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Are the smallest particles of living matter which still exhibit all
its functions of the order of magnitude of molecules and atoms, or
are they of different order? The first step toward an answer to this
question was accomplished by Moritz Nussbaum, who found that
if an Infusorian be divided into two pieces, one with and one
without a nucleus, only the [former] will continue to live and
perform all the functions of self-preservation and development
which are characteristic of living organisms. This shows that not
only more than two definite substances, but two different struc-
tural elements, are needed for life.

—Jacques Loeb, 1906 (122)

INTRODUCTION

Even though phylogenetics (155, 185, 248-254, 268) has re-
solved prokaryotes in the domains Bacteria and Archaea as the
most deeply rooted group of organisms in the evolutionary
tree, we have a surprisingly rudimentary understanding of
physicochemical processes essential for these organisms’ cel-
lular life. The simplest model of a prokaryotic cell has been
described as a semipermeable “bag” that encloses catalytic
reaction systems of diffusing metabolites and biomacromol-
ecules (13, 139, 140, 146, 189, 234, 243). Though the bag itself
has been known to be a highly structured entity—the “fluid
mosaic” of integral membrane proteins energized by the mem-
brane potential (146, 199) and supported by the cell wall and
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extracytoplasmic layers (196)—the contents of the bag showed
only the chemically distinct nucleoid (177, 228) and the ribo-
somes (198) in an unstructured cytoplasm when electron mi-
croscopy became established (35, 188). Because cells in vivo
are crowded with biomacromolecules, typically about a 20 to
30% volume fraction (77, 78, 265), the bag model has been
challenged by concepts of higher-order structural elements
derived from biochemical and physiological functions. For ex-
ample, “metabolons” and “quinary” protein structures have
been suggested to channel metabolites directly from one cat-
alytic site to another (135, 179, 207, 208, 242), and a number of
“hyperstructures” (154) have been enumerated to exemplify
the concept of modular cytology (91). Such structural and
functional elements are intuitively appealing because they
could represent higher-order building blocks that make up a
cell. However, they raise new questions, for example, which
physicochemical mechanisms assemble and localize such larger
modules, and how do they interact and communicate with each
other during the cell cycle?

In the last 15 years or so, microbiologists have demonstrated
experimentally that bacterial proteins and nucleic acids be-
come localized temporarily at specific cytoplasmic “addresses”
(17, 106, 125, 191, 192), where they enable biochemical and
physiological functions such as transcription, translation, plas-
mid and chromosome replication and segregation, and septum
formation during cell division and sporulation (6, 31-34, 36,
53-55, 60, 71-73, 80, 120, 121, 127, 130, 134, 137, 138, 150, 152,
153, 183, 195, 220-223, 225, 230, 235, 256). In particular, the
recent discoveries of bacterial cytoskeleton genes and their
protein products in the cells of Bacillus subtilis, Escherichia coli,
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Caulobacter crescentus, and Prosthecobacter dejongeii have
changed our view of the bacterial cell from a bag of enzymes to
a heterogeneous but well-organized assembly of dynamic bio-
macromolecules (17, 103, 106, 112, 126, 187). The newly dis-
covered cytoskeleton proteins were found to assist in the re-
modeling of the cell envelope and in the replication and
segregation of the nucleoid, and they establish the polarity of
the cell during the cell cycle; some of them tend to localize
underneath the plasma membrane, sometimes in a dynamic
helical fashion (33, 106). They are functionally similar to the
well-known cytoskeleton proteins within larger eukaryotic cells
(153, 173, 212, 224, 227), though prokaryotic cytoskeletal pro-
teins need not shape and localize organelles—one of the im-
portant functions of the eukaryotic cytoskeleton.

It now appears that all cells, and possibly all organelles, have
structuring proteins of various kinds, often peripherally asso-
ciated with or penetrating into the inner (cytoplasmic) sheet of
the phospholipid bilayer and contributing to the overall me-
chanical strength and shape of a cell or organelle. Some ex-
amples of such eukaryotic skeletal and scaffolding proteins are
actins and myosins in the cytoplasm of contractile cells (99,
173, 212), actins and lamins in the eukaryotic nucleus (16, 75,
214), articulins of the single-celled eukaryote Euglena gracilis
(132), reticulons of peripheral endoplasmic reticulum (236,
237), various spectrins underneath the plasma membrane in
many kinds of cells (particularly erythrocytes and neurons) (9,
12), golgins of the Golgi apparatus (197), and a new filament-
forming protein that localizes in the intermembrane space of
mitochondria and is related to bacterial penicillin-binding pro-
teins and hence to the biogenesis of the bacterial cell wall
(167). In addition, homologs of the tubulin-like bacterial pro-
tein FtsZ play a role in chloroplast division (260). As a com-
mon feature, the prokaryotic and eukaryotic cytoskeleton
proteins utilize ionic ATP and/or GTP, which points to elec-
trostatic interactions participating in active (energy-requiring)
mechanisms to effect structuring functions (28, 66); for exam-
ple, ATP-binding sites are required for proper cell division (5).
Thus, at the subcellular and suborganelle levels (~50 to 500
nm) of crowded and interacting biomacromolecules, the dis-
tinction between prokaryotic and eukaryotic cells is beginning
to be erased (60, 120, 125, 153).

The discovery of cytoskeleton proteins within bacterial cells
underscores the view that a prokaryotic cell is a self-structuring
dynamic device whose “engineering design” has yet to be un-
covered (1). The basic question then is this: how do biomac-
romolecules know where and when to go as the cell grows,
changes its shape, and eventually divides? Or, in physicochem-
ical terms, what are the structuring mechanisms that guide
water molecules, ions, small metabolites, and larger (slower)
biomacromolecules and their assemblies (biomacromolecular
machines) as they are being synthesized and localized within
the growing volume of the cell? Clearly, a complex spatial and
temporal hierarchy of biochemical reactions and noncovalent
interactions operates in conjunction with physicochemical gra-
dients across the cell envelope. For prokaryotic cells, the spa-
tial and temporal hierarchy spans over 9 orders of magnitude
of time (picoseconds to seconds) and over 3 orders of magni-
tude of size (nanometers to micrometers). These timescales
and size ranges are related to the motions of molecules, ions,
biomacromolecules, and their large biochemical complexes
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and structures, e.g., from the picosecond persistence of hydro-
gen bonds to the microsecond and millisecond timescales of
protein conformational changes, enzymatic reactions, and pro-
tein diffusion and to the morphological and motile motions of
the whole cell, which occur on timescales of seconds and min-
utes.

Partly from a historical perspective, I first review the roles of
water, ions, and biomacromolecular crowding in subcellular
structuring, with an emphasis on classical noncovalent inter-
actions of physical chemistry, such as hydrogen bonding,
screened electrostatic interactions, hydrophobic bonding, and
excluded volume. On account of the attractive noncovalent
interactions, I then theorize that biomacromolecules become
transiently supercrowded (~35 to 95% volume fraction) into
vectorial, electrolytically semiconducting multiplexes that co-
exist with reservoirs of less crowded cytosol. Some experimen-
tal observations in support of this model are discussed, with
implications for further work.

