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Abstract

One of the most striking aspects of animal groups is their remarkable variation in size, both within and between species.
While a number of mechanistic models have been proposed to explain this variation, there are few comprehensive datasets
against which these models have been tested. In particular, we only vaguely understand how environmental factors and
behavioral activities affect group-size distributions. Here we use observations of House sparrows (Passer domesticus) to
investigate the factors determining group-size distribution. Over a wide range of conditions, we observed that animal group
sizes followed a single parameter distribution known as the logarithmic distribution. This single parameter is the mean
group size experienced by a randomly chosen individual (including the individual itself). For sparrows, the experienced
mean group size, and hence the distribution, was affected by four factors: morning temperature, place, behavior and the
degree of food spillage. Our results further indicate that the sparrows regulate the mean group size they experience, either
by groups splitting more or merging less when local densities are high. We suggest that the mean experienced group size
provides a simple but general tool for assessing the ecology and evolution of grouping.
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Introduction

Groups of animals are seen engaged in behaviors as diverse as

social foraging [1,2], predator detection [3,4], and navigation

[5,6]. There are a whole range of costs and benefits to individuals

in groups and understanding why and how groups form is

fundamental to understanding social behaviors [7]. One of the

most basic questions about these groups concerns their size

distribution. Group sizes of animals often range over several orders

of magnitude, even when these different sized groups contain

members of the same species living in similar environments [8].

What determines these group sizes and why there is such a

variation in their size?

The theoretical study of animal group sizes can be approached

both in terms of function and mechanism [9,10]. The first

mechanistic models emphasized the use of the negative binomial

distribution for animal group-size distributions [11,12,13]. Under

the negative binomial distribution, the probability of observing a

group of size N is given by

W (N)~
Nzr{1

r{1

� �
(1{p)rpN ðequation1Þ

Okubo predicted that group sizes should follow a geometric

distribution, which is a specific case of the negative binomial with

r = 1, and he presented a number of empirical cases where this

relationship held [14]. The Poisson distribution is also a single

parameter special case of the negative binomial obtained by letting

r go to infinity while holding the distribution mean constant.

While the negative binomial distribution does fit some datasets,

the most striking aspect of many empirical observations is the large

variance and long tail of group-size distributions (i.e. the

occurrence of very large groups) [15]. Even the geometric

distribution, which maximizes the variance of the negative

binomial distribution does not capture the extent of this variation,

with group sizes often ranging over several orders of magnitude. A

number of alternative mathematical models have tried to explain

the mechanisms through which group-size variation arises

[14,16,17,18,19,20,21]. For example, Bonabeau and Dagorn

proposed a model for animal grouping based on a single

assumption: if groups meet they always merge to form a larger

group [17,18]. Their model predicts power law distributions of

group sizes, which appeared consistent with some observational

data of fish and mammals. In particular, they proposed that

truncated power laws such that the probability of finding a group

of size N is

W (N)!N{acN ðequation2Þ

where a.0 and 0,c,1 are constants, should be wide spread in

nature. The parameter a determines the slope of the power law

and c determines the point at which the power law is truncated.

Similar results were found by Sjöberg [8], although they used a

slightly different truncation scheme.

Recently, Niwa proposed a simple distribution of animal

grouping and tested it against fish schooling data [20,21]. He

predicted that the probability W(N) of observing a group of size N

is proportional to
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W (N)!N{1(1{
1

NP

)N ðequation3Þ

where NP is the expected group size experienced by a randomly

chosen individual including the individual itself (see also [22]). The

key model parameter NP can be estimated directly from

observations, i.e.

NP~

Pg
N~1 N2W (N)Pg
N~1 NW (N)

ðequation4Þ

where g is the maximum observed group size, and W(N) is the

observed fraction of groups of size N. NPis generally larger than

the observed mean group size,
Pg

N~1 NW (N), since randomly

chosen individuals are more likely to be in larger groups. A

detailed derivation and discussion of equation 3, which is known as

the logarithmic distribution, can be found in [23].

The logarithmic distribution provides a simple, single parameter

model of group-size distribution. There are several reasons to

expect it to be of practical use [23]. Firstly, both Niwa [20,21] as

well as Gueron and Levin [16] give first principles derivations of

this model based on simple rules for how animals leave and join

groups. Secondly, there is a very natural relationship between the

model’s parameter and a naturally observable feature, i.e. the

average group size experienced by an individual. Finally, and most

importantly, Niwa showed that group-size distributions for six

different fish species were all accurately fitted by equation (3) [20].

