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Carbonyl sulfide (COS) and C18OO exchange by leaves provide potentially powerful tracers of biosphere-atmosphere CO2
exchange, and both are assumed to depend on carbonic anhydrase (CA) activity and conductance along the diffusive pathway
in leaves. We investigated these links using C3 and C4 plants, hypothesizing that the rates of COS and C18OO exchange by
leaves respond in parallel to environmental and biological drivers. Using CA-deficient antisense lines of C4 and C3 plants, COS
uptake was essentially eliminated and discrimination against C18OO exchange (18D) greatly reduced, demonstrating CA’s key
role in both processes. 18D showed a positive linear correlation with leaf relative uptake (LRU; ratio of COS to CO2 assimilation
rates, As/Ac, normalized to their respective ambient concentrations), which reflected the effects of stomatal conductance on
both COS and C18OO exchange. Unexpectedly, a decoupling between As and 18D was observed in comparing C4 and C3 plants,
with a large decrease in 18D but no parallel reduction in As in the former. This could be explained by C4 plants having higher
COS concentrations at the CA site (maintaining high As with reduced CA) and a high phosphoenolpyruvate carboxylase/CA
activity ratio (reducing 18O exchange efficiency between CO2 and water, but not As). Similar As but higher Ac in C4 versus C3
plants resulted in lower LRU values in the former (1.16 6 0.20 and 1.82 6 0.18 for C4 and C3, respectively). LRU was, however,
relatively constant in both plant types across a wide range of conditions, except low light (,191 mmol photon m22 s21).

The seasonal cycling of CO2 concentration measured
in the background atmosphere is often taken as evi-
dence of the breathing of Earth and corresponds to
about 10 Pg carbon. This is less than 10% of what we
estimate to be the total cycling of CO2 due to respira-
tion and photosynthesis of the terrestrial biosphere
(Beer et al., 2010). The discrepancy stems from the fact
that most of the cycling CO2 mixes in the atmosphere
near the surface, and we only see the net sum of
respiration and photosynthesis, which are often more
or less balanced over the seasonal cycle. Modeling and
measurements of CO2 exchange by ecosystems over
diurnal cycles have been used to deconvolve the pri-
mary biological processes (e.g. Desai et al., 2008). How-
ever, our confidence in these approaches disintegrates
as we move to larger scales because of the increase in
the internal mixing of CO2 fluxes. Other approaches are
needed to quantify the basic physiological processes at
these scales.

Recent studies have identified another atmospheric
trace gas that may be helpful in this regard—carbonyl
sulfide (COS)—a chemical analog of CO2 that is
routinely measured by the National Oceanic and
Atmospheric Administration atmospheric sampling
program (Montzka et al., 2007). However, its cycling
differs from that of CO2. The major source of COS is
the ocean either by direct emission or via CS2 oxidation
(Kettle et al., 2002), and its major sink is the leaves of
the terrestrial biosphere, where it is taken up in paral-
lel with photosynthesis. There is no significant source
of COS from terrestrial ecosystems; hence, the mixing
between sources and sinks occurs on amuch larger scale
in the atmosphere. Several authors have suggested that
COS might be a good tracer for terrestrial gross pri-
mary productivity (GPP; Montzka et al., 2007; Blake
et al., 2008; Campbell et al., 2008; Suntharalingam
et al., 2008; Seibt et al., 2010). The initial development
of this tracer was built on theoretical insight into the
likely mechanism of COS uptake and a few empirical
studies that compared the rates of GPP and COS up-
take at the leaf scale (Sandoval-Soto et al., 2005). How-
ever, if the goal is to use COS exchange estimates as a
proxy for gross photosynthesis (or GPP) on larger
scales, then it becomes important to understand the
physiological basis for linking these fluxes.