WATER IN SUBCELLULAR STRUCTURING
A Quick Look Back

Physicochemical properties of water have long been recog-
nized as essential for the origin of living systems (215) and for
the evolution of cellular organisms, as Henderson argued al-
ready in 1913 (10, 38, 39, 64, 92). While Henderson realized
the importance of specific properties of pure water, such as its
high heat capacity and density, it is less appreciated that he
equally stressed the importance of electrolyte buffers (hence
the Henderson-Hasselbalch buffer equation) and of the high
content of salts in seawater. Historically, Henderson’s life-
supporting properties of seawater (a multi-ionic electrolyte)
are related to the triggering of parthenogenesis of sea urchin
eggs by treatments with a specific mixture of sodium and po-
tassium salts (122, 123, 162); this discovery foreshadowed the
existence of ion-selective pumps in cellular membranes (79).

These early advances in the recognition of the role of water
and ions in life phenomena were made with a still imperfect
understanding of the differences between weak electrolytes
(described by dissociation constants) and strong electrolytes, to
which dissociation constant formalism does not apply (233);
the highly nonideal behavior of strong electrolytes was under-
stood in the early 1920s, within the framework of the interionic
attraction theory based on the Poisson-Boltzmann equation
(43, 178; L. Pauling, personal communication). At that time,
some colloids, particularly natural rubber latex, cellulose, and
proteins, also became understood as very large, covalently
bonded single molecules that gave rise to various aqueous (and
nonaqueous) gels and to polymer chemistry as a distinct chem-
ical discipline (209, 216, 219). Until then, such soluble poly-
mers were regarded as associated colloids made up of low-
molecular-weight molecules such as surfactants.

While physical chemistry already recognized the equal roles
of water and ions in cell biology at the beginning of the 20th
century (92, 122, 123), recent emphasis on “cellular” water has
led to some esoteric experimentation and improbable interpre-
tations of data. Thus, water is imagined to be biophilic in an
active cytoplasmic matrix that “controls” biomacromolecules
(10, 38, 194); such intracellular water is thought to bring about
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unusual effects, such as the appearance of “ice-like,” denser
water molecules that structure the cytoplasm (39, 194); the
memory of such structured water that enables transmission of
biological information (10, 128); the misunderstood behavior
of aqueous gels, with their “do-it-yourself” ion-selecting mech-
anisms (168); the strangeness of liquid water that separates
into lower- and higher-density fractions (244, 245); and the
subtle temperature sensitivity exhibited by structured vicinal
water (50). Such improbable effects and interpretations still
resonate within current literature (10, 38), though it is now
widely held that water is simply a (unique) solvent and a (cru-
cial) biochemical reactant; indeed, the cytoplasm is currently
viewed as a crowded but watery environment (234).

Since the aqueous phase inside the cell is a rather concen-
trated aqueous electrolyte solution and the average crowding
of biomacromolecules is severe (20 to 50% volume fraction),
the physicochemical interactions of solutes and confining bio-
macromolecular surfaces with water molecules become domi-
nant and therefore also chemically specific (206). While intra-
cellular water is obviously modified compared to pure water,
its modification reflects its noncovalent interactions with other
chemistries, e.g., some water molecules may be modified by
hydrogen bonding to polar uncharged surfaces (e.g., hydroxy-,
amino-, or amido- surfaces), other water molecules are modi-
fied by charge-dipole interactions with charged surfaces (e.g.,
phosphates of nucleic acids or acidic or basic amino acid res-
idues), and still others are modified by interactions with hy-
drophobic surfaces (methyl, methylene, and aromatic sur-
faces), all of which are present inside the crowded cell;
additionally, water acts as a solvent for free ions and other
small metabolite molecules. Hence, taken as a whole, modified
intracellular water reflects some average of the interactions of
water molecules with many different molecular and ionic moi-
eties and with itself; water “structure” and its “breaking and
making” are thus not well defined (nor supported by the ther-
modynamics of model two-component solutions in vitro [11]).
Hence, the notion of modified intracellular water needs to be
constrained by timescales of its molecular motions.

The Picosecond Hydration of Biomacromolecules

In the last 20 years, there has been significant progress in
various spectroscopies (infrared, nuclear magnetic resonance
[NMR], and neutron-scattering methods) and in computer
simulations, and this has allowed more extensive and precise
determinations of the timescales of biomacromolecular hydra-
tion (8, 19, 30, 56, 86, 100, 101, 119, 156-159, 163, 232). Es-
sentially, all biomacromolecular hydration interactions take
place on timescales of picoseconds, and only a negligible
amount of water is buried and immobilized within the interiors
of proteins; in other words, cellular water is not ice-like, even
though the rotational and translational motions of water mol-
ecules are strongly correlated. It is the tetrahedral structure of
water molecules which brings about the three-dimensional co-
hesiveness of the hydrogen-bonded network. The consensus
that has now emerged shows that about 80 to 90% of water
dynamics inside the cell is the same as in pure water or in dilute
solutions, with about 10 to 20% water slowed down by a factor
of (only) 2 to 10; this slightly slower hydrogen bonding likely
arises from restricted molecular motions of hydrogen-bonding
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groups attached to polymer backbones. Another important
recent finding shows that the dynamics of hydrogen-bonded
water in very concentrated salt solutions (where all water mol-
ecules interact strongly with anions and cations) is slowed
down by a factor of only 3 compared to that of pure water
(159). Furthermore, the switching of energetically small native
protein substates also occurs in the picosecond time range (97).
In other words, protein surfaces explore many energy substates
as fast as they renew their hydrogen bonding with water mol-
ecules—and perhaps this is one aspect that contributes to the
fitness of water for both biochemical reactions and hydration
stabilization. Even when water is confined within nanopools
surrounded by a hydrophobic phase, its rotational motion is
also slowed down by a factor of only ~2 and is independent of
whether the confining surfaces are charged or electrically neu-
tral (62).

The very fast picosecond dynamics of water fits well with the
already well-established and surprisingly fast diffusion of me-
tabolites and biomacromolecules in cells and organelles (and
in corresponding systems in vitro), as recently reviewed (48,
140), and is corroborated by similar results for diffusion in vitro
in nanopores of complex polymeric coacervates, which is also
slowed down by a factor of only about 10 compared to that of
pure water (40, 108, 109).

