of ROY850. All
the strains were also transformed with SIR3 on a 2µ-based plas-
mid (pRO146). The cells were grown in liquid medium and 3 µl
of 10-fold serial dilutions was spotted on either supplemented
YMD plates lacking tryptophan (−Trp) to select for the plasmid,
or supplemented YMD plates lacking tryptophan and uracil
(−Trp−Ura), or on supplemented YMD plates lacking trypto-
phan but containing 1 mg/ml 5-FOA to assay for URA3 expres-
sion. Strain numbers are shown in parentheses.
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can function in trans such that the Su(Hw) protein
bound to the gypsy insulator on one chromosome can act
in trans to inactivate enhancers located in the other ho-
molog. We therefore determined whether the boundary

element identified in S. cerevisiae was also capable of
functioning in trans in a diploid cell.

To perform this analysis, expression of the URA3 gene
located adjacent to the HMR locus was monitored in

Figure 4. Boundary elements block the spread of
silenced chromatin. (A) (Top) A schematic repre-
sentation of boundary element insertions at the
EcoNI site of the MATa2 gene at nucleotide
292140 of wild-type HMR. (B) ROY113 (MATa

HMRD, nucleotide 288980–295350) was trans-
formed with a 10-kb fragment of wild-type HMR
carrying either (1) a 1 kb stuffer fragment of the
TRP1 gene, or (2) a 1.6-kb fragment of the puta-
tive left boundary element (from nucleotide
289256 to 290846), or (3) a 1-kb fragment of the
putative right boundary element (from nucleo-
tide 293695 to 294686) at the EcoNI site of the
MATa2 gene (at nucleotide 292140). Expression
of the MATa1 gene was monitored by patch-mat-
ing assays using JRY19 as the mating tester lawn.
All matings were performed under conditions
that constantly selected for the plasmid. (B) (Top)
A schematic representation of boundary element
insertions at the EcoNI site of the MATa2 gene at
nucleotide 292140 of HMRDI. (Bottom) ROY113
(MATa HMRD) transformants carrying an 8-kb
fragment of HMRDI with the same set of putative
boundary insertions as described in A (bottom)
were used to monitor expression of MATa1.

Figure 5. (A) The HMR boundary ele-
ment blocked the spread of telomere posi-
tion effect. ROY783 contained a synthetic
telomere on chromosome VR with an
URA3 insertion in close proximity to the
telomere. Strains ROY791 and ROY787
carried 1-kb insertions of the right bound-
ary element, whereas ROY838 and
ROY844 carried 1-kb insertions of the
TRP1 gene in both orientations. All strains
were transformed with SIR3 on a 2µ-based
plasmid (pRO329). The strains were grown
in liquid media lacking leucine, and 3 µl of
10-fold serial dilutions were spotted on
supplemented YMD plates lacking leucine
(−Leu) to select for the plasmid, on supple-
mented YMD plates lacking leucine and
uracil (−Leu−Ura), or on supplemented
YMD plates lacking leucine but contain-
ing 1 mg/ml 5-FOA to assay for URA3 ex-
pression. (B) The right boundary element
does not function in trans. Diploid strains
bearing different versions of the HMR-
URA3 locus were analyzed for expression
of the URA3 gene as described in Fig. 3.
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three diploid strains. In one of these strains (ROY938)
the right boundary element was deleted in both HMR
alleles, whereas the second strain (ROY935) was hetero-
zygous for the right boundary element, carrying one
wild-type allele of HMR and one allele with the bound-
ary deleted. In the third strain (ROY941), both alleles of
HMR–URA3 had the wild-type boundary element. If the
boundary element was capable of functioning in trans,
the URA3 gene in strain ROY935 would be insulated
from HMR and thus be active. However, as is evident in
Figure 5B, the URA3 gene in ROY935 is significantly
repressed in a manner similar to strain ROY938. These
results indicate that in S. cerevisiae the boundary ele-
ments are unable to function in trans to insulate the
reporter gene.