At the leaf scale, correlations of both COS and CO2
fluxes with photosynthetically active radiation have
been interpreted as evidence of stomata-dominated
control of COS uptake rates, an interpretation that is
supported by the daily pattern of this flux (Bartell
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et al., 1993; Hofman, 1993; Kuhn et al., 1999; Xu et al.,
2002). Stimler et al. (2010a) also recently confirmed
that there is no leaf-scale compensation point for
COS, supporting the notion of no COS emission on
this scale. The deposition velocity (flux normalized to
concentration) for COS has been shown to be greater
than that for CO2 in most species, with a mean ratio
of the deposition velocities of COS to CO2 at the leaf
level of about 3 (Sandoval-Soto et al., 2005). Recently,
Campbell et al. (2008) expressed these ratios as leaf-
scale relative uptake (LRU):

LRU ¼ ðAs
=A

cÞ3ðCc

a=C
s

aÞ ð1Þ
where A is the leaf uptake rate, Ca is the ambient con-
centration, and superscript s and c denote COS and
CO2, respectively. As clearly revealed by Campbell et al.
(2008), characterizing LRU and its response to environ-
mental and physiological drivers is key to incorporat-
ing COS measurements into flux-partitioning studies.

In vitro studies have established that COS, which
is meta stable in water, can be hydrolyzed to H2S
and CO2 by the enzyme carbonic anhydrase (CA;
Kluczewski et al., 1985; Lorimer and Pierce, 1989;
Miller et al., 1989; Tiwari et al., 2005; see also Yakir, 2002).
This enzyme is ubiquitous in plant leaves and is thought
to be the biochemical sink for COS, which is further
enhanced as this is an exergonic reaction, making the
reverse reaction unfavorable (Liu et al., 2010):

H2Oþ COS !CACO2 þH2S ð2Þ

This enzyme is also known to catalyze the exchange
of stable isotopes of oxygen between CO2 and leaf
water. This isotopic exchange can be monitored
by measuring the change in the 18O content of CO2 in
gas exchange as well as in large-scale flux studies
(Farquhar et al., 1993; Yakir and Wang, 1996; Gillon
and Yakir, 2001). For CO2, CA facilitates the reversible
hydration (Lindskog and Coleman, 1973):

H2Oþ CO2 4
CA

Hþ þHCO2
3 ð3Þ

This reversible hydration/dehydration of CO2 pro-
vides the opportunity for efficient 18O exchange be-
tween leaf water, normally enriched in 18O, and CO2
inside the leaf (Francey and Tans, 1987; Farquhar and
Lloyd, 1993; Farquhar et al., 1993; Yakir and Wang,
1996; Gillon and Yakir, 2000, 2001; Seibt et al., 2007).

C18O16O isotopic exchange and COS flux can be
expected to respond to the same variables. Sufficient
CA activity is needed to both bring about full isotopic
equilibrium and maintain near-zero COS concentra-
tion at the site of CA activity. Furthermore, the same
diffusion resistances limit both the inward diffusion of
COS flux into leaves and the retrodiffusion of 18O-
labeled CO2 back into the atmosphere. Note, however,
that the diffusion gradient of CO2 is driven by the
photosynthetic flux, while that of COS is independent
of it.

Recognizing the potential importance of incorpo-
rating COS into gas exchange and flux measurements,
we developed a laser-based instrument for the contin-
uous measurement of COS concentration at normal
atmospheric levels (approximately 400 parts per tril-
lion, or one-millionth the concentration of CO2). This
instrument enables conducting gas exchange studies
analogous to those typically conducted with nondis-
persive infrared gas analyzers (Stimler et al., 2010a).
A subsequent study (Stimler et al., 2010b) examined
the stoichiometry of COS and CO2 fluxes in leaves of
C3 and C4 species with particular emphasis on the
control of these processes by stomatal conductance
(gs). In this article, we focus on the mechanism of COS
uptake. We also hypothesize that COS uptake will be
closely linked to 18O labeling of CO2 during leaf gas ex-
change, and we take advantage of natural and genet-
ically engineered variations in CA to examine this
hypothesis.

RESULTS AND DISCUSSION

Relative COS/CO2 Uptake in C3 versus C4 Plants

Themean rates of net CO2 assimilation (Ac) and COS
uptake (As) and the fluxes involved are summarized in
Table I and Figure 1, respectively, and are consistent
with previous studies (Kesselmeier and Merk, 1993;
Sandoval-Soto et al., 2005; Stimler et al., 2010a). Due to
the higher Ac but similar As values for C4 compared
to C3 plants, the LRU values were higher in the lat-
ter (Table I; Fig. 2; see Kesselmeier and Merk, 1993;
Sandoval-Soto et al., 2005; Seibt et al., 2010; Stimler
et al., 2010a). Irrespective of these differences, the
results showed that, as noted previously for C3 plants
(Stimler et al., 2010a), LRU is relatively constant across
a wide range of light intensities in both C3 and C4
plants. Large deviations were only observed under
low light (,191 mmol photon m22 s21), when the ratio
could increase to up to 9.6 in both C3 and C4 plants
(Fig. 2B). These results support the assumption that
both Ac and As are influenced to a similar extent by
stomatal conductance. Indeed, As was linearly corre-
lated to gs (A