The uniqueness of water as a solvent lies chiefly in its small
size, with distinctive electron cloud distributions that can be
modeled to various degrees of sophistication (47). These prop-
erties largely account for its strong hydrogen-bonding capacity
(leading to “hydrophobic bonding” of solutes and surfaces that
do not have hydrogen-bonding functionality), high degree of
polarizability (large dielectric constant to stabilize charged
functionalities), and unusually large degree of self-ionization
(ability to act as both a base and an acid). Thus, water’s only
“active” role is that of a participant in biochemical reactions,
because biomacromolecular machines that catalyze such reac-
tions are synthesized, assembled, and localized on much longer
timescales than the picosecond persistence of hydrogen bonds.
Consequently, subcellular structuring of cells arises from
(much slower) translational molecular motions and noncova-
lent interactions of large biomacromolecules, not from ice-like
or bound water. The hydration of biomacromolecular surfaces
is so fast that it can be considered equilibrated (decoupled)
with respect to cellular physiological processes, such as local-
izations of proteins and nucleic acids within the cell.

Interestingly, transport properties, e.g., diffusibility of
small molecules in water, appear unremarkable when com-
pared to such properties measured in other solvents (94).
Such dynamic properties of water and aqueous solutions,
including viscosity, come into play during morphogenesis
and cellular osmotic flows (147, 243, 267) and are as impor-
tant to the workings of the cell as its often-invoked equilib-
rium thermodynamic properties. This is particularly related
to the hydrophobic effect, which remains elusive to charac-
terize clearly (47, 95, 201, 217, 218) and is discussed below
in relation to hyperthermophiles.

Prokaryotes in “hot water.” While the spectroscopic evi-
dence strongly argues against descriptions of water as an active
biophilic solvent, there is also compelling, though less direct,
biological evidence: the persistence and evolution (and possi-
ble origin) of prokaryotic life in extreme environments (29, 81,
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133, 210, 215). In particular, the environment of very hot water
at high pressures, high salinities, and both extremes of the pH
range—where water has significantly different physicochemical
properties from those of water under ambient conditions of
around 20°C and 10° Pa (one atmosphere pressure)—argues
against any subtle roles for water in cellular biology. For in-
stance, it has been known for a long time that the thermody-
namic origin of the hydrophobic effect changes from entropic
(melting of picosecond-persisting “icebergs,” if one is given to
such structural interpretation) to enthalpic (strengthening of
water hydrogen bonds) as one goes from cool to hot water in
the 0 to 100°C range (201). Though this is undoubtedly a valid
observation consistent with the temperature trends of thermo-
dynamic entropies and enthalpies of the hydrophobic effect, its
relevance to our understanding of living systems is somewhat
tenuous: lipid membranes and associated biomacromolecules
do exist and evolve in both very cold and very hot water.
Indeed, new extremophiles continue to be discovered on an
unprecedented geological scale, in environments ranging from
very cold briny lakes in Antarctica to very hot and deep
seafloor vents (61, 133, 142, 262).

From a physicochemical point of view, life most likely arose
in hot salty water (133, 205) and then spread out into a wide
range of temperatures and pressures following Earth’s cycles
of geophysical cooling and heating over billions of years (215).
In this context, in addition to the unique thermodynamic prop-
erties of water that give rise to the hydrophobic effect, its
dielectric properties are also noteworthy: the dielectric con-
stant of water decreases at about the same rate that the tem-
perature increases (on the Kelvin scale). This unique depen-
dence makes the Debye-Hiickel-type screened electrostatic
forces essentially independent of temperature over a very wide
range of temperatures (0 to 100°C); hence, hydrated, charge-
stabilized biomacromolecules (nucleic acids and proteins)
could evolve their catalytic properties (tertiary and quaternary
structures) in aqueous environments, independent of geophys-
ical temperature cycles, particularly diurnal cycles. This cir-
cumstance has made the “blind watchmaker’s” task (42), i.e.,
molecular evolution’s task, of having to deal with cold nights
and hot days considerably easier; enzymes could then evolve
fast at higher temperatures with a decreased tendency to ran-
domly agglomerate (211).

Cytosol: the Electrolytic Matrix of Life

The role of the matrix of life can be ascribed more precisely
to the cellular multicomponent aqueous solution, the cytosol,
rather than to water as such. The cytosol is a higher-level
low-molecular-weight (low-viscosity) cytoplasmic medium—in
essence a relatively concentrated (>0.1 M) aqueous solution of
ions, both geochemical inorganic ions (e.g., sodium, potassium,
phosphate, and bicarbonate) and genome-derived ions (ATP
and other phosphates and carboxylates of biochemical path-
ways). The main electrolyte in prokaryotes is often potassium
glutamate, though the overall ionic composition depends on
the changes of composition of the nutrient solution during the
cell cycle and under extracellular stresses (20, 52). The cytosol
may contain a fraction of biomacromolecules, which can be
defined only operationally during the break-up and separation
of biomacromolecules from a population of cells (265). (The
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term “cytosol” has a somewhat variable meaning, e.g., in eu-
karyotic cells, it is the medium outside the organelles and is
also crowded with biomacromolecules; the cytosol is best de-
fined operationally as the liquid part of the cell, with a low
content of biomacromolecules.)

Simplified compositions of cytosol of prescribed ionic
strength and buffering capacity are stipulated in the extensive
compilations of experimental protocols of biochemistry, mo-
lecular biology, and genetic engineering (7); these electrolyte
compositions have been found empirically to be necessary for
the biochemical activity of biomacromolecules in vitro (e.g.,
folding of proteins and enzymatic reactions) and for the pre-
cise self-construction of their functional quaternary complexes
(biomacromolecular machines), including the self-construction
of ribosomes or even viruses. (Self-construction is a process
that requires energy [and catalysts] to surmount thermody-
namic and kinetic barriers [90]; self-assembly is a thermody-
namically spontaneous and kinetically unhindered process.)

THE CELL IN VIVO

In considering the functioning of a prokaryotic cell in vivo,
the phenomenon of biomacromolecular crowding is critical
from the points of view of both reactive biochemistry and
spatial structuring (biomacromolecular localization) inside the
cell (56-58, 77, 78, 104, 144, 145, 205, 206, 263, 264). Below 1
review some aspects of biomacromolecular crowding, which
remains a useful biochemical designation that implies a very
large number of interacting biopolymers (and biomolecules) at
individually low concentrations. Under such multicomponent
conditions, classical physicochemical concentration terms, such
as molarity or mole fraction, begin to lose their usefulness
(173), hence the term “crowding.”

