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The family Bunyaviridae is the most diversified family of RNA viruses. We describe a novel prototypic
bunyavirus, tentatively named Gouléako virus, isolated from various mosquito species trapped in Côte d’Ivoire.
The S segment comprised 1,087 nucleotides (nt), the M segment 3,188 nt, and the L segment 6,358 nt,
constituting the shortest bunyavirus genome known so far. The virus had shorter genome termini than
phleboviruses and showed no evidence of encoded NSs and NSm proteins. An uncharacterized 105-amino-acid
(aa) putative open reading frame (ORF) was detected in the S segment. Genetic equidistance to other
bunyaviruses (74 to 88% aa identity) and absence of serological cross-reactivity with phleboviruses suggested
a proposed novel Bunyaviridae genus.

The family Bunyaviridae comprises the five genera Hantavi-
rus, Nairovirus, Orthobunyavirus, Phlebovirus, and Tospovirus
(26). Classification was originally based on serological relation-
ships but has been extended to include virion morphology,
genome organization, and phylogenetic relationships. Conge-
neric members have further features in common, such as con-
served genome termini, identical coding strategies, and en-
coded proteins (26). The segmented, negative-stranded RNA
genome codes for a nucleocapsid (N) protein, two glycopro-
teins (Gn and Gc), and an RNA-dependent RNA polymer-
ase (RdRp) on the S, M, and L segments, respectively. S and
M segments of the genera Orthobunyavirus, Phlebovirus, and
Tospovirus encode two additional nonstructural proteins,
NSs and NSm. However, these proteins are not consistently
represented throughout those genera (8, 22). More recently
identified novel bunyaviruses, as well as recently sequenced
bunyaviruses from archived material, consistently belonged
to any of the five known genera (6, 7, 18–20, 23, 37, 38,
39, 40).

During an arbovirus surveillance study in Côte d’Ivoire, an
RdRp fragment of a novel bunyavirus was identified (14). The
virus was detected with a relatively high prevalence of 6.5% in
different species of Anopheles, Culex, and Uranotaenia mosqui-
toes in a diverse range of habitat types, indicating a widespread
virus that is promiscuous regarding arthropod vectors. The
virus was tentatively termed Gouléako virus (GOUV), after
the village from which the first isolate originated. Here we

determined the complete genome sequence and investigated
criteria to formally classify GOUV.

Virus isolation from 432 pools of 4,839 female mosquitoes
was done in Aedes albopictus (C6/36) cells as described before
(13). All positive pools induced similar cytopathic effects
(CPE) after 3 to 7 days postinfection (dpi), and maximum
genome copies were reached after 5 dpi (Fig. 1a, b, and d).
Polymorphic, enveloped virions with a bunyavirus-like mor-
phology were detected by electron microscopy in infected cell
culture supernatants (Fig. 1c) (13, 28).

To investigate the GOUV cell tropism, infectious cell cul-
ture supernatant of one isolate (A5/CI/2004) was used to infect
various insect, reptile, bird, and mammalian cells with multi-
plicities of infection (MOIs) of 10, 1, 0.5, and 0.1 (measured by
50% tissue culture infective dose [TCID50]), and cells were
incubated at 33°C and 37°C (Table 1). Cell culture superna-
tants were passaged in fresh cells every 7 days in 1/10 dilutions
for five consecutive passages and tested by real-time reverse
transcription-PCR (RT-PCR) (14). GOUV replicated well on
U4.4 cells, but on all other cell lines tested, no CPE was
observed, and no virus growth was detected.

Furthermore, 269 pools of 1,716 adult male mosquitoes were
tested for GOUV by real-time RT-PCR, yielding two positive
pools of Culex spp. and Anopheles spp.

The third passage in C6/36 cells of isolate A5/CI/2004 was
completely sequenced. Initial sequences were obtained by
adaptor-based random amplification (Fig. 1e to g) (13, 32).
Two hundred eighty-one clones with inserts between 500 and
1,500 nucleotides (nt) were sequenced and compared to
GenBank sequences, showing distant relationships on the amino
acid (aa) level with members of the genus Phlebovirus. Larger
contiguous sequence fragments of 5,275 nt (corresponding to
the L gene), 1,049 nt (S gene), and 762 nt (M gene, two
fragments) were assembled. M gene fragments were combined
into a 1,776-nt fragment. Lateral parts of genome segments
were amplified with contig-specific primers and oligonucleotides
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priming conserved panhandle elements of phleboviruses ligated
to an anchor sequence. Genome termini were determined by
rapid amplification of cDNA ends-PCR (RACE-PCR). The com-
plete genome was resequenced for confirmation on both strands

by primer walking techniques. S-segment size was confirmed by
RACE-PCR with virus obtained from cells infected with an
MOI of 0.001 and harvested at 3 dpi to avoid detection of
defective interfering (DI) RNAs. The GOUV genome was

