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Abstract

Convincing concepts of redox control of gene transcription have been worked out for prokaryotes and lower
eukaryotes, whereas the knowledge on complex mammalian systems still resembles a patchwork of poorly
connected findings. The article, therefore, reviews principles of redox regulation with special emphasis on
chemical feasibility, kinetic requirements, specificity, and physiological context, taking well investigated
mammalian transcription factor systems, nuclear transcription factor of bone marrow-derived lymphocytes (NF-
jB), and kelch-like ECH-associated protein-1 (Keap1)/Nrf2, as paradigms. Major conclusions are that (i) direct
signaling by free radicals is restricted to O2

�- and �NO and can be excluded for fast reacting radicals such as
�OH, �OR, or Cl�; (ii) oxidant signals are H2O2, enzymatically generated lipid hydroperoxides, and peroxynitrite;
(iii) free radical damage is sensed via generation of Michael acceptors; (iv) protein thiol oxidation/alkylation is
the prominent mechanism to modulate function; (v) redox sensors must be thiol peroxidases by themselves or
proteins with similarly reactive cysteine or selenocysteine (Sec) residues to kinetically compete with glutathione
peroxidase (GPx)- and peroxiredoxin (Prx)-type peroxidases or glutathione-S-transferases, respectively, a pos-
tulate that still has to be verified for putative mammalian sensors. S-transferases and Prxs are considered for
system complementation. The impact of NF-jB and Nrf2 on hormesis, management of inflammatory diseases,
and cancer prevention is critically discussed. Antioxid. Redox Signal. 15, 2335–2381.
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‘‘It was clear as mud but it covered the ground and the confusion made the brain go ’round.’’
—Harry Belafonte (27)

I. Introduction

Activation of gene transcription has for long been
considered to be primarily, if not exclusively, regulated

by cascades of protein phosphorylation and de-phosphory-
lation. Screening the reviews that were written in the nineties
(18, 114, 116, 117, 492) or even during the present decade (115,
118, 431, 433) by pioneers in protein phosphatase (PP) or ki-
nase research such as Edmund Fischer, Joseph Schlessinger, or
Axel Ullrich, it is hard to detect any hint that gene activation
could be driven by anything else but phosphorylation, de-
phosphorylation of receptors, and/or downstream signaling
molecules. During the nineties, though, a second area was
recognized to be intimately related to transcriptional regula-
tion, the ubiquitin/proteasome system (69, 71, 73, 458, 480),
that had been shown to either degrade transcription factors
such as c-Fos and C-Jun (220, 463), p53 (420), hypoxia-
inducible factor 1a (HIF-1a) (230), Nrf2 (323), b-catenin (2),
and nuclear hormone receptors (342) or inhibitory cytosolic
complexes of transcription factors such as the complex of
nuclear transcription factor of bone marrow-derived lym-
phocytes (NF-jB) with its inhibitor IjB (240, 524). Other
proteolytic systems such as the calpains (220, 364) and cas-
pases (359) followed, and it became clear that these proteolytic
systems complemented the phosphorylation cascades (178,
240, 359). In parallel, the impact of redox processes on tran-
scriptional gene activation became obvious, although the
main focus of the oxygen clubs and free radical associations
remained the concern about the potential hazards of the re-
active oxygen species (ROS) (453).

In retrospect, the reluctance to accept oxidants as mediators
or modulators of regulatory processes is hard to understand.
Already in the early nineties vanadate plus H2O2 (177) or
peroxovanadium compounds were reported to mimic insulin
action, were recognized to act as phosphatase inhibitors (381),
and became widely used to enhance protein phosphorylation
in the analysis of kinase cascades in general. That this ana-
lytical trick could have a physiological correlate could also
have been guessed from publications of the seventies claiming
H2O2 to be a second messenger of insulin signaling (81, 319,
320). However, the concept that gene transcription might be
controlled by redox reactions remained dormant until an

important transcription factor in eukaryotes, the nuclear
transcription factor in B-cells NF-jB (19, 444, 455, 464), was
shown to be activated by compounds known to trigger pro-
duction of superoxide/H2O2 (440, 444) or by oxidants them-
selves, inter alia by H2O2, and inhibited by antioxidants (15,
440). Conceptually, an oxidative inactivation of phosphatases
leading to enhanced signal transduction emerged as a likely
mechanism (128).

Oxidative inactivation of phosphatases in signaling cas-
cades, however, did not for long remain the only possible
mechanism how oxidants could affect transcription. Micro-
biologists demonstrated that a direct oxidation of the tran-
scription factor OxyR may orchestrate the transcription of
defensive genes (11, 68). Other concepts followed, for exam-
ple, activation of protein kinases (PKs), redox-dependent
noncovalent binding of thioredoxin (Trx), thiol modification
of proteins that form cytosolic complexes with transcription
factors, or heterodimer formation of glutathione peroxidase
(GPx)- and peroxiredoxin (Prx)-type peroxidases with tran-
scription factors [reviewed in refs. (123, 134), see section
II.D.1].

The multiple ways of redox regulations that became obvi-
ous over the last two decades lead us to presume that most, if
not all, of the classical routes to transcriptional activation are
modulated by redox processes or even critically depend on
oxidant signals (Table 1). In this article we will briefly sum-
marize pertinent mechanistic principles. In this context, in-
sights from microbiology, which as usual is leading the field,
will be discussed in respect to their possible relevance to the
more complex mammalian systems. We then will focus on the
redox-sensitive mammalian pathways of gene activation,
choosing the two best investigated ones, the Nrf2 and NF-jB
systems, as paradigms of redox-controlled transcriptional ac-
tivation and basis for hormetic responses in higher organisms.

II. Mechanistic Principles in Redox Regulation

A. Indispensable components of regulatory circuits

As in technology in general, a biological regulatory circuit
needs a minimum set of elements to adapt the metabolic
system to special requirements: a signal and a sensor to
switch-on the adaptive process, a transducer, a modulator of
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Table 1. Mammalian Transcription Factors Regulated by Redox Events

Transcription
factor systems Main regulatory redox events Physiological consequences Refs.

AhR Hypoxia, competition of HIF and AhR
for ARNT is discussed

Inhibition of DNA binding (119)

AP-1 Enhanced phosphorylation of c-Jun
and c-Fos by activation of upstream
kinases (e.g., RTKs, MAPKs, PKCs
and/or inactivation of PPAs)

Enhanced association of c-Jun and c-Fos
with CBP/p300 and transcriptional
activation (inhibition of DNA binding
of c-Jun when phosphorylated by GSK3b)

(475)

Activation of ASK-1 due to oxidation
of associated Trx (or Grx)

De-inhibition of ASK-1 and activation
of JNK

(415)

Oxidant-induced dissociation of GSTp
or l from ASK-1 and JNK

Activation of JNK (488)

Oxidation of Cys154 in c- Fos
and Cys272 in c-Jun

Inhibition of DNA binding (1)

Reversal of Cys oxidation in c-Fos
and c-Jun by Trx and APE1/Ref-1

Prerequisite for DNA binding (475, 520)

b-catenin Thiol oxidation in nucleoredoxin Release of nucleoredoxin from dishevelled which
activates b-catenin

(139)

Egr-1 Oxidation of cysteines in the 3 Zn-fingers
reversible by APE1/Ref-1

Inhibition of DNA binding (193, 467)

FOXO Cysteine oxidation of PTP1b Activation of Akt, phosphorylation
and nuclear export of FOXO

(83)

Intramolecular disulfide formation
between Cys297 and Cys311 in Akt

Affinity increase of Akt for PP2A,
de-phosphorylation and inactivation
of Akt. FOXO remains in the nucleus

(83)

Oxidative activation of JNK Phosphorylation of FOXO, in this case prevention
of nuclear export thus counteracting Akt.

(83)

GR Zn-finger oxidation, reversible by Trx Inhibition of DNA binding (159)
HIF-1a Oxidation of Fe2 + to Fe3 + in HPH Inactivation of HPH, prevention of hydroxylation

and degradation of HIF, activation of HIF
(155, 475)

Reduction of Cys800 in HIF
by APE1/Ref-1 and Trx/TrxR

Increase in transactivation capacity of HIF (248, 293)

P53 Low oxidative activation of MAPKs Low phosphorylation/activation of p53, induction
of antioxidant and defense systems, cell growth

(412, 467, 475)

Enhanced oxidative activation of MAPKs Enhanced phosphorylation and activation
of p53, elimination of cells with mutations
by apoptosis

(412)

Oxidation of conserved cysteines in the
DNA-binding domain and Zn-fingers

Inhibition of DNA binding (391)

Reduction of Zn-coordinating cysteines
in p53 by APE1/Ref-1 and Trx/TrxR

Maintenance of DNA-binding capacity (54, 221)

Pax-5, - 8 Oxidation of Cys45 and 57 in Pax-8,
reversible by APE1/Ref-1

Inhibition of DNA binding (55, 426, 475)

Intramolecular disulfide formation
in Pax-5, reversible by APE1/Ref-1

Inhibition of DNA binding (476)

NF-jB Formation of an intermolecular disulfide
bond in LC8, reversible by TRP14

Enabling phosphorylation of IjBa
by IKKb followed by IjB degradation.
Release and activation of NF-jB

(227)

Reduction of Cys62 in p50 by APE1/Ref-1
and Trx/TrxR in the nucleus

Enhancement of DNA binding (159, 228)

Others See section IV
Nrf2 Modulation of Cys272 and Cys288 in Keap1 Conformational change of Keap1,

prevention of Nrf2 ubiquitination,
activation of Nrf2

(97)

Modulation of Cys151 Prevention of ubiquitination and
degradation of Nrf2, activation of Nrf2

(389)

Others See section III
Sp1 Oxidation of cysteines in 3 Zn-fingers Inhibition of DNA binding (508, 519)
TTF Oxidation of cysteines in the Zn-finger

domain, reversible by APE1/Ref-1
Inhibition of DNA binding (467, 475)

USF Cys229 and Cys248 cross-linking
by oxidants

Inhibition of DNA binding (377)

Interaction of HMG-1 (high mobility group
protein-1) with reduced USF

Enhancement of DNA binding (310)

ARNT, aryl hydrocarbon receptor nuclear translocator; ASK-1, apoptosis signal-regulating kinase-1; CBP, CREB-binding protein; Egr, early
growth response; FOXO, Forkhead box O; GR = glucocorticoid receptor; Grx, glutaredoxin; GSK3b, glycogen synthase kinase-3b; GST,
glutathione-S-transferase; HIF-1, hypoxia-inducible factor 1; HPH, HIF prolyl hydroxylase; IKK, IjB kinase; JNK, c-jun N-terminal kinase;
Keap1, kelch-like ECH-associated protein-1; LC8, dynein light chain 8; MAPK, mitogen-activated protein kinase; NF-jB, nuclear transcription
factor of bone marrow-derived lymphocytes; PKC, protein kinase C; PTP, protein tyrosine phosphatase; RTK, receptor tyrosine kinase;
TRP14, thioredoxin-related protein-14; Trx/TrxR, thioredoxin/thioredoxin reductase; TTF, thyroid transcription factor; USF, upstream
stimulatory factor.
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sensitivity, an effector, and a switch-off device. As is common
for biological processes, also the biochemistry of regulatory
circuits is more complicated. At best in prokaryotes, simple
versions resembling technical regulatory circuits appear to be
realized (Fig. 1). With increasing complexity of the organism,
the regulatory systems have to cross-talk with different
compartments of the cell, with the entire organism, and its
environment. They have no chance to operate in splendid
isolation; moreover, the resting position is not an equilibrium
but a snap shot of steady states of competing reactions within
the metastable and open system that defines life. The com-
plexity, thus created, has two important implications: (i) each
regulatory step under consideration has to be kinetically
competitive with a realm of competing reactions and (ii) the
signal has to be specifically transduced to the effector despite
possible side reactions and cross-talks between signaling
cascades. As will become evident, these two aspects are par-
ticularly relevant in redox regulation when the technical terms
of a circuit are to be translated into defined biochemical en-
tities.

Whereas, for example, the signal/sensor interaction in cy-
tokine signaling, that is, binding of a peptide to its receptor, is
unproblematic in respect to specificity, it is enigmatic how
signaling by promiscuously reacting ROS or radicals complies
with the specificity requirement of a meaningful redox regu-
lation. The other problem is raised by the abundance of su-
peroxide dismutases (SOD), heme-based peroxidases, GPxs,
and Prxs, which eliminate most of the ROS at rates that are
hard to beat. SODs dismutate O2

� - with rate constants
around 109 M - 1 s - 1 (251, 321); for peroxidases, the bimolec-
ular rate constants k + 1, which defines the oxidation of the
reduced enzymes by ROOH in analogy to Eq. 1 or 4, are
around 107 M - 1 s - 1 in case of heme enzymes (59); they range
from 104 to 107 M - 1 s - 1 for Prxs (489) and GPx-type peroxi-
dases (487) working with sulfur catalysis; they reach 108 M - 1

s - 1 for GPxs working with selenium catalysis (487), and rate
constants beyond 107 M - 1 s - 1 were also reported for perox-
ynitrite reduction by Prxs (101, 489). Whatever the signaling
molecule is, it should hit the sensor selectively despite com-
petition with a realm of extremely fast enzymes.