Biomacromolecular Crowding

Originally, biomacromolecular crowding (the excluded vol-
ume effect from a physicochemical standpoint) was used to
account for the nonideality (e.g., osmotic pressure) of concen-
trated (crowded) protein solutions such as hemoglobin (144,
181); such crowdedness is typical of red blood cells and of cells
in vivo compared to the case in classical biochemical assays,
which are conducted in much more dilute biomacromolecular
solutions. The crowding effect was also used as an expedient in
designing enzymatic assays to demonstrate the initiation of
bacterial DNA replication in vitro; it proved crucial to crowd
the assay medium with synthetic hydrophilic polymers (67).
Later, the assay medium could be made to work by crowding
with (biologically more relevant) proteins (114). Thus, biomac-
romolecular crowding has become a recognized variable for in
vitro biochemical assays to investigate how large concentra-
tions of biomacromolecules might affect their catalytic activi-
ties in vivo (176). Typically, such assay protocols have used
high concentrations of various (uncharged) hydrophilic poly-
mers (5 to 35% volume fraction), such as high-molecular-mass
polyethylene glycols (PEGs), dextrans and other polymeric
derivatives of sugars, polyvinylpyrrolidone (PVP), and similar
water-soluble polymers; these synthetic polymers have become
known as crowders that simulate high-volume fractions of bio-
macromolecules in cells in vivo (58).
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While crowding is undoubtedly present as an analytical fact
in cells in vivo (265), its effects on the structuring of cells and
on the catalytic reactivity of biomacromolecules (folding of
proteins and their assembly into “machines” and “factories,”
often with nucleic acids) have proved harder to generalize (69)
and have remained a topic of investigations. For example, in
the case of intrinsically disordered proteins (51, 226), there are
reports of some proteins gaining structure extensively, while
others appear quite resistant to folding under the influence
of crowders; other proteins may gain structure only on a
modest scale (44, 63, 136, 148, 151, 172, 184). Such results
are not necessarily conflicting; rather, they reflect the diffi-
culty of extracting the theoretical nonspecific excluded vol-
ume effect from other interactions of biomacromolecules
(104, 141, 186, 240).

As well appreciated in many textbooks (2), there is an im-
mense variety of proteins that can be synthesized from 20
amino acids: some water soluble (random coil proteins), some
water insoluble (crystallized or amorphous proteins), and
many in between (water-swellable and water-dispersible pro-
teins), folding or folded into their functional conformations in
vitro or in vivo. When proteins are crowded, they interact
mutually by repulsive excluded volume interactions, by attrac-
tive hydrophobic interactions, and by repulsive and attractive
electrostatic interactions; the latter are modulated by pH (buf-
fers), by the ionic strength of the aqueous medium, and often
by specific ions, such as potassium or magnesium. The main
advantage of the hydrophilic crowders is their extensive bond-
ing with water molecules, which diminishes their specific inter-
actions with biomacromolecules; hence, such crowders have
theoretically represented the best option for studying the non-
specific excluded volume effect, for example, in relation to
bringing about more compact protein conformations or pro-
tein misfolding (21, 165, 172, 180). However, it was recognized
recently that the effects of crowders can in fact be specific and
ought to be treated carefully on a case-by-case basis (104, 141,
240). Also, since the crowders are highly hydrated and hence
“soft,” the model of hard spheres (excluded volume) for com-
puter simulations is questionable (56).

From a microbiological structuring point of view, cells in vivo
do not generally have large concentrations (over 10% volume
fraction) of such high-molecular-weight, highly hydrophilic
crowders; because these crowders have typically been used as
single compounds, they do not reflect the multicomponent
spatiotemporal structuring of the cell in vivo, as currently en-
visaged graphically (78, 205); indeed, it has been suggested that
in vitro crowding studies with current hydrophilic crowders may
have only peripheral relevance to the in vivo situation (56). The
use of more realistic crowding agents that would be more
representative of cytoplasmic chemistry (proteins and nucleic
acids) often leads to uncontrolled biomacromolecular agglom-
erations under conditions with a large amount of crowding.
Similar agglomerates, described as inclusion bodies, are some-
times encountered in biotechnological exploitations of recom-
binant expression of proteins (200). Similarly, genetically ex-
pressed green fluorescent protein (GFP) fusions may be
sensitive to experimental conditions and may agglomerate into
larger entities (139, 140), possibly via weak hydrophobic at-
tractions inherently arising from the structure of GFP (164).
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Hyperosmotic stress-induced crowding. Another phenome-
non where the effects of biomacromolecular crowding become
apparent is the response of a prokaryotic cell population to
hyperosmotic external stresses, brought about by highly con-
centrated solutions of membrane-impermeant solutes such as
sodium chloride or sucrose (41, 149, 169, 170, 182, 229, 231,
257-259). As water molecules pass osmotically through the
membrane into the external solution, the biomacromolecular
crowding and concentrations of low-molecular-weight ions and
metabolites increase; in order to better balance the osmotic
pressure across the cell envelope and thereby to prevent or
delay shrinkage (and eventually plasmolysis and cell death),
the cell in vivo quickly activates membrane transporters to
import compatible solutes if they are available externally (such
as potassium salts, glycine-betaine, proline, trehalose, and oth-
ers). As a secondary line of defense, which has an inherent
time delay, the cell can activate genetic circuits to synthesize
enzymes that then catalyze the synthesis of compatible solutes
de novo (257).

Under hyperosmotic conditions, biomacromolecular crowd-
ing becomes more severe, increasing from an ~25% volume
fraction to an ~50% volume fraction, but its effects on the
subcellular structuring are complex, because all noncovalent
interactions in the cell are affected, rather than just a few. For
instance, the binding of the lac repressor to DNA was found to
be very strongly dependent on the ionic content in the (un-
crowded) in vitro assay (45), suggesting a severe disruption of
biochemical reactions in vivo under hyperosmotic conditions
when the cytoplasmic ionic content increases. Surprisingly, E.
coli in vivo could adjust to a new hyperosmotic external me-
dium and could even grow and multiply, albeit at a lower rate.
Clearly, biomacromolecular crowding in vivo somehow com-
pensates for the ionic dependence of DNA-protein interac-
tions in vitro, though how this happens from a physicochem-
ical standpoint is not clear (37, 174). Recent experiments
showed that the growth rate and survival also depend on
how fast the external osmolarity is raised; at low rates, cells
can adjust and survive, but at high rates, cells are more likely
to die (113).

From a structuring or engineering point of view, the cell has
a better chance of survival if the spatial relations of key bio-
macromolecular structures within the cell remain more or less
the same and have time to adjust than when the cytoplasmic
structuring is disrupted suddenly by a large stress. In still more
stressful anhydrobiotic experiments, the preservation of sub-
cellular integrity is necessary for survival upon rewetting (4, 18,
171). Ultimately, this is a broader issue of the response of
metabolic and genetic circuits to extracellular conditions when
such circuits become temporally and spatially stressed; such
circuits then readjust by new conformations and localizations
of proteins and nucleic acids and by the remodeling of the cell
envelope. In this situation, electrostatic interactions (depen-
dent on ionic strength, pH, and specific ions) are known to play
important, though not well-understood roles, for example, in
protein-nucleic acid interactions related to gene expression
(49, 84, 85, 93, 96, 238). How are such metabolic and genetic
circuits realized in a cell in vivo? How do they restructure,
dissipate, and reappear in response to extracellular inputs?
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FIG. 1. (a) General origin of complementarity of electrolyte pathways to crowded charged particles at a 25% volume fraction (over 50% with
Debye lengths added). There is no bulk concentration of solutes dissolved in water. The small circles emphasize that ionic distributions are
nonuniform everywhere throughout the volume of crowded spheres. (b) Hydrophobic and screened electrostatic attractions bring about complex
structures with a very-high-volume fraction of particles (multiplexes), with semiconducting pathways and nanopools and larger reservoirs with
quasi-bulk concentrations of ions and low-molecular-weight dissolved compounds.