FIG. 1. GOUV growth on insect cells, morphology, and genome characteristics. (a) Uninfected C6/36 cells. (b) C6/36 cells 4 days after infection
with GOUV. (c) Negative staining electron microscopy of purified GOUV particles. Bar � 100 nm. (d) Numbers of GOUV genome copies per
ml in cell culture supernatant of C6/36 cells infected with GOUV at MOIs of 0.1, 0.01, and 0.001 were measured by RT-PCR for 7 days. (e to g)
Strategies used for full genome sequencing. The top panel shows the genome segments S (e), M (f), and L (g). Boxes represent open reading frames
(ORFs) flanked by noncoding regions (NCR), which are indicated by lines. Coding directions are indicated as arrows. Glycoprotein precursor
properties were identified by signalP-NN, TMHMM, and NetNGlyc 1.0 and are marked as follows: signal peptide, black box; Gn, light-gray box;
Gc, dark-gray box; transmembrane domains (TMD), white boxes; and glycosylation sites, black triangles. Bars in the middle panel indicate genome
fragments generated in initial random amplification reactions. The bottom panel shows specific PCRs used for genome walking. Oligonucleotide
orientations and positions are marked by arrowheads.

TABLE 1. Cell lines inoculated with GOUV

Cell line Host Tissue Comment GOUV growth

C6/36 Aedes albopictus Larvae RNAi deficienta Positive
CEF Gallus gallus domesticus Embryo Primary cells Negative
BHK-21 Mesocricetus auratus Kidney Negative
BHK-J Mesocricetus auratus Kidney Negative
EiNi/41 Eidolon helvum Kidney Negative
ICR-2A Rana pipiens Embryo Negative
L929 Mus musculus Fibroblasts Negative
MEF MDA5�/� Mus musculus Fibroblasts MDA5 knockout Negative
MEF RIG-I�/� Mus musculus Fibroblasts RIG-I knockout Negative
PSEK Sus scrofa domestica Kidney Negative
RoNi/7-NPro.1 Rousettus aegyptiacus Kidney Negative
S2 Drosophila melanogaster Larvae Negative
U4.4 Aedes albopictus Larvae Positive
Vero B4 Cercopithecus aethiops Kidney Negative
Vero E6/7 Cercopithecus aethiops Kidney Negative
VH2 Daboia russelii Heart Negative

a RNAi, RNA interference.
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shorter than that of any known member of the Bunyaviridae
and most similar to those of members of the genus Phlebovirus
(Table 2) (29). The genome termini of GOUV were most
similar to those in the genus Phlebovirus, albeit S and M ge-
nome termini were shorter, with a length of only 5 instead of 8
nt (Table 2). Notably, a novel phlebovirus, severe fever with
thrombocytopenia syndrome virus (SFTSV), was recently iden-
tified in patients in China (39). SFTSV also had shorter ge-
nome termini, of only 5 instead of 8 nt, in its M and L segments
(Table 2). The genome termini are generally conserved within
but invariably different between bunyavirus genera (26).

In deduced amino acid sequences, the highest L-segment
similarity was identified with Uukuniemi virus (UUKV) (28%),
SFTSV (27%), and Rift Valley fever virus (RVFV) (27%). The
conserved motif III of the RdRp gene was most similar to that
of members of the genus Phlebovirus (Fig. 2a) (1, 24). How-
ever, there were clear differences discriminating GOUV from
all other bunyaviruses. Notably, between the two invariant
residues KW in the tentative RdRp motif A, GOUV showed a
V insertion. This insertion was unique among RdRp of nega-
tive-strand viruses (27). Valine is an uncharged residue and
performs due to its dipolar compounds as zwitterion. An in-
sertion of cysteine or tyrosine, also zwitterions, into polymer-
ase active sites has been reported in retroviruses and retro-
transposons (27).