This was a remarkable observation, simply by determining NP for

a particular species, Niwa was able to predict the entire

distribution of group sizes. Finally, the logarithmic distribution is

a special case of both the truncated power law in equation 2, with

a = 1 and c = (1-1/NP), and the negative binomial distribution as r

goes to zero [23].

While Niwa’s and other truncated power law models provide

elegant descriptions of group-size distributions, they do not address

the functional or ultimate questions about why groups form.

Niwa’s derivation of the logarithmic distribution was purely

mechanistic. It postulated that if groups merge and split in a

certain way we expect a particular relationship between the

expected group size experienced by an individual and the overall

group-size distribution. This mechanistic approach can be

contrasted with a functional approach that calculates the costs

and benefits of group membership to find an optimal group size.

Living in groups provides benefits in terms of increased safety from

predators, information transfer and energy conservation, but costs

in terms of increased rate of disease transmission or competition

over limited resources [7,24]. Sibly further argued that, even when

we know the benefits and costs of grouping, isolated individuals

can gain by joining a group even when that group is larger than

optimal [25]. Few empirical studies have established a clear

relationship between the mean group size and costs and benefits to

an individual as a result of group membership, although see

[24,26] for notable exceptions.

Understanding why groups have certain typical sizes and

distributions and how these change with external factors is central

to understanding the social dynamics of groups. Jovani et al. [27]

have recently looked at how group-size distribution is affected by

population density, transitioning from a power law to a truncated

power law when the population increases. Here, we provide a

comprehensive investigation into the role of environmental factors

and behaviors on group-size distributions of House sparrows

(Passer domesticus). House sparrows in a rural valley in southern

France were chosen as a study system due to their tendency to

form non-familial groups outside of the breeding season. This

small-sized passerine generally lives in close proximity with

humans and benefits from feeding on food spills that result from

agricultural practices [28]. During the breeding season sparrows

breed in pairs and defend the area surrounding their nesting site

against conspecifics. Outside the breeding season sparrows form

groups that roost and forage together. While most pairs split after

the breeding season and re-mate during winter with a different

individual, some pairs remain together between breeding seasons

[29]. The natural variation in the environment at our study site

was used to identify the factors which determine not only average

group size, but also the distribution of group sizes. In doing so, we

aimed at linking the mechanistic explanations of group-size

distribution in sparrows to the ultimate reasons why animals form

groups.

Results

Sparrow group-size distribution over all distributions varied

between 1 and 46 (fig. 1) while the average group size experienced

by an individual was NP = 7.33. We fitted four alternative single

parameter models to the data: a Poisson distribution (conditioned

on group sizes being greater than or equal to one), a geometric

distribution, a power law and the logarithmic distribution

(equation 3). Figure 1 shows the best fit of each model, while

table 1 gives fitting statistics and the estimated parameter values

are given in figure 2. The best fit of all the models was provided by

the logarithmic distribution (with NP = 6.36). The Poisson

distribution provided a very poor fit to the data (AICd.5000)

and is not shown in figure 1. The geometric distribution fit well in

the middle of the distribution but not in the tail (AICd= 637). The

empirical distribution was not a straight line in a log-log plot and

as such was poorly fit by a pure power law (AICd= 2489).

Although a x2 test would lead us to reject all these theoretical

distributions as perfectly describing the data, the logarithmic

distribution provides the best single parameter description of the

data.

In terms of AIC, the logarithmic distribution also outperformed

both of the alternative two parameter models: the negative

binomial distribution (equation 1) and a truncated power law

(equation 2). The best fit for the negative binomial distribution was

consistent with that predicted by geometric distribution (i.e.r ~ 1).

The maximum likelihood estimated parameters of the truncated

power law were a = 0.99 and c = 0.84. These values are almost

identical to those given by the logarithmic distribution (i.e. a = 1

and c = 1-1/NP = 1-1/6.36 = 0.84). It is thus unsurprising that the

AICd= 2 and the logarithmic distribution has a better fit when the

number of parameters are accounted for. Since all the alternative

models were rejected by x2 test, and the truncated power law was

the second best model after the logarithmic distribution by AICd,

we tried to fit the data with truncated power law which minimizes

x2 value using the same class division as stated above. The best x2

value we got was x2 = 14 when a = 1.45 and c = 0.91, this result

passes x2 test, but meanwhile it has a higher AICd= 191

compared to the truncated power law fit by MLE (AICd= 2)

and a lower R2 = 0.93.