Complex Vectorial Biochemistry

One way to think about crowded biomacromolecules in vivo
is to treat them as reacting and colloidally interacting particles
within the cytosol rather than as dissolved molecular species in
a homogeneous solution that obey the classical relationships of
chemical thermodynamics and kinetics. While association
(binding) constants provide useful descriptions of dilute, in
vitro biochemistry, such as the mechanisms and rates of protein
or RNA catalyses, the experimental kinetic and equilibrium
constants are not actually constant; typically, they depend on
pH (buffer) and ionic strength (83) and often depend on the
chemical specificity of ions and, in general, on the nonideality
of such solutions (104, 144). Hence, such formalisms do not
easily allow for the severe crowding of many noncovalently
interacting and chemically reacting biomacromolecules in vivo,
some of which are present at low copy numbers. Taking such a
colloidal view of in vivo crowding suggests that biomacromol-
ecules and their complexes divide the cytosol into a topologi-
cally complementary system of liquid nanopools and pathways
(see the two-dimensional cartoon in Fig. 1, discussed below).
This crowded state of living matter is further complicated by
being away from physicochemical equilibrium, both internally
and against the extracellular milieu.

Thus, a great variety of biomacromolecules must maintain
their functional conformations and colloidal stability under
crowded conditions in vivo—they must not haphazardly ag-
glomerate, or dissolve, i.e., denature, and lose their catalytic
activity. How do biomacromolecules accomplish this task of
maintaining their functional stability in vivo? It is theorized,
from a classical physical chemistry standpoint, that biomacro-
molecular surfaces are stabilized by hydrogen bonding with
water molecules, by screened electrostatic repulsions, and by
hard excluded volume repulsions, all of which must act over
commensurate ranges of distances to achieve their mutually
complementary stabilizing effects (205, 206). The term “com-
plex vectorial biochemistry” was coined to describe such sta-
bilization of crowded and reacting macromolecules and sug-

gested that the onset of complex vectorial biochemistry was a
distinct (emergent) transition between the physicochemical
and biochemical evolution of the early Earth during the
Hadean eon (205). Below, I briefly recapitulate the ideas giving
rise to complex vectorial chemistry of charged crowded sur-
faces.

In Fig. 1a, the two-dimensional cartoon shows the crowding
of an ~25% volume fraction of (uniformly) charged 5-nm
spheres (proteins) stabilized by an aqueous Debye length of 0.7
nm (corresponding to the typical ionic strength of the cyto-
plasm); the spheres essentially touch when they are extended
by the Debye length, which indicates their strong interactions
mediated by the ionic strength of the liquid. If the Debye
length were included in the size of the spheres, the crowding
would represent a very large, 52.4% volume fraction (simple
cubic packing of one sphere per cube). The key point is that the
nanoparticles and the aqueous phase become topologically and
physicochemically complementary, forming a single interfacial
system, with not enough space anywhere for low-molecular-
weight ions and metabolites to assume bulk concentrations. In
Fig. 1b, some of the spheres stick together via attractive hy-
drophobic bonding and screened electrostatic attractions,
thereby creating a more realistic but complex system of
crowded biomacromolecules. In this case, larger reservoirs can
appear with quasi-bulk concentrations of ions and metabolites.
This structural complexity is further increased by the reactive
character of biomacromolecular surfaces.

The surfaces of biomacromolecules are not really mechani-
cally hard—their hydrated surfaces execute very fast motions
on timescales of femtoseconds to nanoseconds, which enable
catalytic biochemical reactions, as discussed earlier. Thus, in
addition to noncovalent attractive and repulsive forces, the
subcellular structuring is also determined by three reactive
mechanisms: (i) biopolymerizations and biopolymer degrada-
tions that extend or reduce existing biomacromolecular sur-
faces (173); (ii) reactive modifications of existing surfaces for
greater hydrophilicity (e.g., phosphorylation) or for greater
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FIG. 2. Cartoon of an electrolyte pathway that is permeable to cations only, with an active electrochemical gradient between the ionic pools.

Surface potential reaches over —25.7 mV in the pathway at 25°C.

hydrophobicity (e.g., methylation), which change attractive and
repulsive interactions between biomacromolecules (biochemi-
cal signaling); and (iii) catalytic syntheses of low-molecular-
weight metabolic intermediates, such as phosphate esters,
amino acids, lipids, nucleotides, etc. All three reactive mech-
anisms require the supply of low-molecular-weight reactants,
which is handled through the electrolyte nanopools and path-
ways shaped by the surfaces of crowded biomacromolecules. In
this way, also, confusing cross talk between many concurrent
biochemical reactions is prevented or at least reduced during
the cell cycle, as biochemical reactions become sequestered
vectorially in three dimensions. This view is not unlike the
concept of metabolons, which arose from the “unnaturally
large” size of many biomacromolecules compared to their ac-
tual catalytic sites (207, 208); however, the transient vectorial
nature of electrolyte pathways and nanopools is simply the
consequence of high crowding and attractive noncovalent in-
teractions.

Zooming Out from Nanometers to Micrometers

In the next sections, I “zoom out” from molecular interac-
tions on the nanometer/microsecond scale to a dynamically
structured, prokaryotic cell on the micrometer/second scale.
First, I briefly review the semiconducting character of two
charged (bio)surfaces, and then I consider the effects of non-
covalent physicochemical interactions (repulsive and attrac-
tive) on larger-scale cellular structuring.

Biomacromolecular semiconductors. In Fig. 2, the two-di-
mensional cartoon shows an electrolytic pathway between two
charged (e.g., phosphorylated) biosurfaces that connect two
electrolyte nanopools (170, 204, 206). On a scale of nanosec-
onds to microseconds, the overall shape of the surfaces is
averaged to a more or less constant (functionally folded) shape
that is stabilized (equilibrated) by hydrogen bonding with wa-
ter molecules, as represented by the thick line. Such a surface
generally also contains attractive hydrophobic patches (CHs,

CH,, CH, and aromatic rings), designated “H,” with no ability
to become stabilized by hydrogen bonding, as well as sites with
electrostatic positive and negative charges; the latter cause the
redistribution of cations and anions around them—the Debye-
Hiickel screened electrostatic forces. The ions are drawn with
distinct boundaries, though on this timescale of about micro-
seconds and longer, they are smoothed out into volume charge
densities in an aqueous dielectric (in water).