s = 322.0gs + 11.2; r2 = 0.78, P , 0.0001 for
C3, and As = 109.0gs + 3.4; r2 = 0.86, P , 0.0001 for C4).
The deviations from the relatively constant LRU under
low light probably reflect the light dependency of
Rubisco activation and of ribulose 1,5-bisP supply,
whereas CA activity is presumably light insensitive
(Sage and Sharkey, 1987).

Stomatal conductance is only one of the two major
factors regulating leaf COS exchange. Ultimately, COS
uptake depends on the reaction rate of COS with CA
and water to produce CO2 and H2S (Eq. 2; Liu et al.,
2010; Stimler et al., 2010a). Here, we confirmed the
critical role of CA by carrying out light response
experiments with CA-deficient antisense lines of C3
and C4 species (Price et al., 1994; von Caemmerer et al.,
2004). COS uptake was essentially eliminated in both
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of these antisense lines (Fig. 3). In the C3 plants, this
was not associated with significant changes in gs or A

c

(Fig. 3, A, C, and E). In C4 plants, however, antisense
lines also showed reductions in Ac and gs (Fig. 3, B, D,
and F). This presumably reflects the C4 pathway’s
dependence on bicarbonate, produced by the CA-
facilitated hydration of CO2.
Note that in this study, the use of CA-deficient

antisense lines did not address the entire range of CA
types or enzyme locations in the plants’ leaves (Fabre
et al., 2007). Nevertheless, the CA that was affected in
these lines clearly dominated the COS and 18O re-
sponse.

COS Exchange and 18D

Consistent with previous studies (Farquhar and
Lloyd, 1993; Gillon and Yakir, 2001), leaf-scale discrim-
ination against C18OO (18D) was correlated with Ccs/Ca
in all plants (Fig. 4D; where Ccs refers to CO2 concen-
tration at the chloroplast surface). Moreover, the C4
plants showed markedly lower 18D than the C3 plants.
This most likely reflects incomplete isotopic equilib-
rium between CO2 and water in the C4 leaves, and
accounting for this effect (i.e. ueq , 1; Gillon and Yakir,
2000, 2001) revealed consistent relationships between
18D and Ccs/Ca in both C4 and C3 plants (Fig. 4).
As expected (see above; see also Stimler et al.,

2010a), a clear negative correlation was observed be-
tween As and 18D. This correlation was apparent in all
leaves during the light response experiments, for both
C4 and C3 species (Fig. 4A, showing representative
species). Increasing light intensity was generally asso-
ciated with a decrease in 18D values and increases in
As. For example, As increased from 15 to 43 pmol m22

s21 and from 8 to 24 pmol m22 s21, whereas 18D
decreased from 84‰ to 13‰ and from 48‰ to 12‰
in amaranthus (Amaranthus cruentus) and sorghum
(Sorghum halepense), respectively. In C3 species, As

increased from 20 to 46 pmol m22 s21 and from 20 to

35 pmol m22 s21, while 18D values decreased from
157‰ to 40‰ and from 239‰ to 81‰, for sage (Salvia
longispicata 3 Salvia farinacea) and tobacco (Nicotiana
tabacum), respectively. This inverse correlation be-
tween As and 18D is readily explained by the effects
of gs and Ccs: Increasing gs with light intensity results
in increasing uptake rates of COS (as well as CO2). At
the same time, the increase in photosynthetic capacity
with increasing light intensity leads to a decrease in
Ccs, resulting in decreased retroflux of 18O-labeled CO2
out of the leaf and, consequently, in the observed
reduction in18D (see Farquhar and Lloyd, 1993; Gillon
and Yakir, 2001).