B. Radicals or hydroperoxides as oxidant
signals in redox signaling?

At least one radical, �NO, is an accepted signaling mole-
cule. It reversibly binds to heme prosthetic groups in guany-
late cyclases, thereby triggering a broad spectrum of
physiological events (136, 196, 302, 331), but signaling by �NO
is not commonly subsumed under the term redox signaling,
as long as �NO is not previously transformed to peroxynitrite,
which is an oxidant signaling molecule indeed but no longer a
radical (112, 430). Like �NO, the superoxide radical anion
O2
� - has the potential to bind reversibly to heme (322), but

evidence on regulatory consequence of this ability is scarce. Its
affinity to iron complexes is, however, widely used for redox
sensing by iron sulfur [Fe-S] clusters in bacteria. The tran-
scription factor SoxR responds to O2

� - with transcription of
MnSOD and other protective proteins (351, 518) and its bi-
nuclear (247) cluster proved to be functionally essential for
superoxide sensing (182), the mechanism being a univalent
oxidation of the complexed iron by O2

� - (82).
A recent thoughtful analysis by Forman et al. concluded

that there is neither evidence nor likelihood that redox regu-
lation is directly mediated by any of the fast reacting oxygen-
centered or other radicals that may arise from chain reactions
initiated by the primary physiological radicals (134). Their
persuasive, if not convincing, argument is that aggressive
radicals such as �OH, RO�, or halogen radicals derived from
the myeloperoxidase reaction, which react with almost all
kind of biomolecules at nearly diffusion-limited rate constants

FIG. 1. Scheme of transcriptional
regulation and its implementation in
bacterial redox control. (A) A mini-
malistic scheme of a regulatory circuit
with the required elements: signaling
molecule (black with white letters); sen-
sor (white box); transducer(s) (light
gray); and effector (typically the target
gene). Termination reactions, which are
subject to modulation, are indicated by
reversed arrows. The labeling code is
maintained in all following figures, if
appropriate. (B) Demonstrates how this
scheme is used in the OxyR regulation of
prokaryotes. The signaling molecule is
H2O2 targeting reduced OxyR as sensor.
OxyR is first oxidized at Cys199 (with
the oxidized sensor marked by a star)
and stepwised further oxidized by
H2O2. OxyR turns into a transducer
(OxyRS8) and binds to its effector, the
responsive element in the DNA, and
allows the RNA polymerase (RNAP) to

effect gene expression that removes the signal via enhanced alkyl hydroperoxide reductase (AhpC/AhpF) synthesis, thus
terminating or modulating the sensing process. Prevention or termination of transduction is also achieved by reducing
oxidized OxyR by glutaredoxin A (GrxA). The Grx system is modulated by glutathione (GSH) regeneration. In all eukaryotic
systems additional transducers that are distinct from modified sensors are involved (see Fig. 2 and others).
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(*2 · 1010 M- 1 s- 1), simply lack the ability to modify regulatory
proteins with the mandatory selectivity. Instead, they consider
H2O2 as the key oxidant signal in redox signaling, because it can
selectively oxidize particularly sensitive SH groups.

This seemingly provocative article may benefit from minor
amendments, but convinces in so far as very few of the protein
modifications that have up to now been identified in ROS
signaling disclose sequelae of direct reactions between radi-
cals and target proteins. An exception seems to be the H2O2-
dependent de-repression of the repressor PerR (50, 332). In
these proteins iron-co-ordinated histidines are oxidized to
oxo-histidines, which reminds of a Fenton chemistry-mediated
hydroxylation. Accordingly, the �OH radical is considered the
ultimately reacting ROS (82). It is, however, not a free �OH
that is sensed by the repressor protein, but rather a crypto-OH
(421, 527), that is, an �OH that is likely formed locally from an
iron peroxo complex and targeted to its intimate environment,
which is here the imidazole moiety of a histidine (274). More
commonly, the modifications detected in oxidized sensors are
easily explained by two-electron withdrawal from thiolates.

The most common one of these reactions is the oxidation of
cysteine residues by H2O2 to sulfenic acids (Eq. 1) followed by
disulfide formation with glutathione (GSH) or protein thiols
(Eqs. 2 and 3). The same sequence of reactions is achieved
by the primary products of lipoxygenases (LOX) or cyclo-
oxygenases (COX), which are alkylhydroperoxides (ROOH)
(Eq. 4), and also by peroxynitrite (ONOO - ), which is spon-
taneously formed from �NO and O2

� - at nearly diffusion-
limited rates (Eqs. 5 and 6). The efficiencies of these compounds
in oxidizing thiols differ, peroxynitrite being the most and
H2O2 the least reactive one, whereas lipid hydroperoxides
occupy interim positions. Also, the residue R in lipid hydro-
peroxides may prevent or facilitate the interaction with a
particular protein thiol, thus lending some selectivity to these
signaling molecules. The qualitative equivalence of H2O2,
ROOH, and ONOO - in oxidizing protein thiols to sulfenic
acids has, however, been amply demonstrated in the initial
step of the catalytic cycles of Prx- and GPx-type peroxidases,
which is the oxidation of the peroxidatic cysteine CP, as shown
in Eqs. 1, 4, and 5 (105, 301, 379, 380, 487, 489). Analogous
reactions of exposed and dissociated thiols in other proteins
cannot reasonably be doubted, whereas a radical-initiated
sulfhydryl oxidation would likely yield unspecific protein
damage, if not terminated by the extremely unlikely event of
meeting another thiyl radical to form a disulfide bond. In
short, glutathionylation or intra- and intermolecular disulfide
bond formation in regulatory proteins does not result from
any free radical attack, but most likely from an electron pair
transition from nonradical ROS such as H2O2, ROOH, or
ONOO - . Hydroperoxides including ONOO - and not radi-
cals themselves may, thus, be considered oxidant signals in
ROS signaling, the sensing process being the oxidation of
susceptible cysteine residues to cysteine sulfenic acids (123,
133, 134). The intimate downstream transduction step, the
reaction of the sulfenic acid with another thiol according to
Eqs. 2 and 3, respectively, is analogous to the reaction of the
oxidized CP in thiol peroxidases with their resolving cysteine
CR. This coreacting CR is typically not dissociated and not
reactive enough to sense an ROOH by itself. However, it
readily reacts with the sulfenic acid if this is sterically possible.
Therefore, the analogous transduction of an oxidant signal,
sensed as a sulfenic acid residue (Eq. 3), appears to be exclu-

sively determined by sterical fit, which lends further speci-
ficity to the overall signaling process.

H2O2þProt - S�/Prot- SO� þH2O (1)

Prot - SO� þHþ þGSH/Prot - S - SGþH2O (2)

Prot - SO� þHþ þProt¢ - SH/Prot - S - S - Prot¢þH2O (3)

ROOH + Prot - S�/Prot - SO� þROH (4)

ONOO� þProt - S�/Prot - SO� þNO�2 (5)

�NOþO��2 /ONOO� (6)

Protein thiol modification as sensing mechanism may also
be achieved by different ways (250). Theoretically, glutathio-
nylation may result from thiol/disulfide exchange between
oxidized glutathione (glutathione disulfide [GSSG]) and
protein thiol (47, 48).

GSSG + Prot - SH/Prot - S - SG (7)

However, the comparatively low cellular GSSG concen-
trations render this reaction less likely than the direct protein
SH oxidation followed by reaction with GSH (Eqs. 1 and 2).
Further, disulfides can be formed by nitroso glutathione
(GSNO) and protein SH groups or, inversely, from S-
nitrosylated proteins and GSH (Eqs. 8 and 9) (513).

GSNO + Prot - SH/Prot - S - SG + HNO (8)

GSH + Prot - SNO/Prot - S - SG + HNO (9)

HNO + R(SH)2/RS2þH2NOH (10)

Thereby, products derived from �NO and oxygen with the
potential of S-nitrosation, the reactive nitrogen species (RNS)
(112), have to be considered as possible signaling molecules,
the most likely candidates being the nitroxyl cation NO + and
N2O3, whereas the nitroxyl HNO formed according to Eq. 8
might again contribute to disulfide formation (Eq. 10) (328).
As in the case of ROS signaling, not the �NO radical itself is
used as thiol modifier in RNS signaling but nonradical de-
rivatives thereof.

Apart from O2
� - , the only oxygen-centered radical that is

directly used as signaling molecule appears to be molecular
dioxygen itself, a bi-radical that, though, is hardly ever ad-
dressed as ROS (see section II.D.6).

C. Signals of free radical damage

The statement that free radicals are not ideal signaling
molecules seemingly conflicts with the widely accepted view
that the organism reacts to free radical formation and radical-
driven processes with adaptive responses. As is evident from
the previous section, the often used term ‘‘free radical
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signaling’’ can claim its justification from the fact that most
of the oxidant signals so far identified are indeed derived from
the two important natural radicals �NO and O2

� - . Remains
the question how the organism responds if these radicals are
not channeled into smooth physiological pathways for, for
example, hormone or growth factor signaling, but cause tissue
damage due to unbalanced production in conditions that
deserve the name oxidative stress or nitrosative stress. In
pathological conditions such as septicemia or reperfusion in-
jury or any other kind of fulminant inflammation, free radical-
dependent tissue damage is obvious and it seems straight
forward that the organism should somehow sense the abun-
dance of radicals. Apparently, however, the radicals them-
selves are not sensed either under these extreme conditions.
Instead, the outcome of the radical attack is sensed by a
nonradical sensing mechanism.

Protein thiols identified as likely sensors in redox signaling
offer chemical options beyond thiol oxidation and thiol/dis-
ulfide exchange. If dissociated, they are powerful nucleo-
philes and, thus, may react with a large variety of compounds
with reactive double bonds such a a, b-unsaturated aldehydes
or ketones and other Michael acceptors. This huge list of
compounds inter alia comprises well-documented products of
enzymatic or free-radical-driven lipid peroxidation, the most
prominent examples being 4-hydroxy-nonenal (HNE) and 15-
deoxy-D12,14-prostaglandin J2 (15d-PGJ2). Such compounds
have been amply documented to alkylate particular protein
thiols under oxidative or nitrosative stress and therefore may
be implicated as stress signaling molecules that are sensed via
S-alkylation. The best known example of a regulatory protein
modified this way is kelch-like ECH-associated protein-1
(Keap1), which plays a pivotal role in responding to oxidative
challenge with an adaptive response via activation of the
transcription factor Nrf2 (6, 94–98, 254, 479, 481) (see section
III), but analogous stress sensing has also been implicated in
the NF-jB pathway (408) and in apoptosis (12).

D. Sensing and transducing proteins

As outlined, the main problem of redox signaling is seen in
rendering specificity to oxidant signals. Since thiol oxidation
and alkylation appear to be the prevailing sensing mecha-
nisms in redox regulation, proteins with highly reactive thiols
must be sensors of choice. Such thiols have to fulfill three
requirements: they have to be surface exposed, dissociated,
and kinetically competent to compete with peroxidases and, if
S-alkylation is involved, also with glutathione-S-transferases
(GSTs). Beyond, the resulting thiol modification must lead to a
structural change of the sensor to allow specific signal trans-
duction.

1. Thiol peroxidases as sensors. The rate constants for
the oxidation of freely accessible SH groups in low–molecu-
lar-weight compounds by H2O2, even if extrapolated to full
SH dissociation, do hardly exceed 50 M - 1 s - 1 (512) and, thus,
fall short by orders of magnitude when compared to those of
GPx- or Prx-type peroxidases (see section II.A). Protein-bound
cysteines are by no means more reactive (31, 123, 134), unless
they are embedded in a micro-architecture that facilitates
cleavage of the hydroperoxy bond by polarization and proton
shuttling as in the thiol peroxidases (378, 487). Evolution has
designed these proteins for highly efficient hydroperoxide

reduction. Accordingly, they do not only deserve interest as
hydroperoxide-detoxifying enzymes, but also as ideal sensors
for ROOH.

In recent years, a sensor/transducer function of peroxi-
dases has indeed been elucidated in transcriptional regulation
of yeasts (135). In Saccharomyces cerevisiae a GPx-type peroxi-
dase Orp1 senses H2O2 in being oxidized to its sulfenic acid
form, as in Eq. 1. The cysteine sulfenic acid residue of Orp1
then forms a disulfide bridge with a particular thiol of the
transcription factor activating protein-1 (AP-1)-like tran-
scription factor from yeast (Yap1), thereby directly transduc-
ing the oxidant signal (86) (Fig. 2). The physiological meaning
of the H2O2 sensing by the peroxidase is seen in transducing
the oxidant signal to a defined target protein with the speci-
ficity typical for protein/protein interactions (86). In another
S. cerevisiae strain, the 2-Cys Prx Tsa1 appears to activate Yap1
in an analogous way (357, 407), and in Schizosaccharomyces
pombe Tsa1 is the major peroxidase that reacts with the tran-
scription factor Pap1, which is an homolog of Yap1 (333).
Also, in S. pombe Tsa1, upon having sensed H2O2, forms a
disulfide bridge with the stress kinase Sty1, thereby transduc-
ing the oxidant signal to the transcription factor Atf1 (333, 497).