An alternative approach is to check the multiplicative binned

data in log-log plot. A previous study showed that multiplicative

binned log-log plot was better for empirical fat-tailed group size

data [27]. We used this technique to compare different alternative

models. Table 1 summarizes the five different criteria we used for

model fit. Overall different fitting methods show little qualitative

difference in terms of their predictions about which model fits the
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data best. The logarithmic is the best of all single parameter

models and better or only marginally worse than the truncated

power law.

Although the logarithmic distribution with NPestimated by

MLE was the best fit for our data, the same distribution with NP

estimated directly from data (i.e. using equation 4) also resulted in

a good fit. It even has a higher R2 value than the fit with MLE. It

is thus rather straightforward and convenient to use NPfrom the

data without losing much goodness of fit. We therefore used

NPdirectly from the data in the logarithmic distribution to assess

the influence of environmental factors (fig. 3 and 4).

To assess further which environmental factors affected the

group-size distribution we first inverse transformed the data and

used a generalized linear mixed model (table 2). The inverse

transform reflected the exponential tail of the distribution of group

sizes. Three factors were found to affect group size: morning

temperature on the day of the observation, place and behavior

while the degree of food spillage had a marginal influence on

group size. Factors that might reflect predation risk (e.g. the

number of cats) or disturbances (e.g. presence of humans) had no

significant effect on group sizes.

Sparrows aggregated in larger groups on cold days than on

warmer days. To illustrate this effect we split the data set into two

halves in respect to morning temperatures. On cold days with low

morning temperature, the average group size experienced by an

individual was more than 50% larger (NP = 9.33) than on days

with warm morning temperatures (NP = 5.94). Niwa predicted

that a change in NP will result in a shift in the point at which

group-size distribution changes from a power law to exponential.

Such a shift is seen in the data when we plot group size

distributions below and above 6uC separately (fig. 3a,b). A similar

change of NPalso occurred when we use place and behavior (see

table 2 for the divisions) as criteria to divide the data into different

subgroups, the comparison of group size distribution for groups in

different places is shown in figure 3c,d and figure 4 compares

group size distributions for groups engaged in different behaviors.

Figure 1. Distribution of group sizes for all observations. Comparison of the empirical data (x) with Nmean = 2.9 and NP = 7.3, a power law
(dotted line) with a= 2.42, geometric distribution (dashed line) with p = 0.35, logarithmic distribution (solid line) with NP = 6.4, truncated power law
by MLE (almost congruent with the line for logarithmic distribution and thus not displayed) with a = 0.99, c = 0.84 and truncated power law by
minimizing x2 value (red line) with a = 1.45, c = 0.91 on a semi-log (A) and a log-log plot (B). Number of observations: n = 6070.
doi:10.1371/journal.pone.0023438.g001

Table 1. Comparison of five statistics for proposed models.

Distribution
AIC Rank
(d AIC)

R2

Rank
x2

Rank

R2 (log-log)
Rank

x2 (log-log)
Rank

Number of
parameters

Logarithmic (Np = 6.36 estimated by MLE) 1 (0) 2 (0.985) 2 (89) 2 (0.848) 1 (22) 1

Truncated Power Law (MLE) 2 (2) 2 (0.985) 3 (93) 1 (0.849) 2 (27) 2

Logarithmic (Np = 7.33 calculated from data) 3 (39) 1 (0.986) 4 (134) 3 (0.818) 6 (104) 1

Truncated Power Law (minx2) 4 (191) 5 (0.927) 1 (14) 4 (0.789) 4 (40) 2

Geometric (Negative Binomial) 5 (637) 4 (0.965) 6 (.5000) 6 (0.442) 3 (37) 1

Power Law 6 (2489) 7 (0.525) 5 (943) 5 (0.751) 5 (96) 1

Poisson 7 (.5000) 6 (0.619) 7(.10000) – – 1

Models are ranked in order of their AIC (Akaike Information Criterion) scores, and other ranking are given along with values for corresponding statistics.
doi:10.1371/journal.pone.0023438.t001
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Sparrow groups that were located on houses or in the air were

significantly smaller than groups that were sitting on hedges or on

a food source. Accordingly, flying sparrows were in smaller groups

than sparrows that were foraging. When perching, the main

activity of sparrows outside the breeding season, the mean

experienced group size was between those seen when flying and

foraging.