On average, a reduction of 75‰ in 18D was associ-
ated with a decrease in Ccs/Ca, from 0.7 to 0.4, in C3
plants and from 0.5 to 0.2 in C4 plants. As the decrease
in Ccs reflects a proportionately greater increase in pho-
tosynthetic capacity (influencing only Ac and not As)
relative to stomatal conductance (but gs influences both
Ac and As), it can be expected that the LRU will also
change under these circumstances. Indeed, linear rela-
tionships between LRU and 18D were observed (r2 =
0.76, 0.87, and 0.99) for the C4 species sugarcane (Sac-
charum officinarum), sorghum, and maize (Zea mays),
and r2 = 0.89, 0.98, and 0.79 for the C3 species hibiscus
(Rosa sinensis), tobacco, and sage, respectively. Group-
ing the results for the C4 and C3 plants yielded best-fit
lines of y = 0.51x2 4.58with r2 = 0.78 (P, 0.0001) for C4
plants and y = 0.03x 2 0.20 with r2 = 0.92 (P , 0.0001)
for C3 plants.

The COS-18D Link in C4 versus C3 Plants

The correlation between LRU and 18D covered the
entire range of both wild-type and CA-deficient anti-
sense lines of C3 plants (Fig. 5A), but not of C4 plants
(Fig. 5B), or in comparing C3 to C4 plants (Fig. 6).
Unexpectedly, while 18D was lower in C4 than in C3
plants, consistent with previous studies (Gillon and
Yakir, 2000, 2001), there was essentially no difference

Table I. COS versus CO2 uptake fluxes; simple (As/Ac) or normalized (LRU = As/Ac 3 ([CO2]/[COS])
ratio of COS and CO2 uptake rates, and COS total conductance under maximum-intensity light, for C4

and C3 plants

Gas exchange conditions during the light response experiments were T approximately 24�C, RH
approximately 70%, [COS] approximately 550 pmol mol21, and [CO2] = 400 mmol mol21; two to five
replicates per species; SD is indicated in parentheses.

Plant Species As/Ac LRU As Ac gt
s

mmol mol21 pmol m22 s21 mmol m22 s21 mol m22 s21

C4

Maize 1.97 (0.50) 1.05 (0.76) 42.33 (3.65) 16.23 (5.04) 0.17 (0.18)
Sorghum 1.91 (0.39) 1.05 (0.44) 34.10 (13.91) 20.20 (4.18) 0.09 (0.06)
Amaranthus 2.51 (0.85) 1.37 (0.79) 41.54 (10.38) 17.48 (3.72) 0.13 (0.04)
Average 2.13 (0.33) 1.16 (0.18) 39.32 (4.54) 17.97 (2.03) 0.13 (0.04)

C3

Tobacco 2.61 (0.96) 1.63 (0.36) 27.01 (4.89) 9.41 (2.08) 0.1 (0.03)
Sage 2.67 (1.11) 1.82 (0.89) 40.80 (24.38) 13.50 (5.71) 0.05 (0.03)
Hibiscus 2.87 (1.28) 2.02 (0.29) 40.23 (12.68) 9.91 (1.25) 0.07 (0.02)
Average 2.72 (0.14) 1.82 (0.20) 36.01 (13.98) 10.94 (3.01) 0.07 (0.03)
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in the rate of COS uptake between the two photo-
synthetic groups (mean As values of 36.0 6 13.9 and
39.32 6 4.54 pmol m22 s21 for C3 and C4, respectively).
Other variables generally showed the expected differ-
ences between C3 and C4 leaves: Ac was markedly
higher, Ci/Ca (CO2) lower, and gs (CO2) similar in C4
compared to C3 leaves (Fig. 6; Table I). Ci

s/Ca
s (for

COS) was ,0.2, as observed previously in C3 plants
(Stimler et al., 2010a), but twice as high in C4 plants
(Fig. 6D), which may reflect differences in internal
resistances, as well as the fact that CA is located higher
up (toward the atmosphere) in the diffusive pathway
in C4 versus C3 leaves (see Fig. 1).

The explanation for the unexpected discrepancy
between changes in 18D and As in going from C3 to C4
plants can be based on two mechanisms. These mech-
anisms are outlined below, but at this stage we do not
have sufficient information to accurately quantify their
relative contributions.