FIG. 2. Sensing and transducing the H2O2 signal by the
Orp/AP1-like transcription factor from yeast (Yap) system
in yeast. In this system the glutathione peroxidase (GPx)-
type peroxidase Orp1 act as sensor for H2O2 and becomes
oxidized at Cys36 to a sulfenic acid. The sulfenic acid then
forms a heterodimeric disulfide bridge with Cys598 in Yap1,
which in turn is resolved by two more thiol/disulfide ex-
change reactions (not shown), ultimately resulting in oxi-
dized Yap1 (Yap1S2) and reduced Orp1. Oxidized Yap1 can
bind to the respective enhancer elements in the promoter of
target genes, which protect against oxidative challenge. This
way Yap1 acts as the transducer of the H2O2 signal. An al-
ternative reaction of Orp1 sulfenic acid leads to an in-
tramolecular disulfide bridge (Orp1S2) that is reduced by
thioredoxin (Trx). In this role of a Trx peroxidase Orp1 acts
as a modulator of this system. Trx also terminates signaling
by reducing Yap1S2.
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A case of H2O2 sensing by a Prx has also been demonstrated
in Kinetoplastida. In these unicellular parasites a universal
minicircle sequence binding protein (UMCSBP), which is a
Zn-finger protein, binds to the peculiar kinetoplast DNA in a
Zn- and redox-dependent manner, thereby regulating repli-
cation [reviewed in ref. (452)]. DNA binding of UMCSBP is
abrogated by H2O2, which is sensed by the Prx-type trypar-
edoxin peroxidase with rate constants that, depending on
species, range from 105 to 107 M - 1 s - 1 (489). The peroxidase
directly transduces the oxidation equivalents to CxxC motifs
of the Zn-finger domain. The reductive reactivation of
UMCSBP depends on the trypanothione redox cascade com-
prising trypanothione reductase, trypanothione, and trypar-
edoxin, the latter being a thioredoxin-related protein (TRP)
specialized for protein disulfide reduction (349).

Analogous ROOH sensing by peroxidases in mammals
have not yet been reported. However, the idea that at least
some of the GPx- or Prx-type peroxidases could similarly act
as sensors for H2O2, alkyl hydroperoxides, and peroxynitrite
in mammals is intriguing in several respects. It would comply
with the observation that redox signaling also takes place at
physiological H2O2 fluxes; it could explain why in some cases
Prxs improve rather than inhibit signaling (75, 238), and it

finally might help to explain oxidative modification of pro-
teins with SH group reactivities that are simply not compet-
itive enough to occur without enzymatic support (134).
Mechanistically, transducing mechanisms analogous to those
worked out for peroxidases of yeasts and Kinetoplastida would
be straight forward for all 2-Cys Prxs. Upon oxidation of their
peroxidatic cysteine CP to a sulfenic acid, they can either form
an internal disulfide bridge with their resolving cysteine CR,
which in the ROOH removing function is then reduced by a
redoxin, or an intermolecular disulfide bridge with another
protein, thus acting as thiol-modifying agent with regulatory
consequences. Examples of Prxs found disulfide-linked to
other proteins are abundant (93, 187, 333), but also GPx-type
peroxidases devoid of a CR can modify protein thiols, as has
been demonstrated for mammalian GPx4. In shortage of GSH,
the oxidized active site selenium (UP) can selenylate proteins,
a process that so far has not been implicated in transcriptional
regulation, but is pivotal to the differentiation of spermatids
into spermatozoa (121, 318, 428, 493) (Fig. 3).

Prxs can, however, also sense ROOH and transduce the
signal in a more indirect way, just by means of their con-
ventional role in removing hydroperoxides. Most of the
mammalian Prxs, as well as the nonmammalian 2-Cys Prxs

FIG. 3. Possible routes of
hydroperoxide sensing by
thiols or selenols. (A) Gen-
eral reaction scheme of
GPx-catalyzed reduction of hy-
droperoxides. The selenol is
oxidized by ROOH to a sele-
nenic acid, which is step-wise
reduced back to selenol by
two molecules GSH. A role of
selenols in ROOH sensing has
so far not been reported. (B)
The selenenic acid in GPx4
has been shown to react not
only with GSH but also with
thiol groups of other proteins.
The enzyme, thus, transduces
a signal to another protein
target and acts as a thiol
modifying agent. This mech-
anism is the molecular basis
for the unique transformation
of GPx4 into a structural
protein during sperm matu-
ration (493). Theoretically, the
reaction sequence could be
used in redox signaling with
GPx4 as sensor and Se-S
linked heterodimers as trans-
ducers. The sensor-reduced GPx4 could be regenerated by GSH (as in A) or by SH groups of the same or another protein
(lower line). (C) 2-Cys peroxiredoxins (Prxs) react with a hydroperoxide at the peroxidatic cysteine (SP) to the sulfenic acid.
Oxidized SP can then form an intra- or intermolecular S-S bridge with the resolving cysteine (SR). This bridge is typically
reduced by a redoxin (Trx, TXN, or Grx). The oxidized SP can, however, also react with another protein, thus acting as a thiol
modifying agent, as demonstrated in the redox control of yeasts (333). (D) Certain cysteines in protein phosphatases (PPs)
react with a hydroperoxide to form a sulfenic acid. This either reacts with a second cysteine to form an intramolecular
disulfide bridge in analogy to (C). Alternatively (E), the sulfenic acid reacts with a nitrogen in the peptide bond to a sulfenyl
amide. Both forms can be reduced by GSH and Grx. The oxidized enzymes are typically inhibited. As discussed in section
II.D.3, the known reaction constants for the reaction of ROOH with thiols in phosphatases are low. Therefore, the possibility
that the oxidative signal is first sensed by a GPx- or Prx-type peroxidase and then transduced to a PP, as shown in (B) or (C),
respectively, merits consideration.
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and many nonmammalian GPxs, use Trx or related redoxins
as reductants. Under high peroxide flux, they thereby reduce
the steady-state of reduced redoxins that are often used as
terminators of transcriptional gene activation or interrupters
of signaling cascades. Inactivating reduction of OxyR (100) or
Yap1 (86, 333) by glutaredoxin (Grx) or Trx, respectively, and
reduction of GSH mixed disulfides by Grx (250, 292) may
suffice as examples. Further, oxidation of a redoxin may
promote signaling due to reversal of inhibition, as has first
been shown for the apoptosis signal-regulating kinase-1
(ASK-1), which is blocked by noncovalently bound reduced
Trx, but not by the oxidized one (415). Similar functions are
ascribed to nucleoredoxin (Nrx) in the wingless and Int 1
(Wnt) pathway (139), and to the dynein light chain 8 (LC8)/
Trx-like 14 protein couple in the NF-jB system (227) (see
section IV and Fig. 4). Although metabolic regulation by Trx
and redoxins, in general, has for long been a widely accepted
concept (131), it appears to be still persistently overlooked
that oxidation of redoxins in vivo does not likely occur spon-
taneously, but is catalyzed by Prxs, which came to stage much
later (399). Although the pKa of the exposed cysteine in their
CxxC motif is quite low, their rate constants for oxidation by

ROOH is usually two orders of magnitude smaller than those
of the most abundant Prxs that efficiently oxidize redoxins
(489, 490). It therefore appears not too risky to consider most,
if not all, regulatory events that are attributed to Trx oxidation
to be downstream events of hydroperoxide sensing by a thiol
peroxidase, a Prx being the more likely candidate in mammals
(123, 134).

Finally, a role of Prxs in sensing ROOH may be seen in their
ability to switch from a peroxidase to a chaperone, as was first
demonstrated in yeast (217, 333) but has also been implicated
for mammalian Prx1 (403). The chaperone function of Prxs itself
appears to be independent from their peroxidase activity (403),
as it prevails in the peroxidatically inactive high-molecular-
weight forms having their CP oxidized to a sulfinic acid. The
functional switch to the chaperone, however, is initiated via fast
ROOH sensing by CP. Once transformed into a chaperone, the
Prx may affect many regulatory pathways, enhanced cytokine
expression through Toll-like receptor-4 (TLR4)-mediated NF-jB
activation being a revealing example (403).

2. Transcription factors as sensors for hydroperox-
ides. Certainly, also proteins that are not annotated as per-

FIG. 4. Redoxins in sensing
mechanisms. (A) Reduced Trx
has been demonstrated to inhibit
apoptosis signaling by binding
(and inhibiting) apoptosis signal-
regulating kinase-1 (ASK-1). Oxi-
dation of Trx relieves the block
(415). Since redoxins are excellent
substrates of Prxs, a hypothetical
Prx is inserted as real sensor of the
system as in (B–D). (B) Nucleor-
edoxin (Nrx) in the reduced state
binds to dishevelled (Dvl), a
phosphoprotein that transduces
wingless and Int 1 (Wnt) signals
from the Frizzled receptor. Upon
oxidation, Nrx is released and Dvl
can associate with the b-catenin
degradadion complex, where it
inhibits glycogen synthase kinase-
3b (GSK3b) and phosphorylation,
ubiquitination, and degradation of
b-catenin. b-Catenin moves into
the nucleus and activates genes
required for proliferation (138). (C)
Reduced Nrx associates with
flightless-I (Fli-I) and myeloid dif-
ferentiation factor 88 (MyD88),
thereby preventing recruitment of
MyD88 to the TLR4 after lipo-
polysaccharide stimulation (171).
This way unnecessary stimulation
is avoided. After removal of Nrx,
MyD88 can be recruited, and the
TLR mediate its signals. Although
in this system oxidative processes

have not yet been studied, the requirement for oxidants in TLR stimulation may be based in the need to oxidatively remove
Nrx from the Fli-I/MyD88 complex, as in (B). (D) Reduced dynein light chain (LC8) binds to IjB and prevents its degra-
dation. Upon oxidation to an intermolecular disulfide LC8 dissociates and gives the way free for IjB degradation and
activation of nuclear transcription factor of bone marrow-derived lymphocytes (NF-jB). The oxidation is reversed by the Trx
homolog thioredoxin-related protein-14 (TRP14), which is reduced by cytosolic thioredoxin reductase (TrxR1). In this system
either LC9 itself is the sensor or is oxidized by an upstream sensing thiol peroxidase (224).
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oxidases may sense ROOH through thiol oxidation, if their
cysteine residues are activated by neighboring basic residues
or other mechanisms. A well-documented example is the
bacterial transcription factor OxyR (100). Its Cys199 may be
considered kind of CP, as it is directly attacked by H2O2 with a
bimolecular rate constant of *105 M - 1 s - 1 (11), which comes
close to those of peroxidases. The initial oxidation of Cys199,
like in the thiol peroxidases, is followed by a disulfide for-
mation that facilitates oxidation of the remaining cysteines to
the fully oxidized active transcription factor, whereas the in-
activation is achieved by Grx-catalyzed reduction by GSH
(Fig. 1).

Similarly, direct sensing of organic hydroperoxides has
been implicated for organic hydroperoxide resistance re-
pressor (OhrR), a repressor of the Ohr gene found in many
bacteria (100). Although OhrR is phylogenetically unrelated
to any of the peroxidase families, it shares the mechanism
with atypical 2-cysteine Prxs (281): it is oxidized by ROOH
(not by H2O2) at its CP, which is the arginine-coordinated
Cys60 (Pseudomonas aeroginosa sequence). The oxidation of
Cys60 to a sulfenic acid, which suffices for de-repression,
leads to formation of an intramolecular disulfide bond with
Cys124, which can be reduced by dithiothreitol, the natural
reductant being unknown.

Any direct interaction of a hydroperoxide or any other
oxidant signal with a mammalian transcription factor has so
far not been convincingly demonstrated.

3. PPs and PKs as potential sensors. Phosphory-
lation and de-phosphorylation are key events in the regula-
tion of enzyme activity in cellular signaling and certainly also
dominate mammalian transcription factor activation. In most
of the cases, the phosphorylated kinases and phosphatases
represent the active modifications, whereas de-phosphoryla-
tion leads to inactivation of these enzymes. Exceptions to the
rule are, for instance, glycogen synthase (GS) and glycogen
synthase kinase-3b (GSK3b), which are active in the de-
phosphorylated state. Protein kinases and, more importantly,
PPs are widely assumed to sense H2O2, other oxidants, or
S-alkylants, and it may be guessed that most, if not all, phos-
phorylation/de-phosphorylation balances are redox-controlled
via cysteine modification (Fig. 3D, E).

In receptor protein kinases, a highly conserved MxxCW
motif is considered as the general switch that, upon cysteine
oxidation, starts the tyrosine phosphorylation required for
catalytic activity (339). Oxidative activation is also observed
in the various forms of protein kinase C (PKC) that are
characterized by Zn-fingers in their regulatory domain, in
which two Zn ++ ions are tetrahedrically coordinated with
six conserved cysteine and two histidine residues (77, 194,
258). The Zn-finger is assumed to work as kind of hinge
wherein the Zn++ functions as a linchpin. Oxidation of the Zn-
coordinated cysteines was shown to cause Zn ++ release (259)
and is assumed to favor the active kinase conformation,
phosphorylation, binding to Ca ++ , and phosphatidylserine
and, thus, membrane recruitment of these enzymes (258, 309).
Similarly, Zn ++ release associated with activation of kinase
activity due to oxidation of Zn-coordinated cysteines was
reported for c-RAF (190). Since PKCs inter alia mediate oxi-
dative responses such as the oxidative burst of phagocytes
(see section IV.D.1), the inhibitory function of Zn ++ in these
enzymes may well explain the still mysterious antioxidant

function of the ion, which by itself is redox-inert under
physiological condition (49, 309, 382).