If the charged surfaces are approximated by two charged
planes, it can be calculated that the electrostatic repulsions in
water can be very large and, under certain conditions, nearly
independent of ionic strength (202-204). Furthermore, de-
pending on the calculated (negative) potential distributions
between the surfaces, the planar electrolyte gap can become
conducting to all ionic species (cations and monovalent and
divalent anions) or only to cations and monovalent anions or to
cations (170, 206). Thus, on a scale of microseconds and lon-
ger, the cytosol can be regarded as a buffered, electrically
conducting fluid that carries ions (both inorganic and genome-
derived) throughout the cell.

This electrolytic view of the cytosol agrees with the notion
that a cell has some characteristics of computer hardware and
software operation (25, 27, 111). Although Brownian diffusion
is absolutely necessary for cellular metabolism and signaling
and appears generally fast enough in vivo, though slower than
the case in vitro (13, 48, 59, 116, 140, 234), particularly under
osmotic stress (113, 139, 229), it is not sufficient for computer-
like operation of the cell. Electrostatic potentials arising from
transport of ions, modulated by covalently bound charges at
biomacromolecular surfaces, must play a role (105), albeit one
that is not well understood as yet, just as electrical potentials
perform electronic computations in silicone-based semicon-
ductors of integrated circuits. The predominance of charged
molecules and polymers within cells, including the role of an-
ionic lipids within plasma membranes, underscores their elec-
trochemical functioning (28, 80, 170, 206, 231, 259, 261).
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FIG. 3. System of supercrowded spatiotemporal semiconductors “spot welded” by attractive noncovalent forces (screened electrostatic and
hydrophobic forces), giving a multiplex of electrolyte nanopools and electrolyte pathways fed from larger electrolyte reservoirs, such as the

ATP/ADP reservoir.

Supercrowded systems of catalytic semiconductors. Zoom-
ing out from two interacting biomacromolecular surfaces to a
somewhat larger scale, Fig. 3 depicts an arbitrary, though more
realistic, system of electrolytic semiconducting pathways and
electrolyte nanopools; they are shown adjacent to the lipid
bilayer with integral membrane proteins (the cell wall and
extracellular layers are not shown), where the lowering of the
dielectric constant (increase of electrostatic forces) compli-
cates the relationship between hydrophobic and electrostatic
forces (117). This cartoon attempts to show some important
biomachinery (78), for example, ATP synthase in the mem-
brane in the upper right corner, a ribosome in the lower bot-
tom corner, and long fibrous cytoskeleton proteins as well as a
length of DNA wound up and anchored by a protein in the
cytoplasmic side of the membrane.

The biomacromolecules are drawn under supercrowded
conditions, with higher than the average 20 to 30% volume
fraction that is regarded as representative of living systems (48,
140, 265); reservoirs with lower than the average 20 to 30%
volume fraction of biomacromolecules then appear within the
cytoplasm, for example, the ATP/ADP reservoir, into which
ATP synthase gives off ATP ions, as shown in Fig. 3. Such a
supercrowded assembly of biomacromolecules can be called a
multiplex, as I explain and discuss below.

(i) Physicochemical rationalizations. The foremost physico-
chemical reason for the supercrowding of biomacromolecules

is the chemical inhomogeneity of their surfaces, resulting not
only in stabilizing repulsions but also in attractive noncovalent
association of biomacromolecules. From a physicochemical
standpoint, biomacromolecular surfaces are encoded by the
genome to have four distinct physicochemical patches: (i) un-
charged hydrophilic, (ii) negatively charged, (iii) positively
charged, and (iv) hydrophobic. These surface chemistries and
their interactions with water molecules and ions determine
both the functional folded structure of individual biomacromol-
ecules and the attractions and repulsions between themselves.
What will be the outcome of balancing such attractive and
repulsive noncovalent forces on the structure of crowding bio-
macromolecules in vivo? First, when and where repulsive (sta-
bilizing) forces “win,” haphazard biomacromolecular agglom-
erations will be prevented. Such forces are the excluded
volume effect (hydration of biosurfaces) and screened electro-
static repulsions that ensure that the electrolyte pathways re-
main open and electrolytically conducting. Second, when and
where noncovalent attractive forces win, there will be nonco-
valent formation of (weak) cross-links. Such forces are
screened electrostatic attractions between positive and nega-
tive patches and hydrophobic bonding between two hydropho-
bic patches on different surfaces. The attractive noncovalent
forces bring about biomacromolecular cluster formation
(phase separations), as demonstrated in vitro with protein and
colloidal systems (22, 40, 57, 68, 82, 109, 110, 124, 166, 213,
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FIG. 4. Model of unequal biomacromolecular crowding in vivo at a larger scale. A supercrowded multiplex with electrolyte nanopools and
semiconducting pathways and uncrowded reservoirs of cytosolic electrolyte (quasi-bulk concentrations) with a low content of biomacromolecules

is shown.

239); another example is the phenomenon of weak association
of proteins via their hydrophobic patches, for example, the
dimerization of GFP (68, 164). Also, as discussed earlier in
relation to biomacromolecular crowding, recent experiments
on stabilization (folding) of proteins under crowded conditions
(104, 141, 186, 240) show attractive interactions in addition to
the repulsive effect of excluded volume. Attractive clustering
interactions have also been deduced from the results of
genomewide proteomic screens; it has been suggested that
proteins may in fact assemble into larger physical entities that
fall apart and reform during the cell cycle in a stepwise fashion
(115); thus, proteins can be reused during the cell cycle to
participate in the formation of different multiplexes (they are
multifunctional, being promiscuous and “moonlighting” [102]).

Such a weakly “cross-linked,” large-scale association of su-
percrowded biomacromolecules represents a multiplex. This
term accounts for many different biomacromolecules involved
and for the multiplexing pathways between biomacromolecular
surfaces, i.e., signal transmission channels through which dif-
ferent ionic metabolites (different signals) can travel sequen-
tially and concurrently (Fig. 3 and 4). The rate of formation of
such multiplexes could be quite high, given the remarkable
accelerating effect of screened electrostatic attractions on the
rate of association of proteins (190).