Do the sparrows actively regulate their group sizes or is it simply

determined by the density of the birds in a particular area? This

question goes to the heart of stable group size theory. If group size

is simply proportional to the number of birds available to form a

group then this would suggest that the birds’ aggregations result

only from a common attraction to particular features in the

environment, rather than an active regulation in response to other

individuals. In particular, Niwa [21] predicts that if there is active

aggregation then

NP!
r

p
ðequation6Þ

where r is the population density and p is the probability per time

step that a group splits apart. We can investigate this question by

looking at the effect of food spillage on group-size distributions.

Figure 5 reveals that the mean total number of birds per

observation increases with degree of food spillage (Wilcoxon

rank-sum test for different mean number of birds, no spillage vs.

spillage level 1 has z = 5.81 , P,0.001 , similar tests show statistical

difference between all spillage levels). However figure 5 also shows

that while sparrows aggregated in smaller groups in locations with

no food spillage, average group size experienced by the individual

did not increase with larger amounts of food spillage. Assuming

equation 6 holds, we thus predict that splitting rate increases with

group size to counterbalance the increase in local population

density.

Discussion

Our results support the robustness of the logarithmic distribu-

tion for describing animal group-sizes [20,21]. Unlike the fish

catch data used by Niwa, we used data sampled from wild birds in

a non-intrusive form of observation. While the match between

data and the logarithmic distribution is not perfect, it has a large

explanatory power. The differences between the model and data

are seen for groups of 2 to 4 birds which might be explained by

sparrows leaving and joining groups in established pairs [29]. The

addition of an extra parameter in the truncated power law did not

significantly improve the fit. The logarithmic distribution (equa-

tion 3) with either NP = 6.36 given by MLE or NP = 7.33 directly

from the data (equation 4) is a very good fit by the 5 statistics we

calculated. Given the single parameter NPhas a natural biological

interpretation, and is readily estimated from data, we would

propose the logarithmic distribution as a simple but general law for

animal grouping.

The relationship established by Niwa between mean group size

experienced by an individual and the distribution of group sizes

observed holds for groups of sparrows. The underlying biology of a

species determinesNP, but once we have estimated NP we can

then determine the group-size distribution of this species in full.

Distribution Distribution Function Parameter(s) estimation Empirical value 

Poisson 

Distribution !

2

N
eN −λ

 meanN
n
M

==λ̂  896.2ˆ =λ  

Geometric 

Distribution 

1)1( −− Npp  

meanN
p 1ˆ =  

345.0ˆ =p  

Power Law αα −Nk )(  11ˆ −+= nSa , ∑
=

−=
n

i
iNk

1

ˆ )(/1ˆ α  
422.2ˆ =α  

Logarithmic 

Distribution 
N

pp N
N

N
)11(

)ln(
1 1 −−  )*/11ln())ln(ln(*(maxargˆ MNSNnN pjpjjp −+−−=

[ ]5.1,5.2~ +−∈ pppj NNN  

357.6ˆ =pN  

327.7~ =pN  

Truncated Power 

Law 

NcNcak α−),(  )*)ln(*)),(ln(*(maxargˆ
,

McSacakna jijiji
+−=  

∑
=

−=
n

i

Na
i

icNk
1

ˆ )(/1ˆ
, [ ]2,45.0∈ia , [ ]99.0,5.0∈jc  

99.0ˆ =α  

84.0ˆ =c  

Figure 2. Maximum likelihood estimation for optional models. Where n = 6070 is the sample size, i.e. total number of groups observed; Ni

(i = 1,…,n) are all the observations, i.e. number of individuals in group i; and for convenience, we denote M~
Pn
i~1

Ni and S~
Pn
i~1

ln Nið Þ. For the

logarithmic distribution, the normalization factor is 1
�

ln Np

� �
(detailed derivation can be found in 23]). ~NNp is the expected group size experienced by

a randomly chosen individual, calculated directly from the data according to equation 4. We first calculated ~NNp and then searched the neighborhood
of ~NNp to get the N̂Np which maximizes the likelihood function.
doi:10.1371/journal.pone.0023438.g002
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This observation could apply over a wide range of species, and

prove a useful tool in characterizing interspecies differences and

differences between environments for a single species. We have

thus shown how Niwa’s model can be applied to study functional

aspects of group-size distribution.