A deletion analysis of the right boundary element

Because the right boundary element identified above re-
sides in a 1-kb fragment of DNA, we decided to perform
a deletion analysis of this fragment to identify the mini-
mum fragment that is necessary for boundary function.
The results of this analysis are presented in Figure 6. The
analysis was performed by inserting DNA fragments, de-
rived from the 1-kb right boundary element, between the
HMR-E silencer and the MATa1 gene and monitoring
expression by the mating assay (described in Fig. 4). The
1-kb right boundary fragment contains a Ty1 LTR and a
tRNA gene. A systematic deletion analysis of the ele-
ment from one end indicated that a DNA fragment con-
taining just the Ty1 LTR (pRO367) had some boundary
function but was not sufficient for mediating robust
boundary function. In addition, the 58 end of the LTR
alone (pRO273) did not have any boundary activity on its
own.

A systematic deletion from the other end of the 1-kb
DNA fragment indicated that deletion of the LTR did
not result in complete loss of boundary function,
whereas deletion of a fragment of DNA encompassing
the tRNA gene caused a significant loss of boundary el-
ement function (cf. pRO269 to pRO271). Further dele-
tion analysis indicated that a small DNA fragment (<400
bp) lacking the LTR but encompassing the tRNA gene
(pRO370) possessed significant boundary element func-
tion. These data suggest that robust boundary element
function was mediated by a combination of both the
LTR-containing fragment and the tRNA-containing frag-
ment.

Extragenic mutations that affect boundary function

In Drosophila a multiprotein complex mediates insula-
tor function. We therefore also began to look for muta-
tions in genes that would lead to loss of boundary ele-
ment function. Because the 1-kb right boundary element
encompassed an LTR element, we tested mutations
identified previously as being necessary for LTR function
for their effects on boundary function (Fig. 7). spt3, spt4,
and spt8 mutants are defective in LTR function, but

these mutations had no major effect on boundary func-
tion. We also analyzed boundary function in cells carry-
ing mutations in proteins that have putative binding
sites in the 1-kb boundary fragment—specifically tec1,
mig1, pho4, and gcr1 (data not shown). Because Gcr1p
has been shown to interact with Rap1p we also tested
mutations in RAP1. However, individual mutations in
these proteins did not result in loss of boundary element
function. Then, we tested mutations in chromatin as-
sembly proteins—cac1, hat1, and rlf6 and found that
single mutations in these proteins also had no effect on
boundary function. Insulator elements have been sug-
gested to function by anchoring DNA loops to the chro-
mosomal scaffold. We therefore tested several mutants
defective in higher order chromosome structure—smc1,
smc3 (data not shown), mcd1, pds1, and top2. Interest-
ingly, of these mutants, only loss of SMC1 and SMC3
disrupted boundary function significantly . It is not clear
whether this effect is allele specific or strain specific as
only smc1-2 but not smc1-259 affected boundary func-
tion (data not shown). These data implied a role for a

Figure 6. A deletion analysis of the boundary element.
ROY113 (MATa hmrD) transformants carrying an 8-kb frag-
ment of HMRDI with a series of right boundary element dele-
tions inserted at the EcoNI site of the MATa2 gene at nucleotide
292140 were used to monitor expression of the MATa1 gene as
described in Fig. 4.
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structural protein of chromosomes in boundary func-
tion.

Discussion

Studies on the silenced HMR domain have shown that
silencing is mediated by a repressive chromatin struc-
ture that covers the entire locus and extends beyond the
silencers (Singh and Klar 1992; Loo and Rine 1994). In-
cidentally, the limits of the silent domain appear to co-
incide with previously mapped DNase I hypersensitive
sites (Nasmyth 1982). Our study identified DNA seg-
ments in S. cerevisiae that restricted the spread of si-
lenced chromatin and functioned as boundary elements
of chromatin domains. We identified boundary elements
by virtue of the spread of silenced chromatin in their
absence and by their ability when inserted between a

silencer and a reporter gene to block expression of the
reporter.