The M segment was distantly related to the glycoproteins of
SFTSV (24%), UUKV (21%), and Punta Toro virus (PTV)
(21%). Three in-frame translation initiation codons (AUG) at
genomic positions 96, 111, and 141 were found. The first AUG
seemed to be in best Kozak context for initiation of translation
(16, 17). The mosquito-borne RVFV and the sandfly-borne
PTV have 5 and 13 in-frame AUG codons, respectively, while

the tick-borne UUKV has only one (9, 15, 21, 29) and SFTSV
has two. As GOUV is in basal phylogenetic position to a clade
formed by the Phlebovirus main group (sandfly fever group
[SFG]), UUKV, and SFTSV, functional start codons may have
been acquired convergently in SFG and GOUV or lost in
UUKV and SFTSV. Translation of different proteins from
alternative AUG codons has been reported for RVFV (15).
However, the function of multiple AUG codons is still unclear.

The most likely cleavage site of the Golgi retention and
targeting signal was found between aa 21 and 22 (CYS-QV)
(Fig. 1f). Conserved domains of the phleboviral G1 super-
family (pfam07243) and phleboviral G2 superfamily
(pfam07245) were detected by alignment to the pfam data-
base, suggesting Gn to be encoded from aa 1 to 474 and Gc
from aa 479 to 968. These coding regions could be con-
firmed by aligning the GOUV glycoprotein precursor se-
quence with those from representative phleboviruses. The
putative cleavage site between Gn and Gc was identified at
aa 479 (CSSRA/TP-CSTSVV, with amino acids conserved
among GOUV and phleboviruses underlined) (Fig. 1f and Fig.
2b). It should be mentioned that SFTSV does not contain the
conserved CS motif. Determination of the hydropathy profile
predicted two transmembrane domains at aa 370 to 392 and aa
932 to 954, suggesting type I transmembrane topologies for Gn
and Gc (Fig. 1f). N-linked glycosylation sites are conserved
within bunyavirus genera except for the genus Phlebovirus,
where UUKV represents an exception. Members of the SFG
contain one N-linked glycosylation site in NSm, one in Gn, and
four in Gc, whereas UUKV contains four sites in both glyco-
proteins (15, 29) and SFTSV contains two sites in Gn. The
distinct predicted glycosylation pattern in GOUV is another
criterion of its distinction from phleboviruses (Fig. 1f).

TABLE 2. Terminal nucleotide sequences and segment sizes of GOUV compared to those of members of other
genera in the family Bunyaviridae

Genus/virus Consensus terminal nucleotidesa
Segment size, in nucleotides (GenBank accession no.)

S M L

Hantavirus/ 3� AUCAUCAUCUG- 1,696 3,616 6,533
Hantaan virus 5� UAGUAGUAUGC- (M14626) (M14627) (X55901)

Orthobunyavirus/ 3� UCAUCACAUG- 961 4,458 6,875
Bunyamwera virus 5� AGUAGUGUGC- (D00353) (M11852) (X14383)

Nairovirus/ 3� AGAGUUUCU- 1,712 4,888 12,255
Dugbe virus 5� UCUCAAAGA- (M25150) (M94133) (U15018)

Tospovirus/ 3� UCUCGUUA- 2,916 4,821 8,897
tomato spotted wilt virus 5� AGAGCAAU- (D00645) (S48091) (D10066)

Phlebovirus/ 3� UGUGUUUC- 1,690 3,885 6,404
Rift Valley fever virus 5� ACACAAAG- (X53771) (M11157) (X56464)

Phlebovirus/Uukuniemi virus 3� UGUGUUUC- 1,720 3,229 6,423
5� ACACAAAG- (M33551) (M17417) (D10759)

Phlebovirus/SFTSV S segment, 3� UGUGUUUC- 1,744 3,378 6,368
5� ACACAAAG- (HM745930) (HM745931) (HM745932)

M segment, 3� UGUGUUUC-
5� ACACAGAG-

L segment, 3� UGUGUUUC-
5� ACACAGAG-

Unassigned/Gouléako virus S segment, 3� UGUGUUUC- 1,087 3,188 6,358
5� ACACAGUG- (HQ541736) (HQ541737) (HQ541738)