NP allows us to assess how animals change their rate of leaving

and joining groups in response to environmental differences.

Individuals were more likely to form groups when foraging, which

might reflect the use of social information when looking for food

[7,24], or safer foraging conditions in a larger group [9]. As food

spillage increased and food became easier to find, the sparrows

regulated the mean group size they experienced by splitting more

often when local densities were higher.

The environmental and social factors do not affect the shape of

the distribution of group sizes, but instead the parameter NP varies

with different factors. Indeed, when we aggregate all of the data in

figure 1 we get similar distributions as in figures 3 and 4 albeit with

different NP. The mathematical reason for this scaling is that

equation 3 predicts an identical slope of N{1 for small and

medium sized N, independent of the truncation in the distribution

determined by NP. Furthermore, the probability of observing a

group of size above that of the truncation at NP decreases

exponentially fast, so that if we aggregate two such distributions

the rate of decrease lies somewhere in between that of the two

aggregated distributions. As a result, we see for example that in

figure 3a, NP = 9.3 for low temperatures and NP = 5.9 for higher

temperatures, but in the amalgamated data (fig. 1) NP = 7.3 lies

roughly half way between these two values.

Our study suggests that animals combine the group size they

experience with environmental factors to make grouping decisions.

Earlier studies of animal grouping have emphasized the use of

optimal and stable group sizes in the functional interpretation of

data. Optimal and stable points of a distribution are obtained by

finding the maximum or a particular extreme of group-size

distributions. Niwa’s model and our data show that even if

individuals change their rate of leaving and joining groups as a

function of environmental and social cues, we still expect to

observe a wide distribution of different group sizes. As a result NP

is a far simpler and more informative tool for assessing the

behavioral ecology of grouping than optimal or stable points on a

group-size distribution. By better understanding the mechanisms

that produce group-size distribution we are better able to assess the

functional aspects of grouping.

Materials and Methods

Study Site
We collected data for this study in a population of House

Sparrows between November 2007 and March 2008 in Lantabat,

about 40 km to the east of Biarritz, Southern France. The

community of Lantabat is located in a well confined valley that is

surrounded by a mountain ridge on three sides. The landscape

structure is characterized by small scale agriculture, in particular

by traditional sheep herding on small meadows as well as cattle

production. Maize is the only cereal crop cultivated in the valley

and is done so on a small scale for livestock use. The majority of

Figure 3. Effect of temperature and place on group-size distribution. Group-size distribution for initial morning temperatures below 6uC
(number of observations, n = 2113) (A), initial morning temperatures above 6uC (n = 3957) (B), for groups located in hedges or on food (n = 1668) (C)
and for groups located elsewhere (n = 4402) (D).
doi:10.1371/journal.pone.0023438.g003
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farm houses have traditional open maize storages where whole

maize cobs are stored in an outdoor frame, that the birds take

advantage of for foraging.

The settlements in the valley range from single houses (< 50) to

three larger hamlets with up to 30 houses. For our sparrow

surveys, we selected 36 settlements that were at least 100 m apart

from each other (mean distance between settlements = 252 m,

min = 110 m, max = 850 m). The size of the surveyed settlements

varied between one and 30 buildings (mean = 4.6).

Data ollection
Preliminary surveys showed that sparrows were not active on

days with high wind or rain levels and thus data were not collected

under these conditions. Each of the three observers surveyed the

same settlements and used always the same observation location

within the settlements. We choose different routes through the

study site to sample data in the same location at different times

during the day. To assess group sizes in the different locations, we

counted the number of groups in each location 10 times and

recorded the group size, place and activity (see below for detailed

definitions).

We used extensive observations before the onset of data

collection to come up with a meaningful definition of a group

[9]. An individual belonged to a group if it was at a maximum of

4 m away from the nearest sparrow. Upon arrival birds either (i)

joined an already present group (close contact, individuals

intermingle), (ii) actively avoided an already present group (and

landed further than 4 m away), or (iii) did not join any other

individuals independent of the context (i.e. foraging, perching).