In contrast, PPs are more or less readily inhibited by cys-
teine oxidation/modification. PPs are specific for protein ty-
rosine phosphates, serine (Ser)/threonine (Thr) phosphates,
or for both, and, accordingly, are classified into tyrosine PPs
(protein tyrosine phosphatase [PTPs]), Ser/Thr PPs (PSPs),
and dual specificity PPs (DSPs). Their mechanism of action
differs and so does their sensitivity to oxidants.

PTPs are generally susceptible to oxidative inactivation.
They are characterized by an HCx5R motif that comprises the
PTP loop that binds the phosphate groups of phosphotyr-
osines [(472); reviewed in ref. (67)]. The cysteine in this motif,
due to its low pKa value, is nucleophilic, which is a prereq-
uisite for both substrate de-phosphorylation and oxidative
inactivation. More than 100 PTPs of the human genome (486)
also include the DSPs that share with the typical PTPs the
characteristic HCx5R motif and may, therefore, be suspected
to be equally prone to oxidative inactivation. The DSP family
not only de-phosphorylates tyrosine, Ser, and Thr residues,
but also further comprises phosphatases acting on nonprotein
substrates, such as phosphoinositol phospholipids (PIPs).
Examples for the latter specificity are the Src homology-2
(SH2)-domain-containing inositide phosphatases (SHIPs)
(149), which de-phosphorylate the membrane-bound PI3K-
generated key signaling lipid PI(3,4,5)P3 at position 5 to
PI(3,4)P2, and the phosphatase and tensin homologue (PTEN),
which dephosphorylates the 3 position of both PI(3,4,5)P3 and
PI(3,4)P2 (304). Sharing the active site motif with the PTP/DSP
family, PTEN is a typical example of a redox-sensitive phos-
phatase (280).

A particularly reactive cysteine being unidentified in PSPs,
this type of phosphatase can not a priori be rated as redox
sensitive. However, also Ser/Thr phosphatases such as PP2A
have been shown to undergo reversible oxidation. PP2A
contains 10 cysteine residues in the catalytic subunit including
a vicinal pair at positions 266–269, which reminds of a redoxin
motif. This CxxC motif proved to be sensitive to oxidation
in vitro, and its oxidation resulted in a decreased activity (130).
In addition, PSPs can have metal ions in their active center,
which are essential for their enzymatic function (449). Thus,
apart from redox modification of cysteine residues, also an
oxidation of the metal clusters appears conceivable.

Mechanistically, the oxidative inactivation of phosphatases
via cysteine oxidation involves reactions known from GPx or
Prx mechanisms (127). A pivotal cysteine appears to be oxi-
dized to a sulfenic acid (Eq. 1). This unstable oxidation form
typically forms a disulfide with another cysteine residue (Eq.
3), which reminds of the analogous reaction of CP and CR in
Prx or GPx catalysis (Fig. 3). In oxidized PTEN a disulfide
bridge between the catalytic Cys124 and the neighboring Cys71
was detected (275, 418). Similarly, in the DSP Cdc25 phos-
phatase B, a second cysteine resides in the active site, which in
the oxidized form is disulfide-linked to the nucleophilic cys-
teine of the signature motif (51). In contrast, in PTP1B, the
cysteine in the active site motif [I/V]HCxxGxxR[S/T] forms a
cyclic sulfenyl-amide (419, 495) in analogy to the redox cycle
of the GPx mimic ebselen (423) (Fig. 3E). As in the catalytic
cycles of Prxs (378) and GPxs (487), the physiological meaning
of conserving the labile oxidation state of the sulfenic acid in a
more stable form is seen in the prevention of sulfur oxidation
to the sulfinic or sulfonic forms that would be hard to reverse.
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As in the enzymatic cycles, the oxidized phosphatases are
readily reactivated by physiological thiol compounds such as
GSH, Trx, Grx, or other redoxins.

However, the almost generally agreed assumption that
protein kinases and phosphatases may sense oxidants via
cysteine oxidation is overshadowed by lack of any confirming
kinetic data. None has been reported for any kinase and the
few available rate constants for a direct oxidation of the crit-
ical thiols in PPs by H2O2 do not exceed 50 M - 1 s - 1 (31, 87,
459) and, thus, are by far too small to corroborate any phys-
iological relevance of the process. For three redox-sensitive
PTPs (PTP1, leukocyte-common antigen-related (phospha-
tase) [LAR], and Vaccinia H1-related (phosphatase) [VHR])
reaction rates for oxidative inactivation were insufficient (10–
20 M - 1 s - 1); for three Ser/Thr phosphatases (PP2Ca, calci-
neurin, and lambda phosphatase) they were evidently too
slow to be quantified (87). For the PTP-type Cdc25 phospha-
tases the rate was a bit more promising, being 15-fold higher
than for PTP1B (459). In the latter case, the authors stress that
the reaction of H2O2 with Cdc25 is 400 times faster than with
GSH, which though is a poor argument, since the spontane-
ous reaction of GSH with H2O2 is physiologically irrelevant.
For the relevant GPx reaction the rate constant is around 108

M - 1 s - 1.
According to Forman et al. (134), the available kinetic data

predict that even the nonenzymatic reaction of H2O2 with
GSH would completely compete out the oxidation of the ac-
tive site cysteine of PPs. However, since oxidation of PTP1B
and other PPs, as evidenced by glutathionylation (Eqs. 1 and
2), evidently occurs under in vivo conditions (250, 405), oxi-
dant sensing by PPs must be more complex. It could be en-
visaged that any of the numerous thiol peroxidases first
senses ROOH and then, in analogy to the yeast GPx- and Prx-
type peroxidases, forms a disulfide bridge with the target
phosphatase that is cleaved by GSH, leaving the glutathionyl
residue at the target protein. Grx has been implicated in
protein glutathionylation but appears to rather de-glutathio-
nylate (229). Alternatively, the rate constants, which were
obtained in vitro with isolated enzymes, could be grossly
misleading, as they might in vivo be substantially improved
by protein/protein interaction within regulatory complexes.
Human Prx6 may be taken as an example for a dramatic
change in thiol reactivity due to association with another
protein: it displays a significant GPx activity only when as-
sociated with a GSH-loaded GSTp (439). Before the dis-
crepancies between in vitro data and in vivo observations have
not been convincingly explained, we should cautiously address
redox-sensitive PPs and kinases as putative ROOH sensors.

4. Redox sensing by cytosolic inhibitory complexes of
transcription factors. In eukaryotes, transcription factors are
commonly sequestered in the cytosol in form of multicom-
ponent complexes from which they have to be released for
gene activation in the nucleus. The activation of the tran-
scription factor requires modification of one or more compo-
nents of the complex to enable release of the transcription
factor and its nuclear import. Almost regularly, a redox
modification of a component is followed by ubiquitination
and proteasomal degradation of the same or another com-
ponent (183). A typical example of this reaction scheme is the
stress-signaling Nrf2/Keap1 system, wherein Nrf2 is the
transcription factor and Keap1 the complex partner that pre-

vents Nrf2 activation (see section III for details). In this par-
ticular case, the inhibitory protein Keap1 not only prevents
transcription factor activity by keeping it in the cytosol, but
also by targeting it for the proteasomal degradation pathway
(254, 531).

Keap1, which again is a Zn-finger protein, is considered to
be the redox sensor of the system. Its reactive cysteines may be
oxidized to sulfenic acids, form disulfides, or be alkylated by
electrophiles (Michael acceptors) such as HNE (201), other a,
b-unsaturated aldehydes, or ketones (282, 410), a realm of
phytochemicals (469) or other electrophilic xenobiotics (104).
The consequence of cysteine modification in Keap1 is a dra-
matic conformational change resulting in a destabilization of
the complex and prevention of Nrf2 degradation. As gener-
ally observed in Zn-finger proteins (see section II.D.3), oxi-
dation of Zn-coordinated cysteines leads to release of Zinc
and consecutive unfolding of the finger structure. The struc-
tural change of Keap1 then prevents ubiquitination and pro-
teasomal degradation (see section III.C.2).

The ubiquitination process proceeds via the conventional
scheme: a coordinated cascade of 3 enzymes, the ubiquitin-
activating enzymes E1, the ubiquitin-conjugating enzymes
E2, and the ubiquitin ligases E3 (Fig. 5). Of the known E3
ligases, the really interesting new gene (RING) family is the
largest. The RING motif in these enzymes interacts with E2
and facilitates the transfer of ubiquitin from E2 to a lysine in
the target protein (370). One subtype of the RING family is the
Cullin family. Cullin-RING E3 ligases utilize 1–7 Cullin scaf-
folds to assemble several substrate-specific adaptors that
recognize and position the target, here Nrf2, in the cullin-E3
complex for proper ubiquitination. The unmodified Keap1
serves as an adapter for the RING box protein (Rbx1)-bound
Cullin-3 (Cul3)-based E3 ligase, which targets the Nrf2 within
the Keap1/Nrf2 complex (80, 140, 141, 255, 372, 532). Cysteine
modification in Keap1 disrupts the presentation of Nrf2 for
ubiquitination.

The ubiquitination machinery, here briefly introduced as a
downstream event of an oxidative Keap1 modification, has
also been rated as redox sensitive. Both the ubiquitin-acti-
vating enzyme E1 and the ubiqutin-conjugating E2 were
shown to be reversibly inactivated by glutathionylation due
to treatment with H2O2 or diamide (212, 355). The ubiquitin
ligases, of which about 600 different ones were identified in
man, are mostly characterized by a RING finger domain, in
which two Zn ++ ions are coordinated with seven cysteine and
one histidine residues. Clearly, this structural element, like the
Zn-finger of PKCs and Keap1, is suggestive of a site for redox
regulation, an option that, however, has so far been left un-
explored (88). Similarly, the redox regulation of SUMOylation,
the analogous protein modification by small ubiquitin-like
modifiers (SUMO), appears not to have been investigated to
any significant extend (511).

Ubiquitination followed by degradation is also used for de-
inhibition of transcription factors in other redox-sensitive
cytosolic complexes, but the sensing step and the ubiquiti-
nated entities as well as the regulatory principles of the sys-
tems differ substantially (Fig. 6). In the hypoxia response
system it is also the transcription factor itself that is perma-
nently ubiquitinated and degraded under normal conditions,
that is, under normoxia. The redox sensor, however, is not an
inhibitory protein such as Keap1 (Fig. 6A), but an enzyme: the
proline hydroxylase that hydroxylates the transcription factor
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HIF-1a and targets it for ubiquitination (Fig. 6B). Similarly, the
transcription factor b-catenin in the Wnt pathway is steadily
ubiquitinated and degraded under resting conditions. In this
context Nrx is assumed to be the redox sensor; in the reduced
state it blocks the Wnt pathway by binding to the upstream
adapter protein disheveled (Dvl), while allowing nuclear
import of b-catenin upon oxidation of its CxxC motif (138,
139) (Fig. 6C). In the canonical NF-jB system, the inhibitory
NF-jB-binding protein IjB has to be ubiquitinated and de-
graded to allow nuclear import of p50/p65. IjB is targeted for
ubiquitinating by phosphorylation through IjB kinase (IKK)
(Fig. 6D). The redox sensor of the system might be the LC8,
which in its reduced states, is bound to IjB and protects IjB
from attack by IKK, but allows IjB phosphorylation and
degradation upon oxidative dimerization via intersubunit
disulfide formation (Fig. 4D and section IV.D.3) (227). For
lipopolysaccharide (LPS)-induced NF-jB activation via TLR 4,
again Nrx has been implicated as negatively regulating sensor
by binding to Fli-1 (flightless), thereby preventing recruitment

of the essential adaptor myeloid differentiation factor 88
(MyD88) to the receptor (171).

It is needless to state that kinetic data for component in-
teractions in these complex systems do not exist at all and will
hard to be obtained. The mentioned redox-sensitive proteins,
which, in principle, can directly be oxidized by any ROOH,
might therefore not be the real sensors, but, instead, be oxi-
dized by an upstream thiol peroxidase sensing the oxidant.

5. Sensing by selenocysteine-containing proteins? A
sensor’s competence to sense ROOH or an alkylant selectively
would certainly be enhanced if its sensing sulfur were re-
placed by the super-sulfur selenium (120). Many selenopro-
teins display signatures of redox proteins (146) and most of
those with an established enzymatic function are indeed ox-
idoreductases with selenocysteine (Sec) as pivotal catalytic
entity (122). As a rule, these seleno-enzymes are substantially
faster than their homologs working with sulfur catalysis
(33). Simply by chemical reasoning, therefore, selenoproteins

FIG. 5. Simplified scheme of ubiquiti-
nation of substrates in mammalian cells.
In a first step ubiquitin is activated at the
C-terminal glycine by the ATP-dependent
formation of a thioester at a cysteine of
the E1 enzyme. E1 transfers ubiquitin to a
cysteine of the ubiquitin-conjugating en-
zyme E2 and is released from the com-
plex. The ubiquitin-loaded E2 then forms
a complex with the E3 enzyme to which
the respective substrate (S) is bound. The
really interesting new gene (RING) box protein-1 (Rbx1) targets the substrate for ubiquitination. Ubiquitin can then be passed
either directly to a lysine of the RING-bearing E3-bound substrate (Rbx1) or, in case of the homologous to E6AP C terminus
(HECT)-domain bearing E3, to another cysteine on E3 and from there to the substrate lysine (186).