M segment, 3� UGUGUUUC-
5� ACACAGUG-

L segment, 3� UGUGUUUC-
5� ACACAAAG-

a Boldface type indicates consensus terminal nucleotides between phleboviruses, SFTSV, and Gouléako virus.
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FIG. 2. Multiple sequence alignments of putative GOUV RNA-dependent RNA polymerase and glycoprotein precursor genes. (a) Alignment of
GOUV and RdRp genes, third conserved motif. Premotif A and motifs A, B, C, D, and E are indicated. Amino acids conserved between GOUV and
other bunyaviruses are marked in gray. Active sites corresponding to the PB1 protein of influenza virus (1) are highlighted by boxes. (b) Alignment of
putative GOUV, UUKV, and SFTSV glycoprotein precursor proteins. Highly conserved amino residues are marked in black and conserved residues in
gray. Abbreviations: BUNV, Bunyamwera virus; CCHV, Crimean-Congo hemorrhagic fever virus; DUGV, Dugbe virus; GOUV, Gouléako virus; HANV,
Hantaan virus; LACV, La Crosse virus; PUUV, Puumala virus; RVFV, Rift Valley fever virus; SFNV, sandfly fever Naples virus; SFTSV, severe fever with
thrombocytopenia syndrome virus; TOSV, Toscana virus; TSWV, tomato spotted wilt virus; UUKV, Uukuniemi virus; WSMV, watermelon silver mottle virus.
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FIG. 3. Relationship of GOUV to other bunyaviruses. Phylogenetic analyses including representative members of all Bunyaviridae genera were
performed on a gap-free amino acid alignment guided by the BLOSUM62 substitution matrix, using the neighbor-joining (NJ) algorithm with a
uniform-rates substitution model and confidence testing by 1,000 bootstrap replicates in MEGA version 5.0 (33). Maximum-likelihood (ML)
analyses were performed with the Dayhoff substitution model and are shown in smaller scale on the right. Phylogenies were investigated for the
RdRp (a), Gn (b), Gc (c), and N (d) protein genes. Bars indicate evolutionary substitutions per position in the alignment. (e) Distribution of
pairwise amino acid sequence distances between putative RdRp proteins in the family Bunyaviridae. A distance matrix of pairwise identity values
was calculated with MEGA 5.0 (33) for 28 L-segment sequences. For each range of identity values (x axis), the incidence in the matrix is plotted
on the y axis. White bars indicate pairwise distances between viruses of same genera (intragenus), and black bars indicate pairwise distances
between viruses of different genera (intergenus). Pairwise distances between Uukuniemi virus and main-group phleboviruses (sandfly fever group)
are shaded in gray. Pairwise distances between Gouléako virus and phleboviruses are hatched, and ranges of pairwise distances between GOUV
and orthobunya-, hanta-, nairo-, and tospoviruses are marked by horizontal bars. Horizontal lines indicate ranges of pairwise sequence distances
within each of the five established genera of the family Bunyaviridae. CCHF virus, Crimean-Congo hemorrhagic fever virus.
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Contrary to the SFG but in agreement with UUKV and
SFTSV, no NSm protein was identified for GOUV, based on
sequence alignments and homology searches (8, 29, 39)
(Fig. 2b).

Pairwise comparison of the S segment revealed equally low
maximal amino acid similarities with the N protein genes of
sandfly fever Sicilian virus (27%), RVFV (27%), and SFTSV
(25%). Four open reading frames (ORFs) in reverse orienta-
tion overlapped the putative N ORF; three seemed too small
to encode relevant proteins (all were �70 aa), but one ORF
might encode a putative uncharacterized protein of 11.6 kDa
(Fig. 1e), a predicted molecular mass similar to that of the NSs
protein of orthobunyaviruses. However, in orthobunyaviruses
NSs is encoded within the N ORF in the same coding direction.
In phlebo- and tospoviruses, NSs is between 29 and 52 kDa and
is encoded in ambisense in a nonoverlapping ORF sepa-
rated from N by an RNA hairpin fold (10, 31). Downstream
of N, GOUV contained a small ORF of 38 aa (3.9 kDa) in
ambisense orientation with a putative intergenic region of
61 nt and 63.9% A�T content, comparable to that of
UUKV (74 nt, 62% A�T content) and SFTSV (55 nt, 67%
A�T content) (31). By use of mfold, hairpin structures were
predicted for the GOUV region downstream of N up to the
5� terminus, suggesting a function in the regulation of tran-
scription as assumed for viruses using an ambisense coding
strategy (30, 41). No putative NSs ORF using a coding
strategy similar to that for other bunyaviruses could be iden-
tified. However, whether ORF2 is expressed and might serve
functions similar to those of bunyaviral NSs proteins remain
to be determined.