First, note that as indicated above, low 18D values for
C4 plants result from incomplete isotopic equilibrium
between CO2 and water (Gillon and Yakir, 2000; Eq. 3),
which is assumed to be due to reduced CA activity
(observed in whole-leaf extracts of C4 leaves; Gillon
and Yakir, 2000). No parallel reduction in COS fluxwas
observed in the C4 plants examined (Fig. 6B), indicat-
ing sufficient CA activity. Note that in going from C3 to
C4 plants, gs remains similar but Ci/Ca (CO2) decreases
and Ci

s/Ca
s (COS) increases. This is likely because a

reduction in Ci
c (CO2) in C4 leaves is associated with

higher Ac, whereas an increase in Ci
s (COS) is associ-

ated with lower CA activity. The increase in Ci
s (COS),

Figure 1. Comparison of the diffusion pathways of COS and CO2 from
the atmosphere to the site of biochemical reactions in C3 and C4 leaves.
Concentrations of COS (pmol mol21) and CO2 (mmol mol21) are
indicated above and below the lines, respectively. Conductance
through resistance steps associated with the boundary layer, stomata,
and mesophyll (mol m22 s21) are indicated by gbl, gs, and gm, respec-
tively, based on leaves with net CO2 flux of 14 or 20 mmol m22 s21 (C3

and C4, respectively), and COS uptake flux of approximately 35 pmol
m22 s21 (for both plant types). Values of gm (0.3 mol m22 s21 for both C4

and C3 leaves, respectively) were estimated by Stimler et al. (2010a)
and incorporate dissolution, liquid-phase diffusion, and the biochem-
ical step (assuming first-order reaction); gm estimates for CO2 were
based on CO2 concentration at the hydration site derived from isotopic
measurements (Gillon and Yakir, 2001).

Figure 2. COS uptake rates (pmol m22 s21; A) and LRU values (B)
during light response measurements in C4 plants. Species used were:
maize, sorghum, and amaranthus. Conditions during the experiments
were: T approximately 24�C, RH approximately 70%, [COS] approx-
imately 550 pmol mol21, and [CO2] = 400 mmol mol21. Symbols
without error bars have SD , 2% (in section B only). Inset: LRU (the
normalized ratio of COS/CO2 uptake rates) under high light intensity.
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however, helps restore As to levels similar to those in
C3 plants. Therefore, given that As is a function of both
CA and the COS concentration at the enzyme site, the
higher Ci

s/Ca
s observed in the C4 plants (Fig. 6D) could

accommodate proportionately lower CA activity while
maintaining relatively high As values. This could ex-

plain, at least in part, the observed discrepancy in As

versus 18D. Accordingly, estimating total internal con-
ductance to COS, gsm (combining dissolution and the
biochemical steps, assuming a first-order reaction, as:
gm

s=1/[(Ca
s/As) 2 (1/(1.94/gs

w) + 1/(1.56/gbl
w))]; see

Stimler et al., 2010a), indicated a mean gm
s value of

Figure 3. Stomatal conductance (gs; mol m22

s21; A and B), CO2 uptake (Ac; mmol m22 s21;
C and D), and COS uptake (As; pmol m22 s21;
E and F) in tobacco (C3) and F. bidentis (C4)
wild-type and antisense lines with different
levels of CA activity during the light response
experiments. Conditions during the experi-
ments were as in Figure 2. Symbols (black
circles, white circles, and gray squares) indi-
cate wild type, moderate (10%, C3 and C4

plants), and low (2%, C3 only) CA activities
of the antisense lines, respectively.

Figure 4. Relationships between C18OO
(18D; ‰) and rates of COS uptake (pmol
m22 s21; A), CO2 uptake (mmol m22 s21;
B), and LRU (C), observed in C3 (circles)
and C4 (triangles) plants. Each curve
represents the full set of data from a
complete light response experiment. In
C, r2 values for the linear best-fit lines for
C4 and C3 plants are indicated (P ,
0.0001). D, The relationship between
18D and CO2 concentrations at the hy-
dration site (Ccs) from different light
response experiments and plants. Condi-
tions during gas exchangemeasurements
were as in Figure 2. Black circles and
crosses represent observed discrimina-
tion values; white symbols represent
predicted values based on the indicated
parameters and as described in Table II,
following Gillon and Yakir (2001).
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approximately 0.3 mol m22 s21 similar to our earlier
study and, considering the observed variations (about
60.5), similar for both C3 and C4 plants. This upholds
the high internal COS concentration near the biochem-
ical reaction site (Fig. 1).