FIG. 6. Distinct roles of redox-
dependent ubiquitination in the reg-
ulation of transcription factor activity.
(A) In the Nrf2/kelch-like ECH-
associated protein-1 (Keap1) system,
oxidant sensing by Keap1 terminates
the ubiquintination and degradation
of Nrf2 and allows its nuclear trans-
location and transcriptional activation
of target genes. (B) In the hypoxia-
inducible factor 1 (HIF) system, under
normoxic conditions HIF-1a is hy-
droxylated by HIF prolyl hydroxylase
(HPH), ubiquitinated, and degraded.
In hypoxia HPH is inactive, ubiquiti-
nation is prevented, and HIF-1a can
translocate into the nucleus and acti-
vate gene expression. (C) In the Wnt/
b-catenin pathway, GSK3b phosphor-
ylates b-catenin, thereby facilitating its
ubiquitination and degradation and
preventing b-catenin-mediated gene
expression. Dvl is captured by Nrx.
Upon oxidation of Nrx, Dvl is released
to inhibit GSK3b activity. b-Catenin is
no longer phosphorylated and is
translocated into the nucleus. (D) In
the NF-jB system, LC8 is associated to IjB, thereby preventing its degradation and release of NF-jB. Nuclear translocation of
NF-jB can take place after oxidative modification and release of LC8 and degradation of the inhibitor IjB.
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would have an optimum chance to beat thiol-based redox
sensors in terms of speed and specificity.

Circumstantial evidence has for long suggested that sele-
noproteins are relevant to transcriptional activation. In sele-
nium-deficient animals a huge number of nonselenoproteins,
now overwhelmingly known as Nrf2 targets, were found el-
evated since the late seventies (78, 79, 270, 395–397). The un-
expected phenomenon could not be convincingly explained by
GPx1 deficiency alone (396). However, at least one of the se-
lenoproteins had to be involved in Nrf2 activation, since a
complete loss of all selenoproteins by an organ-specific re-
moval of the gene encoding selenocysteine tRNA (Trsp) (56)
resulted in the induction of GST isoforms in liver, of GSTP1
and NADPH quinone oxidoreductase 1 (NQO1) in liver and
macrophages (471) and of heme oxygenase-1 (HO-1) in liver
(446). Also a moderate selenium deficiency in which only se-
lenoprotein W, GPx1, and selenoprotein H and M were
markedly decreased (249) led to an increase in NQO1, GSTs,
sulfotransferases, and UDP-glucuronyl transferases (UGT) as
well as HO-1, Prx1, sulfiredoxin-1 (Srx1), and c-glutamyl-
cysteine synthase (335). A firm link between selenium defi-
ciency and Nrf2 activation was finally established by Burk et al.
by demonstrating a strong increase in electrophile-responsive
element (EpRE)-driven reporter gene activity in livers of se-
lenium-deficient wild-type but not in Nrf2 - / - mice (52).

Certainly, these findings do not strongly corroborate a role
of selenoproteins as sensors, as they may be equally explained
as adaptive response to impaired hydroperoxide metabolism.
The hypothesis of a direct sensing function has not yet been
established for any of the selenoproteins, but remains attrac-
tive from a chemical point of view. H2O2-dependent seleny-
lation of protein thiols by GPx4 (see section II.D.1) is
mechanistically equivalent to H2O2 sensing by thiol peroxi-
dases and reveals that selenoproteins can in principle act as
combined redox sensors and transducers (121, 123). After all,
the mammalian Trx reductases, which all are selenoproteins,
may be indirectly involved in ROOH sensing by regenerating
Trxs as key redox regulators and reducing substrates of Prxs.
These aspects certainly deserve more interest when searching
for the biological roles for the more than 25 distinct mam-
malian selenoproteins (167).

6. Oxygen sensing. [Fe-S] clusters in proteins have for
long been known to be susceptible to oxidation (314) and may
therefore be considered bona fide sensors for oxidants. In
bacteria [Fe-S]-cluster proteins have not only been reported to
sense O2

� - (see section II.B), but also molecular oxygen. The
transcription factor FNR (for fumarate nitrate reduction),
which is responsible for the adaptation to oxygen restriction
in bacteria, directly reacts with O2, resulting in loss of tran-
scriptional activity. Its [4Fe-4S]2 + cluster is thereby trans-
formed into a [2Fe-2S]2 + cluster (247). Mammalian [Fe-S]
proteins also respond to oxidative stress, the moonlighting of
aconitase to the transcription factor iron response element-
binding protein 1 (IRP1) being a prominent example (74, 334).

Beyond, any of the numerous oxidoreductases using O2 as
acceptor (all EC numbers 1.1.3–1.10.3 having three in the third
position as well as the oxygenase group EC 1.13) may be
considered to be oxygen sensors, if their respective products
have regulatory functions. Of particular importance in our
context are the NADPH oxidases (NOX) that produce O2

� -

(see section IV.D.1), and the prolylhydroxylases that hy-

droxylate proline residues in the HIF (383, 443). In the hypoxia
response, O2 serves as substrate of prolylhydroxylases that
hydroxylate specific proline residues in the a-subunits of HIF
depending on O2 pressure, thereby priming HIF for ubiqui-
tination and proteasomal degradation (442).

E. Adjusting sensitivity by competing systems

As mentioned above, redox signaling triggered or modu-
lated by hydroperoxides has to compete with peroxidases that
reduce ROOH. In fact, it appears enigmatic how thiol oxida-
tion in regulatory proteins can at all occur in the presence of
peroxidases. The most commonly heard explanation is that all
redox regulations must be events restricted to cellular mi-
croenvironments, which are hard to describe in kinetic or
thermodynamic terms, an argument that is also used to ex-
plain regulatory phenomena in general (432). However, ge-
netic tools have meanwhile revealed that redox regulation is
also linked to, and controlled by, the overall cellular hydro-
peroxide metabolism. As a rule, suppression of Prx expression
or Prx inhibition facilitates transduction through phosphor-
ylation cascades, whereas overexpression of Prx dampens it,
as compiled by Sue Goo Rhee and others (161, 198, 218, 236,
400). Similarly, overexpression of GPx1 in tissue culture in-
hibits tumor necrosis factor a (TNFa)-induced NF-jB activa-
tion by affecting the phosphorylation state of IjB (261). Also,
overexpression of GPx4 abrogated lipid hydroperoxide- and
interleukin-1 (IL-1)-induced NF-jB activation (45, 46). Most
remarkably, a mouse systemically overexpressing GPx1 be-
came insulin-resistant (277). Although these observations are
open to different interpretations (218), they collectively sug-
gest that peroxidases efficiently compete for ROOH that is
needed in signaling cascades, thereby determining their sen-
sitivity or setting the threshold at which they respond. An
extreme version of this view is the flood gate theory, which
assumes that hydroperoxide scavenging by Prxs has to be
overcome by reversible oxidative inactivation of the latter to
save ROOH for signaling (516). However, the flood gate can
be opened not only by over-oxidation of Prxs but also by
phosphorylation of the latter: Prx1 activity is inhibited by
phosphorylation at Thr90 by cyclin-dependent kinases
(CDKs), saving H2O2 to signal cell cycle progression (60) or at
Tyr194 by a Src kinase within a growth factor receptor com-
plex, thus enhancing platelet-derived growth factor (PDGF)-
or epidermal growth factor (EGF)-triggered signaling due to
local increase of H2O2 (514).

When being alkylated, the thiols of regulatory proteins also
have to face competition. In mammals, seven classes of GSTs
have been identified that efficiently compete with thiol groups
in regulatory proteins for endogenous stress signals such as
HNE or structurally related xenobiotics (175). Although the
alkylation-susceptible SH groups in some regulatory proteins
have been identified (256), the kinetics of interaction with al-
kylants is poorly investigated. The rate constants for the re-
action of GSH with various Michael acceptors range between
1 and 350 M - 1 s - 1 (410) and may be higher by a factor up to
100 for a fully dissociated thiol. Nevertheless, the GSTs, which
in toto can make up 5% the cellular protein, represent a sub-
stantial hurdle, which has to be overcome before S-alkylation
of regulatory proteins can come into play. Accordingly,
damage signaling via S-alkylation is dampened by GSTs and
facilitated by localized or general GSH depletion (175), as it
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may happen in severe oxidative stress. The importance of
GSTs in counteracting stress signaling through S-alkylation
has been corroborated by inverse genetics. As compiled by
Hayes et al. (175), knockout of several of the GSTs results in
exaggerated response to xenobiotics and oxidative stress. In-
versely, a conditioned knockout of the selenocysteyl-t-RNA
gene, which disrupts the entire selenium-dependent antioxi-
dant defense, leads to a compensatory increase of GST alpha,
mu, and theta, which is likely mediated by activation of the
Nrf2/Keap1 system due to increased H2O2, ROOH, and/or
alkylating damage signals (see section II.D.5).

F. The problems beyond signals and sensors

Trying to present generally applicable concepts as to how
proteins with regulatory potential may work in a complex
eukaryotic system is an almost hopeless adventure. There is
not any rule emerging without exceptions. As already evident
from previous sections, peroxidases may act as sensors,
transducers, or competitive modulators. Reduced Trx may act
as inhibitor of signaling cascades by noncovalent binding as in
the ASK-1 example (415), more commonly as terminator by
reversing transcription factor binding to its target DNA as in
the Orp1/Yap1 system (86) or as essential enhancer of tran-
scription factor activity as in the NF-jB system. Grx is be-
lieved to play a key role in dampening phosphorylation by
de-glutathionylation of counteracting phosphatases, but de-
pending on the glutathionylated protein and the context may
adapt an opposite role. Ubiquitination and proteasomal
degradation facilitate import of transcription factors, if they
attack their cytosolic inhibitors, but inhibit translocation, if the
factor itself is degraded. We therefore refer to the following
sections, which elaborate on two prototypic mammalian
systems of transcription with focus on putative or established
roles of redox-responsive elements.

III. Orchestrating the Adaptive Response
by the Keap1/Nrf2 System

A. Discovery

Nrf2, the nuclear factor erythroid 2 (NF-E2)-related tran-
scription factor, is a member of the Cap ’n’ Collar (CNC) family
of basic leucine zipper (bZIP) proteins and was first described in
1994 by Moi et al. as stimulator of b-globin gene expression
(329). It was recognized to transduce gene activation of phase II
enzymes by binding to the a, b-naphtoflavone-responsive ele-
ment (210), previously described by Rushmore and Picket and
called antioxidant-responsive element (ARE), because it was
also activated by phenolic antioxidants such as t-butyl hydro-
quinone (411). A similar set of antioxidants were shown to also
induce c-glutamyl-cysteine synthetase (40, 294) and the perti-
nent responsive element was termed EpRE for electrophile-
responsive element (330), which is identical with ARE. After it
had become clear that the name-giving antioxidants in vivo ac-
ted as oxidants due to redox cycling or, as their oxidized
counterparts, as electrophiles, the misnomer ARE should better
be replaced by EpRE, but still persists in the literature.

B. The physiological context of Nrf2-dependent
gene activation

Nrf2, via activation of EpRE (ARE), regulates the expression
of proteins that collectively favor cell survival. They comprise

enzymes that directly or indirectly exert antioxidant functions
(5, 21, 111, 202, 264, 373, 491), molecular chaperons (265), and
proteins that enhance GSH synthesis and regeneration (164,
174, 210, 276, 330, 336), phase 2 detoxication, drug metabolism
(169, 210, 326, 392, 424, 479), recognition, repair, and removal
of damaged proteins (191, 264, 265, 393), and nucleotide ex-
cision repair (8), further proteins that regulate the expression
of other transcription factors, growth factors, and receptors
(113, 163), and inhibit cytokine-mediated inflammation (6,
209, 245, 385, 503) and autophagy (394). With its broad range
of target genes, Nrf2 is certainly one of the most important
transcription factors that protect the organism against exog-
enous stressors, be they poisonous food ingredients, physical
damage, or infection. In line with the appreciation of Nrf2 as
dominant inducer of the adaptive response, the realm of its
inducers comprises endogenous signaling molecules associ-
ated with oxidative stress such as H2O2, ROOH, ONOO - ,
oxo-aldehydes, and ketones, as well as exogenous ones such
as isothiocyanates, thiocarbamates, trivalent arsenicals, qui-
nones, dithiolethiones, vicinal dimercaptanes, certain statins,
and heavy metals (96, 97, 160, 460, 474). They are obviously
recognized by the organism to be potentially hazardous and
to be eliminated via enforced Nrf2-mediated gene activation.
The only common denominator of these chemically hetero-
geneous compounds is their ability to modify cysteine resi-
dues. With these characteristics, the Nrf2 system builds the
major molecular basis for an enigmatic toxicological phe-
nomenon known as hormesis: it describes that subtoxic dos-
ages of a poison may protect against toxic ones or even against
other challenges (180, 305, 317). Thus, with a delay of some
centuries the therapeutic wisdom of the ancient Philippus
Theophrastus Bombastus von Hohenheim (1493–1541), who
claimed that solum dosis facit venenum (the dose only makes the
poison), has been corroborated by a scientific basis.