In the phlebovirus RVFV, the NSs and NSm proteins are

FIG. 4. Indirect immunofluorescence assay (IIFA) with GOUV
and phleboviruses. GOUV-infected C6/36 cells were used to prepare
slides for immunofluorescence assays. GOUV infection was confirmed
by determination of infectious particles (5.0 � 104 TCID50/ml) and by
measurement of virus RNA copies/ml (5.27 � 1011/ml). GOUV-in-
fected cells were tested with mouse anti-RVFV serum (a), mouse
anti-RVFV nucleocapsid serum (b), human anti-sandfly fever virus
serum (Euroimmun AG, Lübeck, Germany) (c), mouse anti-UUKV
serum (9b) (d), and mouse anti-UUKV serum (8b) (e). Reactivity of
all sera was confirmed on IFA slides spotted with EU14 cells infected
with each respective virus. These slides were taken from the commer-
cially available “Sandfly Fever Virus Mosaic 1” and “Phlebovirus Mo-
saic 1” detection kits (Euroimmun AG, Lübeck, Germany). These
positive controls are shown as follows: mouse anti-RVFV serum (g),
mouse anti-RVFV nucleocapsid serum (h), human anti-sandfly fever
Cyprus virus (SFCV) serum (i1), human anti-sandfly fever Naples virus
(SFNV) serum (i2), human anti-TOSV serum (i3), and human anti-
SFSV serum (i4). Additional control experiments were done by incu-
bation of 2 different mouse anti-UUKV sera (designated 8b and 9b) on
IFA slides spotted with UUKV-infected BHK-21 cells, as shown in
panels k and l. Experiments with negative controls were performed
using uninfected C6/36 cells incubated with human anti-sandfly fever
virus serum (f), uninfected EU14 cells incubated with human anti-
sandfly fever virus serum (m), and uninfected BHK-21 cells incubated
with mouse anti-UUKV serum (9b) (n). IFA detection of human and
murine sera, respectively, was performed with an anti-human IgG
conjugate (Euroimmun AG, Lübeck, Germany) and with fluorescein
isothiocyanate (FITC)-labeled goat anti-mouse serum (Sifin, Berlin,
Germany). Cells were stained with DAPI (4�,6-diamidino-2-phenylin-
dole). Bars, 20 �m (C6/36 cells) and 50 �m (EU14 and BHK-21 cells).
All photographs were taken at equivalent exposure settings.
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dispensable for replication in cell culture but play a major role
in viral pathogenesis (9, 12, 25, 36). Orthobunyaviruses lacking
NSs proteins are likely nonpathogenic for humans (22). The
NSs proteins of phlebo- and orthobunyaviruses (RVFV,
Bunyamwera virus, La Crosse virus) efficiently inhibit type I in-
terferon synthesis and are relevant for infection of mammals
(2, 4, 5, 11, 35). NSs and NSm proteins might thus have been
acquired convergently by bunyaviruses during adaptation to
vertebrate hosts. This matches our observations that GOUV
could not be passaged to vertebrate cells, suggesting that the
virus might depend entirely on insects rather than vertebrates
for maintenance in nature (34). Indeed, our finding of GOUV
in two pools of male mosquitoes suggests transovarial or trans-
venereal transmission. This idea is supported by the existence
of an NSs protein in SFTSV that is phylogenetically placed
between GOUV and phleboviruses and that can infect verte-
brates (39).

To provide an estimate of genetic diversity within GOUV
viruses, the coding regions for Gn and Gc proteins were se-
quenced from eight randomly chosen isolates. The isolates
were clearly diversified, with a maximal distance of 4.1% at the
amino acid level (Fig. 3b and c). Phylogenetic analysis yielded
five major clades reflecting the established Bunyaviridae genera
and GOUV as an additional clade (Fig. 3a to d). GOUV was
placed in a basal phylogenetic relationship to the Phlebovirus
genus and was more distant from the SFG than UUKV and
SFTSV were, which already constitute outliers within the ge-
nus Phlebovirus (3).

To characterize the amino acid distance pattern within the
family Bunyaviridae, a distance matrix using the complete
RdRP ORFs was calculated (it should be noted that this anal-
ysis excluded SFTSV, due to its unclassified status). Viruses
within genera were found to be up to 47% distant from each
other, except for UUKV, which showed between 57 and 61%
distances from the SFG of phleboviruses (Fig. 3e). Intergenus
pairwise distances ranged between 77 and 90%. GOUV was
approximately equidistant from all bunyaviruses, with dis-
tances ranging between 74 and 88%.

To examine the antigenic distinction of GOUV from the
genus Phlebovirus, immunofluorescence assays were done on
GOUV-infected cells, using antisera against a broad panel of
prototypic phleboviruses, including SFV Toscana, Sicilia, and
Naples strains and RVFV, as well as UUKV. No cross-reac-
tivity was detected, while all controls showed reaction patterns
as expected (Fig. 4).

In summary, we have identified a prototypic mosquito-asso-
ciated bunyavirus that differs from the established bunyavirus
genera in all taxonomically relevant genetic features and that is
antigenically distinct. We assume that GOUV defines a novel
genus within the family Bunyaviridae.
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