The second mechanism that could help explain the
As versus 18D discrepancy (required when, for exam-
ple, the reduced CA activity accommodated by the
first mechanism remains too high to produce previ-
ously reported ueq values) relies on the fact that in C4
plants, the primary photosynthetic substrate is bicar-
bonate consumed by phosphoenolpyruvate carboxyl-
ase (PEPC; Cousins et al., 2007). A high ratio of PEPC
to CA activity, r, must result in reduced bicarbonate
concentrations which, in turn, reduce the efficiency of
the isotopic exchange between CO2 and water (the
ratio of Rubisco to CA activities is assumed to be low
and is neglected here; see Farquhar and Lloyd, 1993).
Since PEPC activity directly influences the hydration
rate, the apparent CO2 hydration rate constant, KH,
should not be identical to the CA rate constant, CAleaf,
originally used in estimating ueq (Gillon and Yakir,
2001). To account for this effect, we revised the dise-
quilibrium term introduced in Gillon and Yakir (2001),
substituting KH for CAleaf, where KH = CAleaf 3 (12 r),
to obtain:

ueq ¼ 12 e
2 ðKH=Fin=3Þ ¼ 12 e

2ðCAleafð12 rÞ=Fin=3Þ ð4Þ

where CAleaf is the hydration rate scaled to leaf con-
ditions (CAleaf = k/Fin, k is CA rate constant, Fin is the
gross CO2 influx rate, mmol m22 s21), and 3 reflects the
slower isotopic exchange associated with the three
oxygens in bicarbonate.

Limited information is available on the variations in
PEPC and CA activities among plant species. Based on
our gas exchange data, supplemented with values in
the literature (e.g. Cousins et al., 2007), we can assume
for a typical C4 leaf, with As of approximately 40 pmol
m22 s21 and Ci

s/Ca
s of approximately 0.4, midrange

CA activity of approximately 600 mmol m22 s21 and
PEPC activity of approximately 100 mmol m22 s21,
which yields r = 0.17. This, in turn, results in a dis-
equilibrium, ueq, value of approximately 0.7, consistent
with the observed mean value of approximately 0.6
(Fig. 4D) for our C4 plants. As expected, ueq values
approach zero and 1 when r values approach 1 and
zero, respectively. Note that the above estimates of the
r effects incorporate both the effect of the relatively
high PEPC activities and the high Ci

s in C4 leaves.
Similar effects of PEPC on 18D have been demonstrated

previously using amaranthus (C4) plants with differ-
ent levels of PEPC (Cousins et al., 2007). In that study,
suppressing the enzyme activity by a factor of approx-
imately 40 enhanced 18D from 16.8‰ to 207‰, consis-
tent with our results, but this was ascribed to errors in
estimating CA activities. Note that in C4 plants, there
was no change in 18D between the wild-type and
antisense lines (Fig. 5B), which may indicate similar
CA/PEPC in both plants or an effect on 18D of CA/
PEPC in the wild type similar to the reduced CA in the
antisense plants.

Our current, preliminary, perspective of the links
between COS uptake rates and 18D, summarized in Fig-
ure 5C, highlights three points. First, 18D in C4 plants is

Figure 5. Relationship between LRU and 18O discrimination (18D) in
plants with different levels of CA activity (antisense lines). A, Mean
values in C3 species (tobacco) with moderate and low levels of CA
activity (percent of wild type). B, Data of C4 species (F. bidentis) with
moderate CA activity. Values are based on light response experiments
under high light intensity (1,889 mmol photon m22 s21) and all other
conditions as in Figure 2. C, Schematic summary of the relationships
between LRU and 18D values, indicating the possible factors underlying
the observed changes based on data from A and B. CA deficiency
eliminates COS uptake (LRU approaches zero) and reduces 18O
discrimination (18D) in both C3 and C4 plants. Compared to C3 wild-
type plants, the C4 wild-type (WT) species show a small decrease in
LRU (lower As/Ac due to high Ac values in these plants) but a large
decrease in 18D (PEPC in these plants limits 18O exchange and CO2-
water isotopic equilibrium).
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markedly reduced compared to C3 plants, as has been
repeatedly reported. Second, CA activity is key to both
18O discrimination and COS uptake. Third, 18D and
LRU are decoupled in C4 plants because of the high Ci

s

and reduced bicarbonate concentrations associated
with high PEPC activity.