The native HMR domain spans ∼3.5 kb of DNA. The
relatively small size of this domain was not due to lim-
iting amounts of the Sir proteins, as the domain could be
expanded to two times its normal size and still remained
repressed. These results were consistent with Ty inser-
tions into HML that expanded that locus to 14 kb yet did
not interfere with silencing (Mastrangelo et al. 1992).
Biochemical analysis using a differential restriction en-
donuclease accessibility assay confirmed the observation
that the entire expanded domain was inaccessibile to
digestion by various restriction enzymes. Interestingly,
in the expanded domain the boundaries of the domain
remained constant with respect to the underlying DNA
sequence. Taken together, these observations suggest
the existence of boundary or insulator elements that re-
strict the spread of silenced chromatin.

We hypothesized that sequence near the border be-
tween silenced and nonsilenced domains would include
a boundary element. We deleted a presumptive boundary
element and discovered that neighboring reporter genes
became inactive, presumably because of the spread of the
silent chromatin from HMR. Previous studies of chro-
mosomal translocations and PEV in Drosophila led to
the suggestion that boundary elements limited the
spread of inactive chromatin (Kellum and Elgin 1998).
The results of this deletion analysis provided direct sup-
port for this model.

The boundary element interfered with silencer–pro-
moter interactions in a position-dependent manner. The
boundary appeared to function only when inserted be-
tween a silencer and a promoter. When two silencers
flank a reporter, inserting the boundary element between
one of these silencers and the promoter was not suffi-
cient to insulate the promoter. The boundary element
function in S. cerevisiae was position dependent with
respect to the silencers and promoters. This behavior
was similar to insulator elements from larger eukaryotes
that are able to confer position-independent expression
of the reporter gene only when they bracket the gene
(Kellum and Schedl 1991; Roseman et al. 1993) and also
disrupted the action of an enhancer only when posi-
tioned between the enhancer and the promoter. Our re-
sults also suggest that the primary function of the HMR
boundary element was to limit the activity of silencers
to specific domains of the chromosome.

Studies in Drosophila have also shown that boundary
elements are not enhancer- or promoter-specific (Gdula
et al. 1996). Similarly, we have found that the S. cerevi-
siae boundary element could insulate a reporter gene
(URA3) from silenced chromatin at both the HMR locus
and the chromosome VR telomeric locus. It will be of
interest to determine whether any of the native telo-
meres are flanked by insulator elements and whether
insulator elements are present at other loci in the cell.

An analysis of the sequences of the left and right
boundary elements indicates that both elements contain
a LTR. However, the results also indicate that the left
element is not very efficient at boundary function,

Figure 7. Extragenic mutations that affect boundary function.
MATa strains, with either HMRDI or HMRDI with the right
boundary element inserted between HMR-E and the MATa1
promoter at nucleotide 292140 and carrying mutations in vari-
ous genes as indicated, were generated. The strains were moni-
tored for expression of the MATa1 gene using a patch-mating
assay as described in Fig. 4.
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whereas a deletion analysis of the right element suggests
that the LTR within this fragment on its own is also a
poor boundary element. These results suggest that al-
though the LTR contributes to boundary function, it is
not sufficient. Further deletion analysis of the right
boundary element demonstrated that deletion of the
tRNA gene within this fragment resulted in a significant
loss of boundary function. These data together suggest
that the robust nature of the right boundary was prob-
ably due to a combined action of the Ty1 LTR and the
tRNA gene, as both of these elements can function in-
dividually to varying degrees as boundary elements.

The correlation between Ty elements and boundary
function, although surprising, was not unexpected, as in
Drosophila the gypsy retrotransposon contains an insu-
lator function in vivo (Corces and Geyer 1991). At this
point we do not know whether all classes of Ty elements
affect boundary function in S. cerevisiae.