Figure 3 shows crowded biomacromolecules forming a mul-
tiplex system of interconnected electrolytic pathways and
nanopools and an ATP/ADP reservoir nearly empty of bio-
macromolecules. How could such a network work physico-
chemically? As an example, the following scenario demon-

strates an efficient distribution of ATP related to the powering
of the cell: ATP, being a divalent anion (with 2 of the 4 charges
complexed with magnesium), flows out of its reservoir only via
dephosphorylated (zero and low negative potential) pathways
but can return as ADP (monovalent ion) through both phos-
phorylated and dephosphorylated pathways. In other words,
phosphorylation of an electrolytic pathway creates a more neg-
ative potential within the pathway that blocks ATP (or any
divalent anion) from going where it might go wastefully just by
random thermal diffusion. Such a multiplex in effect creates
localized vectorial reaction loops (transient networks) that can
efficiently deliver ATP (and other required metabolites) to
various catalytic sites. This network has the character of a
packet-switching information transmission, since ATP ions are
not delivered sequentially through just one (predetermined)
pathway (analogous to a telephone line) but in a parallel man-
ner by many available pathways (analogous to packet-switching
routing of Internet information packets). The advantage of
packet-switching networks is that when a few pathways become
inoperable (poisoned), the network does not crash; in this way,
the dynamic stability of processes which keep the genome alive
and evolving becomes quite robust. The semiconducting path-
ways can be controlled (open or closed) by biochemical signal-
ing cascades that restructure or even redisperse the multiplex
by phosphorylations, methylations, acetylations, etc., in order
to effectively respond to extracellular conditions (availabil-
ity of nutrients, water activity, temperature variations, etc.).
Inhomogeneous distribution of ATP has been measured in
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FIG. 5. Physicochemical model of a cell, characterized by electrostatic and pressure differences across the cell envelope and between the
cytosolic reservoirs and the nucleoid (not shown). The membrane is red, with attached supercrowded multiplexes and nucleoid excrescences on
the inside and the cell wall and extracellular layers on the outside. Ribosomes (blue circles) are distributed mostly along the periphery of the
nucleoid, which is connected spatiotemporally to the cell envelope. Signaling receptors are shown to span the cell envelope (bottom and left); they
convert extracellular physicochemical signals into cytoplasmic signals that are transmitted vectorially to specific cytoplasmic “addresses” during the

cell cycle.

the cytoplasm of eukaryotic oocytes (143).

Though the above description of noncovalent forces focuses
on specific attractions arising from coulombic and hydrophobic
interactions, the strength of these attractions could be in-
creased by the nonspecific entropic force (depletion force)
arising from an unequal distribution of sizes and shapes of
crowded biomacromolecules (129). However, such nonspecific
colloidal forces, including van der Waals forces, cannot be
related directly to the chemical inhomogeneities of biomacro-
molecular surfaces (which in turn are determined by the ge-
nome) and thus cannot readily illuminate the detailed func-
tioning of the cell. The nonspecific depletion forces thus
provide a general attraction that could come more strongly
into play in slowly metabolizing (stationary) cells and in their
transitions toward more anhydrobiotic, nonmetabolizing states, such
as bacterial spores, when crowded biomacromolecules have to
be “frozen” in revivable configurations (18, 65); also, in osmot-
ically balanced bacterial L forms, such attractions could aid the
structural stability of the cell (3, 46, 118).

(i) Reservoirs of cytosol. Though chemical inhomogeneities
of biomacromolecular surfaces provide an a priori physicochem-
ical rationale for the model of supercrowded multiplexes, there is
also experimental evidence that points to a similar concept: the
relatively fast Brownian diffusion of various biomacromolecules
and their GFP fusions within the cytoplasm of different cells and
organelles (48, 59, 113, 116, 139, 140, 234). To rationalize such
results, it has been suggested that mitochondria (highly crowded
organelles) tend to supercrowd biomacromolecules mostly to the
cytoplasmic side of the membrane, leaving the interior relatively
empty for biomacromolecular diffusion (160). The newly discov-
ered prokaryotic cytoskeleton proteins, as well as some eukaryotic
scaffolding proteins (see Introduction), are reported to also asso-
ciate with the cytoplasmic side of the membrane. This view is

adopted as the key feature of the structuring of cells and organ-
elles, where supercrowding of biomacromolecules toward the cy-
toplasmic side of the membrane creates reservoirs of cytosol with
low biomacromolecular content, in effect creating space for the
deployment of the genome (where appropriate). Such a model is
somewhat different from current descriptions of crowded cells,
with undifferentiated biomacromolecular crowding of a 20 to 30%
volume fraction (77, 78).

In a broader sense, the suggested model of the semiconducting
multiplexes and larger reservoirs of cytosol reconciles two some-
what contradictory experimental observations: (i) the generally
fast, chaotic Brownian diffusion of biomacromolecules in vivo and
(ii) the fidelity of the cell cycle through localization and structur-
ing of biomacromolecules. In this model, the transiently struc-
tured, vectorially crowded multiplexes sequester concurrent bio-
chemical reactions during the cell cycle (prevent and control their
cross talk), while the uncrowded cytosol allows for fast diffusion
(ensuring fast metabolic growth). In such a model, signaling re-
actions such as (de)phosphorylations and (de)methylations con-
trol the dynamics of multiplexes, i.e., their network formation,
restructuring, and dispersal, thereby linking biochemical signaling
with metabolism.

The semiconducting prokaryotic scaffold. Zooming out now
to visualize the cell in toto (Fig. 5), the well-known structural
elements of prokaryotic cells—the nucleoid, ribosomes, and the
cell envelope—come into focus. How are these complex cytolog-
ical structures organized and related to the multiplexes at this
coarse microscopic level? Though at this point the multiplexes are
only hypothesized physicochemical entities, they may represent
biochemical or physiological constructs or hyperstructures (154)
at appropriate times during the cell cycle, such as the divisome or
stressosome, derived from physiological behavior; other “-omes”
could be found by analyses of genomewide interactomes of sys-
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tem biology (76, 87, 131, 175). For instance, the divisome involves
a large number of proteins situated in the cytoplasm, in the mem-
brane, and extracellularly, possibly forming a large multiplex that
spans the cell envelope. Signaling proteins involved in bacterial
chemotaxis phenomena (23, 26) could also be associated physi-
cally into a multiplex spanning the cell envelope.

This rather complicated situation of too many different biomac-
romolecules associating precisely into multiplexes of different
sizes, persistence, and localizations during the cell cycle can be
simplified by assuming that there are only two (very large and
time-evolving) multiplexes, which in effect define a binary (see
Loeb’s observation at the beginning of this report) prokaryotic
scaffold. It consists of (i) the genetic part, the structured, repli-
cating, and transcribing nucleoid that makes DNA loops or ex-
crescences that form multiplexes (communicate electrolytically
and vectorially) with the cell envelope; and (ii) the somatic part,
the cell envelope multiplexed at the cytoplasmic side with a size-
able fraction of cytoplasmic proteins, leaving behind reservoirs of
uncrowded cytosol.