The protective role of Nrf2 is also demonstrated by inverse
genetics. Nrf2 - / - mice are vital and do not display any signs
of an increased basal oxidation state (58). Only when chal-
lenged they have an impaired ability to respond (454). The
Nrf2 system, thus, is an emergency device that comes into
play upon severe challenge only. For instance, mice lacking
Nrf2, when treated with dextran sulfate sodium, developed
a more severe intestinal inflammation with increased aber-
rant crypts than controls (246, 360), which suggests a function
of Nrf2 in prevention of inflammation and inflammation-
mediated carcinogenesis. Activation of Nrf2 is therefore con-
sidered to contribute to phenomena such as development of
tolerance against all kind of inflammatory stimuli and, ac-
cordingly, potent activators such as sulforaphane, by acting as
kind of vaccine, hold great promise in chemoprevention.

However, also this coin has two sites, since Nrf2 activation
may not be beneficial under all circumstances. Upregulation
of enzymes metabolizing xenobiotics such as GSTs will not
always improve detoxification, since these enzymes may also
increase xenobiotics’ toxicity, as reviewed by Hayes et al.
(175). Also, if the xenobiotic is a drug, Nrf2 activation may
negatively affect its bioavailability. Moreover, not only nor-
mal but also tumor cells may benefit from the protective
function of Nrf2. In fact, tumor cells usually show a consti-
tutively high Nrf2 activity; hence, given the physiological
result thereof, that is, inhibition of autophagy and apopto-
sis and increase of proteasomal degradation of damaged
proteins, tumors have acquired a superior survival chance.
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Accordingly, activation of Nrf2 by chemo-preventive dietary
compounds can reasonably be expected to inhibit tumor ini-
tiation but is likely detrimental, once the tumor has been es-
tablished (10, 268). In support of this view, a selenoprotein
that is an Nrf2 target, GPx2 (21), impairs inflammation-driven
intestinal carcinogenesis, as convincingly demonstrated in
knockout mice (109), but, as xenografts, wild-type tumor cells
grew up substantially faster with than those without GPx2
(22). Finally, a persistent overactivation of the Nrf2 system, as
is observed in autophagy-deficient (Atg7 knockout) mice,
causes, or contributes to, severe liver damage, as evidenced by
abrogation of the liver pathology in Atg7/Nrf2 double
knockout mice (257).

C. Mechanistic aspects of Nrf2 signaling

1. Basics of Nrf2 activation. As already mentioned under
section II.D.4, Nrf2 belongs to the type of transcription factors
that are kept in cytosolic complexes under resting conditions
and is there permanently subjected to proteasomal degrada-
tion (344). Within the cytosolic complex Keap1 serves as bona
fide sensor for oxidants or electrophiles. Modification and
conformational change of Keap1 allows translocation of Nrf2
to the nucleus for transduction. The molecular details of Nrf2
and the pertinent signaling pathway have been summarized
in many reviews (42, 104, 287, 348, 469) and will here be
briefly recalled and amended as far as appropriate.

2. Keap1 as primary redox sensor of Nrf2 signal-
ing. Keap1, sometimes also called INrf2 for inhibitor of Nrf2
(348), contains three characteristic domains, the broad com-
plex/tramtrac/bric-a-brac (BTB) domain, the intervening re-
gion (IVR), and the kelch domain, also known as double
glycine repeat (DGR) domain (3). The BTB domain binds Cul3

(see section II.D.4) (141) and is required for homodimerization
(538), whereas the IVR contains cysteine residues that are in
part Zn-coordinated (98) and are considered relevant to reg-
ulation (see below) and a nuclear export signal (NES) (498).
The kelch/DGR domain is required for the interaction of
Keap1 with the actin cytoskeleton (234, 235) and/or myosin
VIIa (499), which immobilizes Keap1 in the cytoplasm. The
kelch/DGR domain is also essential for binding of Nrf2,
which interacts with Keap1 with its amino-terminal Nrf2-
ECH homology-2 (Neh2) domain (208).

The structure of the kelch/DGR domain of Keap1 has re-
cently been resolved (297, 362), which sheds new light on the
Keap1/Nrf2 interaction (484) (Fig. 7). According to the hinge
and latch model there are two distinct binding motifs in the
Neh2 domain of Nrf2, each binding one molecule of a Keap1
homodimer (two-sites binding) (325, 484). The high affinity
binding ETGE motif functions as a hinge to pin down Nrf2 to
Keap1. The low affinity DLG motif functions as a latch. The
link between the hinge and the latch motif is the lysine-rich
central a-helix of Nrf2. In this helix six of seven lysine residues
point to the same site (484). The Neh2 domain is locked in a
position suitable for ubiquitination of the Lys residues (325,
485) which, hence, act as ubiquitin acceptors (532). The hinge
and latch model (484), thus, complies with a substrate-
presentation mechanism: presentation of Nrf2 for ubiquiti-
nation and subsequent proteasomal degradation.

The hinge and latch model can also explain how thiol-
modification disturbs the presentation of Nrf2 for ubiquiti-
nation. Murine and rat Keap1 contain 25 cysteine residues,
whereas human Keap1 has 27 (97, 98). Nine of these are pre-
dicted to be reactive due to their location adjacent to basic
amino acids. The cysteines 257, 273, 288, and 297 lie in the IVR
and, by MS analysis of tryptic peptides, were demonstrated to
be most sensitive to alkylation by dexamethason mesylate

FIG. 7. Model for redox-regu-
lated Nrf2 activation based on
conformational change of Keap1.
In the resting state (A), Keap1
forms a homodimer via the broad
complex/tramtrac/bric-a-brac (BTB)
domains and associates to Nrf2
with its kelch domains. The Nrf2-
ECH homology-2 (Neh2) domain
of Nrf2 contains two Keap1 bind-
ing motifs with different affinity
to the kelch domains, with ETGE
representing the amino acid se-
quence with the higher affinity
and DLG, the sequence with a
much lower affinity. This two-site
binding locks the central a-helix of
the Neh2 domain of Nrf2 with is
seven lysine residues (7 Lys) into a
position suitable for ubiquitina-

tion. The intervening regions (IVR) contain the most reactive cysteine residues (Cys273 and 288) and build the adapter region
for the Cullin-3 (Cul3)-based E3 ligase system. Nrf2 is polyubiquitinated and degraded by the proteasome. Under stressed
conditions (B), oxidative/electrophilic modification of Cys272 and 288 induces a conformational change of Keap1 resulting in
the dissociation from the weaker binding DLG motif in Nrf2, whereas binding to the ETGE motif remains [hinge and latch
model as proposed by (484)]. P21 interacts with the DLG motif and supports dissociation of Nrf2 from this site. In contrast,
modification of Cys151 in the BTB domain does not change the conformation of Keap1 but rather disrupts BTB Cul3
interaction. By both modifications ubiquitin ligase activity is lost and newly synthesized and released Nrf2 can move into the
nucleus.
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in vitro (97). Further, optical monitoring of the reaction of
Keap1 with dipyridyl disulfide revealed a sequential reaction
of the cysteine residues, likely starting with an S-thiylation of
the most reactive one and followed by thiol/disulfide ex-
change to finally form internal disulfides within Keap1.
Competition experiments with a representative set of Nrf2
activators demonstrated that Keap1 modification capacity of
these heterogeneous compounds roughly correlated with
their in vivo activity (97). By these and many other thiol
modification studies (256, 287) the hypothesis of Keap1 being
the redox sensor of the Nrf2 system was corroborated. In vitro
and in vivo mutation studies finally revealed that Cys273 and
288, which are the Zn-coordinated ones, are crucial for the
response of Nrf2 to activators (282, 504, 531), whereas muta-
tion of Cys151 mediates stressor-induced dissociation of
Keap1 from Cul3 (389, 521) (Fig. 7).

However, the original hypothesis that the primary sensing
event, that is, modification of critical cysteine residues, leads
to instant release of Nrf2 has been revised: the hinge and latch
model predicts that thiol modification of Keap1 changes its
conformation in a way that only binding of Nrf2 through its
DLG motif, the latch, is reversed, whereas Nrf2 remains at-
tached to Keap1 by its hinge, the ETGE motif. Thereby, the
presentation of Nrf2 for ubiquitination is impaired. Accord-
ingly, the unmodified critical cysteines 273 and 288 are crucial
for ubiquitination of Nrf2 (531) and the degradation of Nrf2 in
the unstressed situation (254). Upon challenge, the still hinge-
bound Nrf2 is stabilized by preventing ubiquitination and
may finally be released by downstream events (see section
III.C.3). Moreover, continuously newly synthesized Nrf2 can
bypass the still Nrf2-loaded Keap1 for transduction (254).

How thiol modification leads to the conformational change
is likely explained by the zinc finger nature of Keap1 (95). Zinc
is bound to Keap1 with an impressive Kass of 1011 M - 1. Zn
binding to Keap1 evidently involves the critical cysteines, as
thiylation of the latter by dipyridyl disulfide is accompanied
by a stoichiometric release of Zn; by a Cys to Ala mutation, the
Kass is dramatically decreased, and profound conformational

changes are associated with Zn release, as evidenced by shifts
in tryptophan fluorescence or depression of fluorescence of a
hydrophobicity probe. The Zn-stabilized structure of Keap1,
thus, is disturbed by derivatization of Zn-binding cysteines
and equally by Zn chelation or Zn shortage, as has been
similarly discussed for other redox-sensitive zinc proteins
(82, 258, 309). However, it can also be envisaged that cysteine-
coordinated Zn in Keap1 contributes to the pronounced reac-
tivity of the cysteines, thereby facilitating Nrf2 activation. The
pivotal role of zinc in Keap1 function might provide another
lead to explain its antioxidant effect (49) (see also section II.D.3).

Finally, the realm of Nrf2 activators raises the question how
their chemical heterogeneity complies with the expectation
that a sensor should sense specifically. Emerging evidence
indeed reveals that groups of activators act on different sets of
cysteines in Keap1, which may be translated into a specific
biological effect. From these observations the term cysteine
code was created and breaking this code for each Nrf2 acti-
vator will help to understand the various effects resulting
from Nrf2 activation (256, 521).

3. Downstream signaling events. The essence of the
events following sensing by Keap1 is that free cytosolic Nrf2
has to reach its target EpRE in the nucleus. The nuclear
transport of Nrf2 is mediated by the conventional set of nu-
clear importin and exportin proteins (156). Typical nuclear
localization signals (NLS) or NES of cargo proteins to be
recognized by the import and export machinery are found in
the sequence of Nrf2: two NES, one located in the leucine
zipper dimerization (Zip) domain and a second one in the
transactivation domain (TAD) (215, 289), and three NLS (478).

The basic requirements for nuclear traffic being evident, we
first have to elaborate on the questions how free Nrf2 is
generated and primed for nuclear import (Fig. 8). As men-
tioned in the previous section, cysteine modification of Keap1
by itself is not considered sufficient to release Nrf2 from the
cytosolic complex. The view favored at present therefore is
that the Nrf2 that is synthesized de novo bypasses cytosolic

FIG. 8. Nuclear translocation of Nrf2.
Activation of Nrf2 does not necessarily re-
quire activation of a specific surface receptor.
Stimuli can be exogenous or endogenously
produced. In response to oxidative/electro-
philic stress, the interaction of Keap1 and
Nrf2 is disturbed and Nrf2 is no longer de-
graded. Nrf2, either released from Keap1 or
newly synthesized, enters the nucleus. For
translocation, Nrf2 has to be phosphorylated
at Ser40. The phosphorylation is achieved by
PKCd or i and/or other kinases (see text).
Phosphorylated Nrf2 enters the nucleus,
forms a complex with the basic leucine zip-
per (bZIP) factors CREB-binding protein
(CBP)/p300, and activates gene expression
by binding to the electrophile responsive
element (EpRE). Phosphorylation at Tyr568
by the tyrosine kinase Fyn leads to nuclear
export of Nrf2 and terminates the signal. It
is not known whether Nrf2 has first to be
de-phosphorylated at Ser40 or whether the
bis-phosphate is exported. Exported Nrf2
can re-associate with Keap1.
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Keap1 when the latter has been modified and hence loaded
with stabilized Nrf2, whereas Nrf2 meeting Keap1 under
resting conditions has a poor chance to escape from degra-
dation (287). However, since permanent wasting of Nrf2 by
the unchallenged organism appears uneconomic, mecha-
nisms to release Nrf2 from the cytosolic complex merit con-
sideration and do indeed exist. (i) PKC phosphorylates Nrf2 at
Ser40 (192), the isoforms later being identified as PKCd (283)
and PKCi (350). Ser40 is located between the DLG and the
ETGE motifs, and phosphorylation inhibits binding to Keap1
and simultaneously facilitates nuclear import (347, 348). It
appears, however, to be unsettled if this phosphorylation is
also achieved within the Keap1/Nrf2 complex (35, 192, 350).
(ii) The CDK inhibitor p21 binds to stabilized Nrf2 at Keap1
and possibly facilitates Nrf2 release (63). (iii) Prothymosin a
(239, 361), and (iv) the sequestosome 1 (SQSTM1; p62) (269)
interact with Keap1 in a way that displacement of Nrf2 ap-
pears unavoidable. SQSTM1 was further shown to lower
Keap1 levels by increasing its rate of degradation (76). Ac-
cordingly, overexpression of SQSTM1 results in transcrip-
tional activation of Nrf2 target genes (76, 257). Collectively,
these findings suggest that also the Keap1-bound Nrf2 that
has been saved from ubiquitination can be made available for
nuclear import (482). It has further also been proposed that
Nrf2-loaded Keap1 enters the nucleus (498).