The demonstration that a tRNA gene fragment acts as
a boundary element is intriguing because it has been
been demonstrated previously that a tRNA gene located
at the HMR locus becomes silenced (Schnell and Rine
1986). In a second study, the insertion of a tRNA gene
upstream of a RNA polymerase II (Pol II) promoter
caused the repression of the Pol II promoter (Hull et al.
1994). However, we find that the insertion of a DNA
fragment containing a tRNA gene results in the disrup-
tion of silenced chromatin and the consequent activa-
tion of the Pol II reporter gene (MATa1 or URA3). Fur-
ther studies should help resolve this paradox. It has been
shown previously that transposable elements preferen-
tially integrate adjacent to tRNA genes and the integra-
tion is mediated by interactions between the proteins
bound to the LTR and the tRNA locus (Voytas and Boeke
1993). The boundary function observed in our study
could therefore be due to a cooperation between the pro-

Table 1. Yeast strains

Strain Genotype Strain Genotype

JRY19 MATa his4-519 ura3D52 leu2-3,112 trp1 can1 ROY1041* MATa ADE2 lys2D HMRDI mig1D::LEU2
JRY3009
ROY113

MATa ade2-1
MATa ade2-1 HMRD (nt. 288980 to 295350)

ROY1042* MATa ADE2 lys2D HMRDI–(right bound insert)–
mig1D::LEU2

ROY49 MATa lys2D sir4D::LEU2 HMR::TRP1 ROY1044* MATa ADE2 LYS2 HMRDI spt8-302::LEU2 l
ROY508 MATa ade2 LYS URA3–HMR ppr1D::HIS3 ROY1046* MATa ade2-1 LYS HMRDI rlf6D::LEU2
ROY513
ROY55

MATa ade2 lys2D URA3–HMR ppr1D::HIS3
MATa lys2D sir4D::LEU2 HMR::TRP1::HMG2

ROY1049*
ROY1051*

MATa ade2-1 LYS HMRDI tec1D::HIS3
MATa ade2-1 LYS HMRDI–(right bound insert)–

ROY648 MATa ade2 LYS HMR::URA3 ppr1D::HIS3 tec1D::HIS3
ROY652 MATa ade2 lys2D HMR::URA3 ROY1052* MATa ADE2 lys2D HMRDI spt4D::HIS3 ppr1D::HIS3
ROY656 MATa ADE2 lys2D sir3D::TRP1 HMR::URA3ppr1D::HIS3 ROY1054* MATa ade2-1 LYS HMRDI top2-1
ROY687
ROY783

MATa ADE LYS ppr1D::HIS3 HMR–URA3
MATa ADE ppr1D::HIS3 URA3–TEL–VR

ROY1059*
ROY1060*

MATa ade2-1 LYS HMRDI pds1::LEU2
MATa ade2-1 LYS HMRDI smc3-1::LEU2

ROY787 MATa ade2 ppr1D::HIS3 URA3–HMR–right
bound–TEL–VR

ROY1061* MATa ade2-1 LYS HMRDI–(right bound insert)–
smc3-1::LEU2

ROY 791 MATa ADE ppr1D::HIS3 URA3–HMR–right ROY1063* MATa ADE2 lys2D HMRDI scc1-73
bound–TEL–VR ROY1065 MATa ade2-1 LYS HMRDI pho4D::TRP1

ROY803
ROY834

MATa ade2 LYS HMR::TRP1
MATa ADE lys2D URA3–HMR ppr1D::HIS3 sir3D::TRP1

ROY1067 MATa ade2-1 LYS2 HMRDI–(right bound insert)
pho4D::TRP1

ROY836 MATa ade2 lys2D URA3–HMR ppr1D::HIS3 sir3D::TRP1 ROY1075 MATa ade2-1 LYS2 HMR::TRP1 sir3D::HIS3
ROY838 MATa ADE URA3–TRP1–TEL–VR–ppr1D::HIS3 ROY1076 MATa ade2-1 lys2D HMR::TRP1
ROY84
ROY844