This suggests that 4 m seems to be a biologically meaningful

distance to separate groups, although it is not possible to exclude

that this distance varies between contexts or individuals.

For the places we used the following categories:

air = sparrow flying

ground = sparrow located on ground, in a field or a meadow

hedge = sparrow located in a hedge (branches provide cover

down to the ground)

tree = sparrow located in a tree (lowest part of tree without

cover)

house = sparrow located on a building (house, barn, church,

derelict building)

wire = sparrow located on a wire, power line or phone line

For each group, we assessed the main activity of the group

members. In cases where sparrows in a group were displaying

more than one activity, we chose the activity in which most

members were engaged. For the assessment of the activities we

used the following categories:

fight = sparrows interacting aggressively either on the ground

or in the air, see [30] for definition of aggression.

fly = sparrow flying

forage = sparrow foraging or handling food

perch = sparrow perched.

In cases where the sparrows were hiding in dense vegetation

making it difficult to assess their behavior, we classified their

activity as out of sight.

Figure 4. Effect of behavior on group–size distribution. Group-size distribution for individuals who are fighting (number of observations,
n = 50) (A), flying (n = 942) (B), foraging (n = 199) (C) and perching (n = 4797) (D). Fighting distributions are adjusted to account for the fact that group
sizes must be equal to or greater than 2.
doi:10.1371/journal.pone.0023438.g004

Understanding Animal Group-Size Distributions
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We used a scan-sampling protocol [31] where we instanta-

neously scanned the location for sparrow groups once per minute

during a 15 min period with the help of binoculars. Upon arrival

to a location we used the first 2–5 min to locate sparrows and

count group sizes before starting data collection. We used the time

between scans to monitor changes in group sizes and locations to

be able to scan accurately again at the onset of the next minute. If

the sparrows were located in gutters, under the roof or in dense

hedges, group sizes might have been underestimated. In the three

large settlements with more than five buildings, all three observers

counted the sparrows simultaneously from three different locations

with a non-overlapping observation range. While this sampling

protocol did not allow counting the maximum number of

individuals present in a location, it gave a rough proxy for the

maximum number of sparrows in a location. Moreover, it allowed

for sampling of group sizes and group-size distributions in a

comparable manner in all locations.

To assess the effect of environmental variation between the

locations on group sizes, we surveyed the whole study site and

assessed if the settlement contained an active farm, a partially

active farm (farmers that were not actively farming large numbers

of livestock but still had a few chicken and/or ducks on their farm),

or if there was no active farm present. We also assessed the

number of livestock, the degree of animal food spillage categorized

as locations without food spillage (i.e. locations without farms and

thus no spillage of maize, chicken food, grains, manure, hay on the

ground), locations with minor food spillage (locations with few

animals which are fed (chickens, ducks) but no livestock), locations

with intermediate food spillage (farms with livestock some food

spillage in a few places), and farms with livestock with a large

degree of food spillage in the whole location. In addition we also

counted the number of cats present in each location as they can

prey upon sparrows.

During the observations, we noted all disturbances (presence of

a predator, human passing through the surveyed perimeter,

vehicles (car, tractor, HGV)) and the weather conditions. On each

observation day we recorded the morning temperature before

starting the surveys.

Fitting of Distributions
We used maximum likelihood estimation (MLE) to obtain the

parameters for all the proposed models. In fitting the distributions

we used all available data, i.e. all of the one minute observations

within each 15 minute period. The decision to use all the data is

based on the assumption that the group size distribution is in

equilibrium, whereby each leaving or joining event takes the group

from one point in the distribution to another. In any case, group

composition changed rapidly, so there was seldom replication of

group sizes from one minute to the next and large groups rapidly

split in to smaller groups. Although (as we state above) sampling

biases are likely to be small, we note that any potential bias would

occur for larger group sizes, thus weakening the fit of logarithimic

or power law distributions and strengthening the fit of the negative

binomial distribution.

Estimation results and details are shown in table 1. We also

estimated r and p for the negative binomial distribution NB(r,p)

(i.e. equation 1). However, MLE gave r̂r~1, which is identical with

the geometric distribution and the result is therefore omitted from

figure 2. For each of the proposed distributions - Poisson,

geometric, power law, logarithmic (equation 3) and the truncated

power law (equation 2) - we calculated five statistics to quantify the

difference between the observed WDi fraction of groups in size

class i and the theoretical probability density Wi. The first three

statistics are

Table 2. Generalized linear mixed model (GLIMMIX module in
SAS 9.1; exponential error function; Type III Tests of Fixed
Effects) showing the effect of independent model terms on
House sparrow group sizes (n = 6067 groups) in 36 locations.