Thus, nuclear import of Nrf2 is initiated by the key oxidative
modification of Keap1 and further facilitated, inter alia, by PKC-
dependent phosphorylation, which is also considered to be
favored by thiol oxidation (Fig. 8; section II.D.3). Moreover,
Nrf2 itself and, hence, its nuclear localization is redox sensitive
(Fig. 9). Its activity can also be enhanced by inhibiting the nu-
clear export of Nrf2. The NES of Nrf2 are recognized by chro-
mosome region maintenance (Crm1)/exportin, but in the
nucleus are largely masked, probably by heterodimerization of
Nrf2 with musculo-aponeurotic fibrosarcoma (Maf) proteins
that retain Nrf2 in the nucleus. In consequence, the import/
export balance is in favor of import even under basal condi-
tions, which accounts for the constitutive Nrf2 activity that
guarantees the basal expression of stress response genes.
Whereas the NES in the bZIP domain is redox insensitive (289),
oxidation of Cys183 in the NES in the TAD of human Nrf2 is
discussed to inhibit the access and binding of Crm1 (288).
Under oxidative stress conditions, therefore, the function of the
redox-sensitive NES in the TAD is impaired and the overall
weight of export signals is further decreased (287). Similarly, an
oxidative modification within an NES of nuclear Keap1 can
retain Nrf2 in the nucleus (498). Irrespective of the mechanism,

the net effect is a nuclear accumulation of Nrf2. Cysteine
modification, depending on its chemistry, may be reversible, for
example, by GSH or a redoxin, and reversal of nuclear locali-
zation of Nrf2 by Trx has indeed been reported (162). Cys506 is
critical for binding of Nrf2 to its responsive element and the
interaction with the cofactor CREB-binding protein (CBP)/p300
(34). Apart from Cys506 also Cys119 and 235 (numbering in the
mouse Nrf2) have been found to have similar functions (176).
Hence, re-establishing reductive conditions in the nucleus de-
serves attention not only as required for DNA binding but also
as shut-off mechanism of the system (see section III.C.5).

Further, nuclear export of Nrf2 is regulated by phosphor-
ylates (Fig. 7). The Fyn kinase phosphorylates Nrf2 at Tyr568
in the nucleus which leads to the strengthening of the inter-
action with Crm1 and to an enhanced nuclear export of Nrf2
(213, 348). A translocation of Fyn into the nucleus is observed
several hours after Nrf2 activation and requires the phos-
phorylation of Fyn at a so far unknown Thr residue by GSK3b.
For this activity GSK3b has to be phosphorylated at Tyr216,
which in contrast to the phosphorylation at Ser9 by Akt,
which inactivates GSK3b (327), keeps GSK3b in the active
state. The Tyr216-specific kinase is still unknown, but it is
activated by H2O2 (214). This way GSK3b may contribute to
the termination of the Nrf2 signal.

4. Nrf2-mediated transduction events. In the nucleus
Nrf2 dimerizes with small Maf proteins (207) or other bZIP
transcriptions factor such as c-Jun or activation transcription
factor-4 (ATF4). The heterodimer binds to the Nrf2-responsive
element EpRE. The Nrf2/bZIP complex then recruits the CBP
and p300 (536) and initiates transcription of target genes (Fig.
8). Formation of a heterodimer with c-Fos or c-Fos-related
antigen-1 (Fra-1) inhibits Nrf2 activity due to binding to the
AP-1 site within the EpRE. Also, overexpression of small Maf
proteins leading to Maf homodimers and possibly unpro-
ductive Maf-Nrf2 heterodimers inhibited Nrf2 activity (90).
The Nrf2 gene itself carries an EpRE and is transcriptionally
stimulated by Nrf2 activators (263).

Binding of Nrf2 to EpRE is competed out by the BTB and
CNC homology-1 (Bach1) transcription factor (91). Oxidative
conditions inactivate Bach1 and allow Nrf2 binding to EpRE
(203). Inactivation of Bach1 is mediated by a redox-sensitive
phosphorylation at Tyr486 by an unknown kinase, which
leads to rapid export of Bach1 (243).

5. Shut-off mechanisms. Apart from nuclear export of
Nrf2 (see above, section III.C.3), termination of Nrf2-mediated

FIG. 9. Organization of Nrf2. The
Nrf2 protein comprises six domains
(Neh1–6) with different functional-
ities. Neh2: Keap1 binding site; Neh4
and 5: transactivation (TA) site har-
bors the nuclear export signal (NES)
with the redox-sensitive C183, and is

required for binding of Nrf2 to its responsive element and interaction with the coactivator CBP/p300; Neh6: linker, site
responsible for Keap1-independent nuclear degradation under oxidative stress (324); Neh1: contains the Cap ’n’ Collar region
(CNC), the redox-insensitive NES, the nuclear localization signal (NLS) with the redox-sensitive C506, and the bZIP motif;
Neh3: the C-terminal domain contains Y568 and is required for transactivation (345). S40 is the phosphorylation site for PKCd
and i; Y568, the phosphorylation site for Fyn. Arrows mark putative sites for casein kinases. Two novel NLSs spanning amino
acids 42–53 and 587–593 identified in the mouse sequences are not included for sake of clarity (478). For numbering of
different species see ref. (176).
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transcription may be achieved by various mechanisms. (i)
Also the nucleus contains Keap1, whose function is not fully
clarified, but it may be envisaged that Keap1 also targets the
nuclear Nrf2 for degradation by the nuclear proteasome (348).
(ii) Polymerization of the actin skeleton is considered to be
essential for retaining Nrf2 in the cytosol, thus preventing
Nrf2 activity. PI3K inter alia regulates the response to oxidants
by de-polymerization of actin, which is considered to allow
Nrf2 to escape from Keap1 and to enter the nucleus together
with actin (234). Re-polymerization of actin allows Nrf2 to exit
the nucleus. In this context it might be revealing that glu-
tathionylation of actin leads to depolymerization and is re-
versed by Grx (267, 506). (iii) Nrf2 activates transcription of its
own cytosolic inhibitors such as Cul3, Rbx1, and Keap1 (242).
(iv) The most efficient shut-off is certainly achieved by means
of the myriad of enzymes simply eliminating the system’s
signals or preventing their formation.

Notably, Nrf2 targets such as Trx and Trx reductase, Srx
and c-glutamyl-cysteine synthetase synergize in improving
the capacity of the entire Prx- and GPx-mediated hydroper-
oxide metabolism and thus eliminate oxidant signals and
prevent the formation of damage signals arising from oxida-
tive stress (125, 200). The scenario is complemented by in-
duction of particular peroxidases such as Prx1 (200) and GPx2
(21). Similarly, the induction of many GSTs prevents activa-
tion of the system by eliminating the nonoxidant alkylants
(175). Apart from eliminating Nrf2-activating signals, how-
ever, the expression of antioxidant enzymes may also interfere
directly with ongoing Nrf2 transduction: murine liver
txnrd1 - / - cells that lack the selenoprotein Trx reductase-1 do
not display any gross changes in the cellular redox homo-
eostasis, likely because GPxs can easily substitute for the Trx-
dependent Prxs under most conditions. However, the
txnrd1 - / - cells displayed a pronounced persistence of Nrf2 in
the nucleus. This, for the first time, points to the requirement
of reduced Trx for switching off Nrf2 transduction (470) and
provides a mosaic stone possibly explaining the role of sele-
nium in Nrf2 signaling (see section II.D.5).

6. Modulation of Nrf2 function by cross-talk with phos-
phorylation cascades. In the previous paragraphs several
phosphorylation/de-phosphorylation steps have already
been mentioned that appear not to belong to the mainstream
activation of the Nrf2 system. The functional relevance of
phosphorylation events to the Nrf2 system has for long been
established by demonstrating enhanced activation by broad-
spectrum phosphatase inhibitors such as ocadaic acid (344) or
genistein (213). Cross-talk of phosphorylation cascades has to
be considered in particular when the Nrf2 system responds to
oxidative signals produced endogenously upon activation of
Toll-like or TNF receptors (TNFRs) as in infections, physical
injury, or acute inflammation. Receptor activation by patho-
gen-derived molecules and pro-inflammatory cytokines is
essentially signaled via phosphorylation and/or protease
cascades but consistently accompanied by massive produc-
tion of oxidants via activation of NOX and LOX or mito-
chondrial O2

� - generation (see section IV.D.1). Under these
conditions, therefore, the oxidant and alkylant signals, which
are provided in concert with enhanced phosphorylating ac-
tivities, activate Nrf2, whereas the outcome of Nrf2 activation
feeds back to dampen the oxidative responses to inflamma-
tory stimuli. In this situation the limited specificity of protein

kinases and phosphatases provides ample opportunities for
cross-talk between seemingly unrelated signaling pathways
(298). Beyond, the oxidant conditions generally favor protein
phosphorylation (see section II.D.3).

The following examples of enhanced Nrf2 activation due to
phosphorylation are compiled below (Fig. 8):

(i) From the mitogen-activated protein kinase (MAPK)
pathway, extracellular signal-regulated kinase (ERK) and c-
Jun N-terminal kinase ( JNK) stimulate Nrf2 activity. How-
ever, site-directed mutagenesis in putative MAPK phos-
phorylation sites in Nrf2 did not influence Nrf2 activity (448)
and Ser/Thr residues that have been identified as MAPKs’
targets in vivo did not significantly contribute to Nrf2 activa-
tion (468). Thus, indirect mechanisms have been suggested.
The assumption is corroborated by earlier findings showing
that ERK-mediated phosphorylation of CBP, which binds to
the Nrf2 TA in the nucleus, stimulated transactivation activity
of Nrf2 (448) and that electrophiles activate JNK by the inhi-
bition of a JNK-specific phosphatase (64).

(ii) Casein kinase2 (CK2) phosphorylates Nrf2 at several
sites, which are located in the TADs. Phosphorylation at the
site resulting in an Nrf2 form with a molecular weight of 98
facilitates nuclear import of Nrf2, whereas the phosphory-
lated form with the molecular weight of 118 appears to be
degraded more readily (9, 371).

(iii) The protein kinase R (PKR)-like endoplasmic reticulum
kinase (PERK) phosphorylates Nrf2, triggers nuclear import,
and inhibits re-association to Keap1 (80). However, the target
amino acid has not been identified yet.

(iv) As mentioned (Fig. 8), phosphorylation of Nrf2 at Ser40
by PKCd and PKCi facilitates nuclear import of Nrf2 (283, 347,
350).

(v) Phosphorylation of the initiation factor elF2a is impli-
cated in the enhanced translation of Nrf2 mRNA in response
to the Nrf2 activators H2O2 and sulforaphane (387).

(vi) Several Nrf2 activators have been shown to stimulate
phosphorylation of Akt, the key player of the PI3K pathway.
Activation of the PI3K pathway inactivates GSK3b, in turn
preventing activation of Fyn with consequences discussed in
sections III.C.3 and III.C.5 (213, 214, 234, 311, 417).

Phosphorylation reactions can also lead to an inhibition of
Nrf2-mediated transduction (i) by phosphorylation of Nrf2
through p38 mitogen-activated kinases in an as yet unclear
way (528); (ii) by GSK3b affecting nuclear export via Fyn-
mediated Nrf2 phosphorylation at Tyr568 (see section III.C.3)
(214, 417); and (iii) by stabilizing Keap1 via phosphorylation at
Tyr141 (216).

D. Synopsis of the Nrf2 system

In view of the complexity of the Keap1/Nrf2 system and its
ramifications a wood-carved summary of the essentials might
be helpful. The system responds to oxidative stress with ex-
pression of a broad range of cytoprotective enzymes. It re-
sponds to H2O2, organic hydroperoxides, peroxynitrite, and
electrophiles that are generated by oxidative tissue damage,
the common denominator of these compounds being their
ability to oxidize or alkylate thiols. The bona fide sensor is the
Nrf2 inhibitor Keap1, which sequesters Nrf2 in the cytosol in a
way that it is permanently degraded by the ubiquitin/pro-
teasome system. The sensing mechanism consists of oxidation
or alkylation of critical cysteine residues in Keap1. Downstream

REDOX CONTROL OF TRANSCRIPTION FACTORS 2351



signaling is achieved by conformational changes of Keap1,
whereby the transcription factor Nrf2 is made available for
nuclear import and transduction by activation of EpRE (ARE).
Termination of Nrf2 signaling is achieved by nuclear export,
autoregulatory feedback loops, and re-establishing the redox
homoeostasis by de novo synthesis of enzymes that eliminate
the activating signals.

The Keap1/Nrf2 system, thus, is the only one that uses
oxidants or electrophilic products of oxidative processes as
primary signals. Beyond, several steps of the system, in par-
ticular the nuclear trafficking, critically depend on reversible
phosphorylation and accordingly may be modulated by re-
dox biochemistry.