CONCLUSION

In this study, we extend our previous results show-
ing that LRU is relatively constant in both C3 and
C4 plants. We show that the two processes, COS up-
take and C18OO exchange, can be measured simul-

taneously and that their rates are closely correlated,
whether modulated by changing environmental con-
ditions or by manipulating the activity of the key
enzyme CA. The unexpected decoupling of COS and
C18OO exchange in comparing C3 and C4 plants dem-
onstrated that our understanding of CA reaction and
18O discrimination in leaves is incomplete. Both COS
and C18 can serve as potentially powerful tracers of
plant-atmosphere CO2 fluxes, and as a means to par-
tition these fluxes to their gross components. Using the
observed links between COS and 18D could greatly
improve their use as tracers and constrain interpreta-
tions of the underlying processes.

Figure 6. Relationships between gas exchange pa-
rameters and 18O discrimination (18D) in C3 and C4

plants. A and B, Rates of CO2 uptake (Ac; A) or COS
uptake (As; B); C and D, ratio of intercellular to
ambient concentrations of CO2 (Ci

c/Ca
c; C) and COS

(Ci
s/Ca

s; D); E and F, total leaf conductance of CO2

(gt
c; E) or COS (gt

s; F). Data are compiled from
different light response experiments with C4 (circles)
and C3 (squares) species. Each data point represents
four to six measurements (SD is indicated). Black
symbols indicate mean values. C4 species used were
maize, sorghum, and amaranthus, and C3 species
were sage, tobacco, and hibiscus.

Table II. Isotopic and gas exchange values for a C4 plant (amaranthus) based on light response measurements (compare, Fig. 4D)
18Dm and 18Dp are measured and predicted 18O discrimination (‰) when ueq = 1 and ueq = 0.6 (full or partial isotopic equilibrium, respectively), « =

Ccs/(Ca 2 Ccs) where Ca and Ccs indicate ambient and chloroplast surface CO2 concentrations, Dea is isotopic discrimination between atmospheric
CO2, da, and that in equilibrium with leaf water, de: Dea = 1,0003 [(de/1,000 + 1)/( da/1,000 + 1)2 1]. Irradiance values are in mmol photon m22 s21.
Analysis and definitions are based on Gillon and Yakir (2001).

Irradiance 18Dm 18Dp (ueq = 0.6) 18Dp (ueq = 1) « Dea

171 30.2 30.35 48.87 0.95 35.55
352 31.1 31.58 51.10 1.00 31.25
524 23.35 23.62 36.93 0.72 31.30
1,179 16.95 17.26 25.54 0.45 32.78
1,889 3.77 10.20 14.20 0.18 34.59
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MATERIALS AND METHODS

Plant Material

C3 species sage (Salvia longispicata 3 Salvia farinacea), tobacco (Nicotiana

tabacum), and hibiscus (Rosa sinensis) were purchased from local nurseries. C4

species maize (Zea mays) and sorghum (Sorghum halepense) were grown from

seeds in the greenhouse, while amaranthus (Amaranthus cruentus) and sugar-

cane (Saccharum officinarum) were purchased from nurseries. CA-deficient

antisense line and wild-type seeds of tobacco (C3) and Flaveria bidentis (C4)

were contributed by Prof. S. von Caemmerer (Australian National University)

and grown in the greenhouse. Various levels of CA activity were achieved

using the suppression methods described by Price et al. (1994) and von

Caemmerer et al. (2004). Plants were kept under ambient light and temper-

ature during the experimental period.