MATa lys2D ade2 HMR::TRP1::HMG2
MATa ADE URA3–TRP1–TEL–VR–ppr1D::HIS3

ROY1079
ROY1080

MATa ADE2 LYS2 HMR::TRP1::HMG2
MATa ADE2 LYS2 HMR::TRP1::HMG2 sir3D::HIS3

ROY850 MATa lys2D ADE HMR–(right bound delete)–URA3 ROY1088 MATa ADE2 lys2D HMRDI(right bound insert)–
sir3D::TRP1ppr1D::HIS3 hat1D::HIS3

ROY852 MATa lys2D ADE2 HMR–(right bound delete)–URA3 ROY1089 MATa ADE2 lys2D HMRDI–(right bound insert)–
ppr1D::HIS3 cac1D::LEU2

ROY853
ROY935

MATa lys2D ADE HMR–URA3 sir3D::TRP1 ppr1D::HIS3
MATa/MATa ppr1D::HIS3/ppr1D::HIS3 ADE/ADE

ROY1090 MATa ADE2 lys2D HMRDI–(right bound insert)–
rap1-12::LEU2

LYS/LYS HMR/HMR–(right bound delete)–URA3 ROY1094* MATa ADE2 lys2D HMRDI–(right bound insert)–
ROY938 MATa/MATa ppr1D::HIS3/ppr1D::HIS3 ADE/ADE rlf6D::LEU2

LYS/LYS HMR–(right bound delete)–URA3/HMR–(right
bound delete)–URA3

ROY1096*
ROY1099*

MATa ADE2 lys2D HMRDI–(right bound insert)–top2-1
MATa ADE2 lys2D HMRDI–(right bound insert)–

ROY941 MATa/MATa ppr1D::HIS3/ppr1D::HIS3 ADE/ADE
LYS/LYS HMR–URA3/HMR–URA3 ROY1101*

spt3-203::TRP1
MATa ADE2 lys2D HMRDI–(right bound insert)–

ROY951 MATa ade2-1 LYS2 HMRDI spt8-302::LEU2
ROY961
ROY1025

MATa ADE2 lys2D HMRDI–(right bound insert)
MATa ade2-1 LYS HMRDI cac1D::LEU2

ROY1102* MATa ADE2 lys2D HMRDI–(right bound insert)–
pds1::LEU2

ROY1027
ROY1029

MATa ade2-1 LYS HMRDI rap1-12::LEU2
MATa ADE2 LYS2 HMRdI hat1D::HIS3

ROY1104* MATa ADE2 lys2D HMRDI–(right bound insert)–
scc1-73::TRP1

ROY1032*
ROY1034

MATa ade2-1 LYS HMRDI smc1-2::LEU2
MATa ADE2 lys2D HMRDI rap1-13::LEU2

ROY1108* MATa ADE2 lys2D HMRDI–(right bound insert)–
smc1-2::LEU2

ROY1036 MATa ADE2 lys2D HMRDI–(right bound insert)
–rap1-13::LEU2

ROY1112* MATa ADE2 lys2D HMRDI–(right bound insert)–
spt4D::HIS3

ROY1039* MATa ADE2 lys2D HMRDI spt3-203::TRP1

All strains used in this study are either isogenic to W-303 or have been backcrossed six times with W-303 (*) and are therefore leu2-3,112 his3-11,15 ura3-1
trp1-1.
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teins at the LTR and the tRNA, which could form a large
multiprotein complex that would act as a barrier to the
spread of heterochromatin.

The demonstration that DNA sequences flanking the
HMR locus contained boundary element function led us
to test mutations in proteins that affect boundary func-
tion. The 1-kb fragment of DNA that contains boundary
element function contains putative binding sites for
Mig1p, Gcn4p, Pho4p, and Gcr1p. The fragment of DNA

also contained a Ty1 LTR that is regulated by the Spt
gene products. There was, however, no detectable defect
on boundary element function in spt3, spt4, spt8, mig1,
pho4, rap1, tec1, and gcr1 mutants. Because some of
these genes have been implicated in LTR-mediated tran-
scription (Eisenmann et al. 1992, 1994; Swanson and
Winston 1992; Laloux et al. 1994; Turkel et al. 1997), the
results suggest that the boundary element function was
not due to transcription from the LTR. Of the chromo-