Effect Num DF Den DF F Value P Value

Place a 5 5479 15.93 ,.0001

Activity b 4 5479 10.82 ,.0001

Morning temperature c 1 5479 30.48 ,.0001

Degree of food spillage d 3 5479 2.35 0.07

Number of cats 1 5479 1.03 0.31

Disturbance e 3 5476 1.76 0.15

Food sources f 1 5479 0.96 0.33

Livestock diversity g 1 5478 0.65 0.42

Distance nearest location h 1 5479 1.79 0.18

Weather i 2 5477 0.20 0.82

The effect of non-significant terms was estimated by adding them individually
in to the final model. Minute of scan was nested within site and date and added
as random factor into the model to control for the effect of repeated
observations within a given site.
a = Place: air, ground, hedge, tree, house and wires, food
b = Activity: fight, fly, forage, perch
c = Temperature in degree C
d = Food spillage: locations without food spillage (i.e. maize, chicken food,
grains, manure, hay), minor food spillage, medium degree of food spillage in
several places, large degree of food spillage in the whole location
e = Disturbance occurred during sampling (i.e. passing by car, human)
f = Number of different crops, animal foods stored at the site
g = Number of different stock in each site (i.e. horses, cows, sheep, pigs,
chicken)
h = Distance to next location in m
I = Weather during the observation: foggy, strong wind or rain, normal weather
(i.e. no fog, strong wind or rain).
doi:10.1371/journal.pone.0023438.t002

Figure 5. Effect of food spillage. The average group size
experienced by an individual (x) and the average total number of birds
per observation (N) for different food spillage levels. For the average
total number of birds per observation, we took the mean of each 15-
minute observation interval and averaged all the means in the same
food spillage level. The error bar shows the standard error of the means.
doi:10.1371/journal.pone.0023438.g003
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R2~1{
X
i[G

(Wi{W (Ni))
2=
X

(Wi{m)2

X 2~
X
i[G

(WDi{Wi)
2=Wi

and

AIC~2k{ ln (L)

In calculating R2 the set of size classes consisted of all group sizes

observed in the empirical data. For x2, we set 10 size classes, the

first class consisted of groups with size from 1 to 4, the second was

from 5 to 8, the third was from 9 to 12, …, and so on for the first

nine classes. The last class contained all groups whose size is no

smaller than 37. The third statistic, AIC, is the Akaike information

criteria [32,33], which takes both the fit and number of parameters

estimated into account. It is a test between models, an important

criterion for model selection. The AIC is based on the likelihood

function L, which is defined as

L~ P
n

i~1
W (Ni,H

_
)

where W (x,H) is the proposed probability density function of

group size x under parameter H. Since AIC is calculated to

compare the goodness of fit of all the proposed models, it is

sufficient to use

AICdi~AICi{ min
i

AICi

as the index of goodness of fit. Here AICi denotes the AIC value

for model i.

For high skewed distribution like exponential and power law

distribution, usually the error for data fitting is not normally

distributed, errors in the tail are underestimated by normal scale,

therefore we also calculated a further two R2 and x2 values for

data plotted on a log-log scale. The formula for these is given by

R2~1{
X
i[G

( ln (WDi){ ln (Wi))
2=
X
ieG

( ln (WDi){ ln (E(WDi)))
2

and

X 2~
X
i[G

( ln (WDi{ ln (Wi))
2= ln (Wi)

Effect of environmental variables on group sizes
Given that the individual group sizes followed a negative

exponential curve, we used the reciprocal transformation. This

transformation resulted in group sizes that followed an exponential

function. We used the GLIMMIX module in SAS 9.1 (SAS

institute, Cary, North Carolina) to analyze the data. We tested for

the effect of the environmental variables, temperature, cluster size

against an exponential error distribution. We included minute of

the sampling event nested within location identity and date as

random effects into the model. This allowed us to control for the

repeated sampling on each observation and the nested data

structure. We added in all models all explanatory terms of interest

and possible interactions, and subsequently dropped all terms that

did not influence the explanatory power of the model (a priori

a= 0.05).
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