Gas Exchange Measurements

Uptake rates of CO2 and COS were measured in all C3 and C4 plants with

attached leaves. The experimental system consisted of a flow-through leaf

cuvette made of Teflon-coated stainless steel with a magnetically operated fan

and a glass window at the top. A whole leaf or branch was sealed in the

cuvette (O-ring seal except around the petiole, which was sealed with high-

vacuum putty). Measurements were performed under a relative humidity

(RH) of approximately 70% and an air temperature of approximately 24�C.
Light intensity was 55 to 1,889 mmol photon m22 s21, regulated with layers of

miracloth, and filtered through 5 cm of water. Continuous airflow coming out

of the cuvette was split into two paths for COS and CO2 analysis. Following

the CO2 analysis, the sampled air was passed through a magnesium perchlo-

rate drying trap (Sigma-Aldrich) to remove water before collecting the air in

115-mL flasks for analysis of the isotopic composition of CO2. COS and CO2

mixing ratios in air entering the leaf cuvette were adjusted to the desired

values by mixing purified synthetic air with known gas mixtures produced

from a COS-permeation device (VICI Metronics), and a compressed gas

mixture of 1% CO2 in air, followed by a three-stage dilution system. All flow

rates were regulated and measured by mass-flow controllers (MKS).

CO2 and COS Analyses

CO2 and water-vapor concentrations in the air entering and leaving the leaf

cuvette were measured by an infrared gas analyzer (Li-6262; Li-Cor) at a

precision better than 0.5 mmol mol21 for CO2 and 0.1 mmol mol21 for water

vapor.

COS concentrations were measured using a mid-IR dual quantum cascade

laser spectrometer (Aerodyne Research Inc.) at a wavenumber of 2,056 cm21

with a LN2-cooled HgCdTe (MCT) detector (Kolmar Technologies) as de-

scribed by Stimler et al. (2010b). Briefly, direct detection of the absorption

spectrum was followed by quantitative spectral fitting combined with the

measured pressure, temperature, and path length of the absorption cell and

the laser spectral line width using TDL WINTEL software, as described by

Nelson et al. (2004). The concentrations of COS and the laser line widths were

determined in real time from the spectra through a nonlinear least-squares

fitting algorithm that uses spectral parameters from HITRAN (Rothman et al.,

2003). The data analysis procedure included pulse normalization reduction of

the sample signal and automatic background correction (N2). Pulse normal-

ization corrects for variations in pulse-to-pulse amplitude in pulsed laser

systems, by normalizing the signal pulse train to a reference pulse train. The

automatic background correction divides the sample spectra by the spectrum

of dry N2. Corrections were carried out every 300 s.

Isotopic Analysis of CO2

Oxygen isotope analysis of CO2 was based on sampling CO2 in the air

entering and exiting the leaf cuvette by passing it through a 115-mL glass flask

under atmospheric pressure. The CO2 in the flask was measured as described

by Klein et al. (2005). Briefly, a 1.5-mL aliquot was removed from each flask

into a sampling loop and the CO2 was cryogenically trapped using helium as

the carrier gas. It was then passed through a Carbosieve G-packed column at

70�C to separate N2O, and the eluted CO2 was analyzed in a Europa 20-20

continuous-flow isotope ratio mass spectrometer (Crewe). Batches of 15 flasks

at a time were measured from an automated manifold system, with five flasks

of a standard gas being measured for every 10 samples at a precision of 0.2‰.

Results are expressed in the small d notation (d‰) versus VPDB-CO2 for
18O,

where d‰ = (Rsample/Rstandard 2 1) 3 1,000 and Rsample and Rstandard are the

isotopic ratios of the sample and the appropriate standard, respectively.

Instantaneous leaf discriminations, D, were calculated as described by Evans

et al. (1986) for 13C and extended to 18O (Gillon and Yakir, 2001). The isotopic

composition of CO2 in air supplied to the leaves during the experiments was

around d18O = 227‰. The d18O values of water supplied to the plants was

25‰, and that of leaf water at the evaporating surfaces was estimated using

the modified Craig-Gordon model (Craig and Gordon, 1965; Farquhar and

Lloyd, 1993) to be 10‰ 6 2‰ (depending on conditions and species).

Leaf discrimination against C18OO, 18D, and the extent of CO2-water

isotopic equilibrium, ueq, were calculated as detailed by Farquhar and Lloyd

(1993) and Gillon and Yakir (2000). Calculation of CO2 concentration at the

hydration site (Ccs) was based on the difference between the measured and

predicted discrimination against 13C (13D) as described by Gillon and Yakir

(2000), based on the approach of Evans et al. (1986). For 18D estimation in C4

plants, incomplete isotopic equilibrium (ueq) was assumed, as measured by

Gillon and Yakir (2001).
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