Table 2. Plasmids

pJR987 pJJ244
pJR988 pJJ246
pJR1380 pv-UCA (V–R–URA3–TEL)
pJR1571 EcoRI–HindIII fragment of HMRa cloned into pUC18
pRO4 10-kb BamHI fragment of HMRa cloned into pRS406
pRO10 BamHI–BglII fragment of TRP1 from pJR989 cloned into the BglII site of pJR1571 in the Mata1 gene
pRO11 2.5-kb BamHI fragment containing the coding region of HMG2 cloned into the BglII site of pRO10
pRO13 A 7-kb BclI–BglII fragment (nt. 288980–295350) was deleted from pRO4
pRO22 pRO4 with a deletion of the BclI fragment from nt 293439–294878
pRO146 pHR67-23
pRO224 left boundary insert PCR amplified using Roog 28–29 and cloned into the EcoNI site of pRO22
pRO225 left boundary insert PCR amplified using Roog 28–29 and cloned into the EcoNI site of pRO22 but in the opposite

orientation to pRO224
pRO229 right boundary insert PCR amplified using Roog 75–86 and cloned into the EcoNI site of pRO22
pRO230 right boundary insert PCR amplified using Roog 75–86 and cloned into the EcoNI site of pRO22 but in the

opposite orientation to pRO229
pRO233 right boundary insert PCR amplified using Roog 75–86 and cloned into the EcoNI site of pRO4
pRO234 right boundary insert PCRd using Roog 75–86 and cloned into the EcoNI site of pRO4 but in the opposite

orientation to pRO233
pRO237 left boundary insert PCRd using Roog 28–29 and cloned into the EcoNI site of pRO4
pRO239 left boundary insert PCR amplified using Roog 28–29 and cloned into the EcoNI site of pRO4 but in the opposite

orientation to pRO237
pRO241 (pDppr1::HIS3)
pRO248 XhoI–XmnI deletion of pRO247 (which is identical to pRO4 except that the XhoI site in the polylinker is deleted)
pRO252 A PvuII fragment of the URA3 gene from pJR987 was cloned into the EcoNI site of pRO4
pRO256 A PvuII fragment of TRP1 from pJR988 cloned into the EcoNI site of pRO4
pRO258 A PvuII fragment of TRP1 from pJR988 cloned into the EcoNI site of pRO4 but in the opposite orientation to

pRO256
pRO260 A PvuII fragment of TRP1 from pJR988 cloned into the EcoNI site of pRO22
pRO262 A PvuII fragment of TRP1 fom pJR988 cloned into the EcoNI site of pRO22 but in the opposite orientation to

pRO260
pRO268 right boundary insert PCR amplified using Roog 75–210 and cloned into the EcoNI site of pRO22
pRO269 right boundary insert PCR amplified using Roog 75–211 and cloned into the EcoNI site of pRO22
pRO271 right boundary insert PCR amplified using Roog 75–212 and cloned into the EcoNI site of pRO22
pRO273 right boundary insert PCR amplified using Roog 86–192 and cloned into the EcoNI site of pRO22
pRO277 right boundary insert PCR amplified using Roog 86–194 and cloned into the EcoNI site of pRO22
pRO303 right boundary PCR amplified using Roog 213–214 and cloned into BamHI site of pJR1380
pRO304 right boundary PCR amplified using Roog 213–214 and cloned into BamHI site of pJR1380 but in the opposite

orientation to pRO303
pRO305 TRP1 gene was PCR amplified using Roog 240–241 and cloned into pJR1380
pRO306 TRP1 gene was PCR amplified using Roog 240–241 and cloned into pJR1380 but in the opposite orientation to