Such a cell model (Fig. 5) is based on recent progress in the
understanding of subcellular structuring of prokaryotes, where
nucleoid/ribosome/cell envelope connections synchronize gene
expression, chromosome orientation, replication, and segregation
with cell septation and division during the cell cycle (14, 15, 24, 28,
34, 70, 73, 80, 98, 120, 121, 193, 225, 235, 255). The nucleoid
excrescences and their anchoring at the cytoplasmic side of the
cell envelope are qualitatively consistent with the subdiffusive
motion (non-Brownian) of chromosomal loci (241). This model
also fits with recent diffusion data on proteins of various sizes,
where large proteins and their complexes are significantly slowed,
or even rendered immobile, by the mesh-like excrescences of the
nucleoid (or other large structures), particularly under osmotic
stress, when the cytosolic reservoirs become smaller or disappear
(113, 116, 139, 140, 229). The ribosome assembly and positioning
is an active process that requires energy (28); in Fig. 5, the ribo-
somes (107, 246, 247) are positioned for transertion of mem-
brane-bound proteins (255), for insertion of proteins needed for
its replication, compaction, and segregation into the nucleoid, and
for ejection of soluble (globular and unstructured) proteins into
the cytosol. When assembled, ribosomes can be repositioned fur-
ther by active transcription (134).

The topology and supercrowdedness of the cellular scaffold are
variable during the cell cycle, responding to the physicochemical
variables of the nutrient solution outside (composition, tempera-
ture, and pressure). One feature of the model is a dynamic system
of reservoirs of uncrowded cytosol of variable continuity and
variable but quasi-bulk compositions, giving rise to electrochem-
ical (Donnan) and pressure (osmotic) differences within the cell
and against the nutrient solution; such gradients are likely to play
arole in cellular morphogenesis and motion at hundreds of nano-
meters and larger scales (88-90). This aspect of the model is akin
to the recently proposed poroelastic model of the cytoplasm of
eukaryotic cells (147).

CONCLUSIONS AND OUTLOOK

The physicochemical interactions and processes that spatially
and temporally structure prokaryotic cytoplasm in vivo (water,
ions, low-molecular-weight metabolites, and biomacromolecules)
must ultimately ensure the fidelity and successful functioning of
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the cell cycle. These physicochemical processes are complicated
and are not well understood as yet (88-90), though progress is
being made in some areas. In particular, the notion of intracellu-
lar water as an active structuring cytoplasmic medium with subtle
effects is unnecessary. There is enough evidence to conclude that
water is simply a solvent that enables molecular evolution over
wide ranges of temperatures; the extremely fast picosecond hy-
dration of biomacromolecular surfaces and the temperature in-
dependence of screened electrostatic interactions explain to a
large degree why this is so.

The hallmark of a living system is the high degree of crowding
of a large number of different biomacromolecules confined by a
semipermeable cell envelope. New research shows that dextrans,
polyglycols, and similar crowding polymers, which traditionally
have been employed in crowding assays as inert compounds, can
in fact interact specifically with other biomacromolecules; they
are thus less suitable as model crowding polymers than previously
thought. Moreover, no similar crowders are normally present in
prokaryotes in vivo. Currently, in vitro crowding assays are being
designed with proteins, which better reflect biomacromolecular
environments in vivo; this new research could also illuminate
multicomponent biomacromolecular clustering arising from hy-
drophobic and coulombic attractions.

In considering biomacromolecules as colloidal particles, their
high level of crowding in vivo leads straightforwardly to the hy-
pothesis of complex vectorial (bio)chemistry. Simple analysis
shows that high biomacromolecular crowding divides the aqueous
phase (cytosol) into a vectorial, interfacial system that is topolog-
ically and physicochemically complementary to the chemistry of
biomacromolecular surfaces; in this system, low-molecular-weight
metabolites have insufficient free volume to attain bulk composi-
tions independent of position. Since biomacromolecules have ge-
nome-encoded chemical inhomogeneities in their surfaces, they
can associate by many weak bonds into supercrowded clusters or
multiplexes (35 to 95% volume fraction). Within the multiplexes,
the electrolyte nanopools and pathways can theoretically trans-
port ions in a semiconducting, vectorial manner. Consequently,
the cytoplasm is not uniformly crowded at a 20 to 30% volume
fraction, but the supercrowded multiplexes create relatively un-
crowded reservoirs of cytosol (0 to 20% volume fraction) through
which biomacromolecules can diffuse more or less unhindered.

The above considerations and recent microbiological advances
in biomacromolecular localization in vivo allow the construction
of a generic model of a prokaryotic cell, consisting of a super-
crowded (multiplexed) prokaryotic scaffold where the nucleoid is
connected to the cell envelope via its excrescences. The ribosomes
are located on the cytoplasmic periphery of the scaffold and the
cytosol. Most proteins are multiplexed into clusters associated
with the cell envelope and the nucleoid; they cross the cytosolic
reservoirs by a diffusion-to-capture mechanism. This model en-
sures the fidelity of the cell cycle by sequestering biochemical
reactions in multiplexes, thereby avoiding confusing reactions in
unstructured prokaryotic cytoplasm; a great deal of genome-
based structural information is thus inherited in the cell cycle.
This information is lost when individual biomacromolecules are
isolated in vitro, and it is not recovered in current in vitro crowding
assays. New experiments and techniques are needed to distin-
guish between the current cytoplasmic model of average crowding
and models of unequal crowding (supercrowded biomacromo-
lecular clusters and uncrowded reservoirs of cytosol). Possibly,
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one could attempt to isolate multiplexes and nucleoids through a
controlled break-up of bacterial L forms in a properly formulated
medium, analogous to the isolation of nucleoids (266).

There is now probably enough biochemical, genetic, and phys-
iological information to attempt to construct a coarse spatiotem-
poral model of a simplified (ideal?) cell in foto (74, 87, 107, 110,
120, 140, 246, 247, 259) as it progresses through the cell cycle—
perhaps starting at a 1-s resolution for one division per hour and
then increasing the temporal resolution toward milliseconds
and microseconds while zooming in on important phenomena
and regions of the cell. Such a model could summarize current
knowledge of the flow of physicochemical information from the
nutrient solution and its transformation through the cell envelope
to activate and maintain gene expression and genome replication,
leading to cell volume growth and eventual cell fission. Such a
model of a simplified prokaryotic cell cycle could also uncover the
“machine language” of electrochemical and osmotic potentials
(that enables the DNA/RNA/protein language of molecular bio-
logy), as well as the phenomena of cell morphogenesis and mo-
tility. Such an endeavor would require a collaborative effort of
different disciplines (1).
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ADDENDUM IN PROOF

The literature related to the structuring of cells during their
growth and division is scattered in many general and special-
ized journals about biology, chemistry, and physics; hence,
some references were likely missed in this review, for which I
apologize. For example, there is a great diversity of protein-
protein interactions, from very strong to weak and ultraweak
(I. M. A. Nooren and J. M. Thornton, EMBO J. 22:3486-3492,
2003). The weaker interactions have been described as biomac-
romolecular clustering, phase separation, compartmentation, and
gel formation, or in the present case as “multiplex” formation.
Currently, new methods for their structural and transient char-
acterizations are being developed, e.g., NMR and analytical
ultracentrifuge (J. Vaynberg and J. Qin, Trends Biotechnol.
24:22-27, 2006; A. J. Rowe, Methods 54:157-166, 2011).
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