pRO305
pRO329 HpaI fragment of SIR3 cloned into pRS425
pRO363 HMRDI SacI–SalI fragment with a BamHI site engineered in the Mata2 gene cloned into pRS406
pRO364 right boundary insert PCR amplified using Roog 277–291 and cloned into the BamHI site of pRO363
pRO365 right boundary insert PCR amplified using Roog 277–284 and cloned into the BamHI site of pRO363
pRO366 right boundary insert PCR amplified using Roog 277–278 and cloned into the BamHI site of pRO363
pRO367 right boundary insert PCR amplified using Roog 277–279 and cloned into the BamHI site of pRO363
pRO368 right boundary insert PCR amplified using Roog 291–286 and cloned into the BamHI site of pRO363
pRO369 right boundary insert PCR amplified using Roog 291–287 and cloned into the BamHI site of pRO363
pRO370 right boundary insert PCR amplified using Roog 291–288 and cloned into the BamHI site of pRO363
pRO371 right boundary insert PCR amplified using Roog 291–285 and cloned into the BamHI site of pRO363
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some structure mutants tested, only SMC1 and SMC3
(data not shown) mutants had a significant effect on
boundary function. It is not clear whether this effect is
allele specific or strain specific, as the defect seen in the
smc3-1 strain varied from strain to strain. The Smc pro-
teins (Koshland and Strunnikov 1996) are a family of
proteins required for chromosome condensation and co-
hesion. Relatives of this family are involved in dosage
compensation in Caenorhabditis elegans (Chuang et
al. 1994), are part of the nuclear scaffold (Hirano and
Mitchison 1994), and are thought to be involved in chro-
mosome loop organization. Our demonstration that in-
sulator function is disrupted in smc1 and smc3 mutants
is consistent with models in which insulator element
function is dependent on chromosome architecture. Our
results suggest that proteins involved in higher order
chromosome structure might be involved in the func-
tional delineation of the chromosome. Further studies
should help clarify the connection between these pro-
teins and boundary function.

In conclusion, we propose that the formation of large
multiprotein complexes would prevent the spread of het-
erochromatin and thus act as a boundary element. It is
possible that enzymatic activities such as those medi-
ated by the Swi/Snf complex or acetyltransferases could
be recruited by these complexes to the boundary to ac-
tively remodel the repressed chromatin, thereby prevent-
ing its repressive effects from spreading. Alternatively
boundary elements could actively sequester specific do-
mains into subregions of the nucleus where the effective
concentration of activators and repressors would deter-
mine the transcription state of the gene.

Materials and methods

Yeast transformations and integrations

PCR-based integrations were performed with oligonucleotides
containing sequences corresponding to the marker gene flanked
by sequences corresponding to the 58 or 38 sequence of the site
of integration. All fragments of DNA amplified by PCR utilized
Taq DNA polymerase. Plasmid-based integrations were per-
formed with plasmid fragments isolated by gel purification. For
integrations into yeast either 5 µg of a specific gel-eluted DNA
fragment or 250 µl of PCR product was concentrated to 5 µl and
used for a single transformation as described (Kamakaka and
Rine 1998).

Serial dilutions

A single colony of yeast cells was used to innoculate 5 ml of
liquid YPD or YM medium with the appropriate supplements to
allow maintenance of a plasmid. The cells were grown over-
night at 30°C to an A600 of ∼1.0. All cells were diluted to an
initial concentration of 1.0 A600/ml in YMD medium and seri-
ally diluted 10-fold. Approximately 3 µl of each serial dilution
was spotted onto appropriately supplemented plates using a cell
spotter, and the cells were allowed to grow at 30°C for 48 hr
prior to photography.

Patch mating

Patches of the appropriate strains were grown on YMD plates

with selection for the plasmid for 1–2 days at either 23°C or
30°C. The mating potential of the cells was monitored by rep-
lica plating the patches onto selective YMD plates spread with
a mating lawn (JRY19), maintaining the selection for the plas-
mids following mating.

Strains

Yeast strains and plasmids are given in Tables 1 and 2, respec-
tively.

Oligonucleotides

The sequences of the various oligonucleotides used in this study
will be provided upon request.
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