Signaling through Keap1 has to overcome the competition
by enzymes such as GPxs, Prxs, and GSTs, which eliminate
the signaling molecules ROOH and electrophiles, respec-
tively, and thus determine the threshold for the response. The
scope of Nrf2 target genes allows an adjustment of the sys-
tem’s threshold and guarantees improved defense against
more severe oxidative challenges. These characteristics place
the system into the context of physiological adaptation to
oxidative stress, as triggered in infectious diseases, acute in-
flammation, or injury (see section IV).

The endogenous signaling molecules of the system are
mimicked by a wide range of chemicals and xenobiotics that
activate the system either by generating H2O2 via redox cy-
cling or simply by their ability to S-alkylate thiols. Such Nrf2
activators, in particular the redox-inert natural ones, are cur-
rently discussed for safe adaptation to oxidative challenges
and the prevention of related diseases.

IV. NF-jB, a Key Regulator of the Immune Response

A. Discovery and definitions

NF-jB was discovered in 1986 by Sen and Baltimore (444) as
a transcription factor of B lymphocytes (19). Over the years the
term NF-jB has been applied to different protein complexes
made up from homo- or heterodimers of five distinct proteins:
p65 (RelA), RelB, c-Rel, p50, and its precursor p105, and p52 and
its precursor p100 [reviewed in ref. (172)]. These proteins have
an N-terminal Rel homology domain (RHD) that is responsible
for binding to DNA and other proteins and harbor an NLS. As
Nrf2 also NF-jB belongs to the type of transcription factors that
is kept in the cytosol by complexation with inhibitors which have
to be removed for activation. The family of NF-jB inhibitors
(IjB) comprises IjBa, IjBb, IjBc, IjBe, and BCL-3. They contain
6–7 ankyrin repeats (240) that mediate binding to the RHD and
interfere with its NLS function. The prevalent composition of the
cytoplasmic NF-jB appears to be the p50/p65/IjBa complex.

NF-jB was the first mammalian transcription factor shown
to be redox regulated (461) and suggested to be directly ac-
tivated by a variety of ROS (438). Meanwhile, however, the
NF-jB system has been recognized to be primarily activated
by cytokines and nonoxidant foreign stressors via TNF, Toll-
like, and other receptors.

B. The biological context of NF-kB

The pivotal role of the NF-jB system consists of the acti-
vation of an innate immune response upon challenge by mi-
cro-organisms or mimicking ligands. The main receptors of
the system are TLRs, of which so far 13 distinct ones have been

identified in mammals, 4 residing in endosomal vesicles, the
other ones at the cell surface (262, 450). Most of the TLRs
(TLR1, 2, 4–6 and 11) respond to microbial structures known
as pathogen-associated molecular pattern (PAMP), the most
prominent examples being the LPS, which are components of
the outer membrane of Gram-negative bacteria (4, 29). The
TLRs 3, 7, and 9 are specialized for recognition of double-
stranded or single-stranded RNA or CpG-containing DNA,
respectively, and thus can sense viral infection (4), and TLR 2
and 4 are implicated in the response to cellular damage by
recognizing damage-associated molecular patterns (DAMPs)
(144). NF-jB is also activated by inflammatory mediators such
as IL-1b and TNFa via their respective receptors as well as by
certain growth factor receptor tyrosine kinases (RTKs), by G-
protein-coupled receptors (GPCRs) and antigen receptors (38,
147, 172, 173) (Fig. 10).

The involvement of such diverse receptor and signaling
systems implies that the response to different NF-jB activa-
tors can hardly be uniform and must vary with the cell type
and stimulus. However, the overall outcome of the NF-jB
activation is an inflammatory response characterized by en-
hanced expression of pro-inflammatory cytokines such as
TNFa, IL-1, and IL-6, chemokines such as monocyte chemo-
tactic protein-1 (MCP-1), IL-8, and macrophage inflammatory
protein-1a (MIP-1a), adhesion molecules such as intercellular
adhesion molecule-1 (ICAM-1), vascular cell adhesion mole-
cule (VCAM)-1, and endothelium leukocyte adhesion mole-
cule (ELAM), growth factors, and enzymes that produce
secondary inflammatory mediators such as COX-2 and in-
duced NO synthase (iNOS). The proteins induced by NF-jB
activation, thus, comprise several activators of NF-jB itself,
which implies an amplification of the initial response. How-
ever, the NF-jB-dependent expression pattern, apart from the
potentially self-destructive cocktail of the innate immune re-
sponse, also includes self-protective proteins and inhibitors of
autophagy and apoptosis (13, 38, 99, 172, 173). Collectively,
therefore, the system serves to guarantee survival in a hostile
environment although sometimes by using risky strategies
(see section V).

The risky side of NF-jB has best been characterized in in-
flammation and cancer. A causal relationship between in-
flammation and cancer has been suspected already in the 19th
century by Virchow [reviewed in ref. (17)]. Virchow’s hy-
pothesis that carcinogenesis may result from chronic inflam-
mation has been amply confirmed for various forms of cancer.
Among the inflammatory mediators, NF-jB ranks high in the
list of potential culprits. NF-jB could indeed be shown to be
crucial for malignant transformation (158, 300, 374). NF-jB
links inflammation to carcinogenesis by at least three distinct
roles: (i) By enforcing and sustaining an inflammatory re-
sponse, the mutagenic potential of superoxide, H2O2 and lipid
hydroperoxides comes into play, which can certainly not be
ignored in the initiation process. (ii) In established tumors, the
Janus-faced tumor-associated inflammation has to be consid-
ered. It may kill tumor cells via massive oxidative attack
induced by TNFa (151); after all killing tumors was the name-
giving activity of the TNF. On the other hand, NF-jB-mediated
expression of inflammatory mediators such as TNFa, IL-1, IL-6,
or prostaglandin E2 (PGE2), depending on the tumor type, may
promote tumor growth. (iii) NF-jB activates gene expression
for antiapoptotic factors such as cellular inhibitor of apoptosis
proteins (cIAPs), X-linked inhibitor of apoptosis protein
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(XIAP), A20, also known as TNFa-induced protein 3, Bcl-2,
survivin proteins, and MnSOD (41, 188), which collectively
support tumor development. The consequences of an NF-jB
activation, therefore, depend on type and stage of tumor.

C. Basics of NF-kB activation

The basics of NF-jB activation consist of liberation of the
free transcription factor from its cytosolic complex with the
inhibitor of NF-jB (IjB) to allow nuclear import and gene
activation (Figs. 10 and 11). In the absence of stimuli, NF-jB

dimers are tightly associated to IjB. IjB masks the NLS in NF-
jB and, thus, keeps it in the cytosol. The central event in NF-
jB activation, the release of IjB from the cytosolic NF-jB
complex, is typically the consequence of an IjB phosphory-
lation by IKK (but see below). IjB is then ubiquitinated and
subsequently degraded by proteasome 26S. The IKKs form a
complex consisting of IKKa, IKKb, and IKKc. Therein two
molecules of IKKc linked through disulfide bonds between
Cys54 and Cys347 (181) form the NF-jB essential modulator
(NEMO) to which IKKa and IKKb bind in the resting state
(409, 522). Conformational changes and/or ubiquitination of

FIG. 10. Different ways to
activate NF-jB. Receptor ty-
rosine kinases (RTK): upon
growth factor binding, RTKs
associate forming dimers, are
autophosphorylated at mul-
tiple tyrosines, and recruit
additional signaling proteins.
Among recruited proteins is
phosphatidyl-inositol-3-kinase
(PI3K). In the atypical path-
way, PI3K phosphorylates
spleen tyrosine kinase (SYK),
which in turn phosphorylates
IjB at Tyr42, the signal for
IjB degradation. Alternati-
vely, PI3K-activated Akt can
transduce signals through the
typical pathway by directly
phosphorylating IjB kinase
b (IKKb). Interleukin-1 re-
ceptor-1 (IL-1R1): after bind-
ing of IL-1 to the receptor,
MyD88 is rapidly recruited
and associates to the receptor
via interaction of Toll/IL-1
receptor (TIR) domains pres-
ent in both IL-1R and MyD88.
IL-1R-associated kinase 1
(IRAK1) and IRAK4 are re-
cruited to MyD88, where
IRAK4 phosphorylates IRAK1,
resulting in hyperphospho-
rylated IRAK1 by autopho-
sphorylation. The kinases
dissociate from MyD88. An
intermediate cytosolic com-
plex composed of the E3 ligase
pellino-1, IRAK1, IRAK2, and
IRAK4 is formed, whereas TNF
receptor (TNFR)-associated fac-
tor 6 (TRAF6) becomes ubi-
quitinated, which serves as a
platform for TGFb-activated
kinase (TAK1). The same complex is formed in TLR signaling (not shown) [reviewed in ref. (157)]. TAK1 then activates IKKb.
Toll-like receptors (TLR): with the exception of TLR3 all TLRs similarly to IL-1R activate TAK1 through MyD88, activation of
IRAK1 by IRAK4, IRAK1 autophosphorylation, and TRAF6 recruitment. In addition, Toll-receptor-associated activator of
interferon (TRIF)-related adaptor molecule (TRAM), TRIF, and TIR-domain-containing adaptor protein (TIRAP) interact with
the receptor. If the typical pathway is taken, TRAF6 activates TAK1. If the signal enters the alternative pathway, NIK1
becomes activated. NIK1 directly phosphorylates IKKa, which initiates proteolytic cleavage of p100, the precursor of p52, by
phosphorylation at Ser866 and 870. Finally, the RelB/p52 heterodimer can enter the nucleus. TNFR: TNF binding to TNFR1
triggers the association of the adapter protein TNFR1-associated death domain protein (TRADD) to the receptor. Then,
TRAF2, TRAF5, and the kinase receptor interacting protein-1 (RIP1) are recruited. RIP1 can activate TAK1 in the typical and
NIK in the alternative pathway.
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NEMO due to binding to a receptor interacting protein (RIP)
kinase leads to the phosphorylation/activation of IKK by an
IKK kinase such as TGFb-activated kinase (TAK1) (103, 173,
205, 425, 451, 517). With IjB phosphorylation by activated
IKKs, nuclear import of NF-jB is initiated. In the nucleus NF-
jB, typically the p50/p65 complex, binds to its promoter se-
quence together with the transcriptional coactivators CBP and
p300. CBP and p300 have histone acetylase (HAT) activity.
Further, NF-jB displaces histone deacetylase (HDAC) from
the promoter. Thereby p65, p50 themselves, and, more im-
portantly, histones become acetylated, the latter event leading
to uncoiling of chromatin, which allows access of the tran-
scription factor to its canonical and other promoter regions
(147). Inversely, deacetylation of histones by HDACs leads to
silencing of gene transcription and, further, deacetylation of
NF-jB promotes its association with IjB and export from the
nucleus (61).

The routes toward this largely common downstream event
vary considerably with the cell type, the upstream signal and
in particular with the receptor involved. The multiple chan-
nels by which NF-jB activation can be initiated are reflected in
multiple activation pathways that can roughly be classified
into three: the typical, the atypical, and the alternative one
(147) (Fig. 10).

(i) The typical pathway (also called classical or canonical)
relies on the phosphorylation of IjBa on Ser32 and 36 by
TAK1-activated IKKb (92), which creates a binding site for
the b-transducing repeat containing protein (b-TrCP), the
receptor subunit of an SCFb - Trcp E3 ubiquitin ligase. E3

catalyzes ubiquitination of IjB for degradation through the
26S proteasome (65, 172, 204, 296, 406). This pathway is
triggered, for example, by TNF, IL-1, LPS, and other PAMPs
(89) and initiates the innate immune response (38). The
receptors involved are TLRs, IL-1 receptor (IL-1R), and
TNFRs. They have in common that they are not receptor
kinases by themselves, but work through associated kinases,
as, for example, described for recruitment of the IL-1R-
associated kinase (IRAK) in IL-1 signaling (312). In some cell
types the genuine system receptors may be by-passed by
H2O2 (358).

(ii) In the atypical pathway IjBa is phosphorylated at Tyr42
or on Ser residues in the PEST domain (197, 437). The phos-
phorylation at Tyr42 is IKK independent and, instead, cata-
lyzed by the spleen tyrosine kinase (SYK) (473), which is
activated by kinases of the PI3K pathway. Phosphorylation of
IjBa at Tyr42 is followed by its dissociation and degradation.
Dissociation can also be obtained by direct interaction of ac-
tivated PI3K with the Tyr-phosphorylated IjB, thereby re-
moving it from NF-jB (28). The atypical pathway is triggered
by growth factors like EGF, ciliary neurotrophic factor
(CNTF), or nerve growth factor (NGF) binding to RTKs, but
receptor occupation can be mimicked by H2O2 and PP in-
hibitors (147). Activation of the atypical pathway is mainly T
cell-specific and depends on the presence of the phosphatase
SHIP-1 (149). Inhibition of SHIP-1 by either H2O2 or PP
inhibitors maintains phosphorylation of IjBa at Tyr42 and
allows activation of NF-jB. In cells lacking SHIP-1 such as
Jurkat cells, H2O2 mainly leads to IKK-dependent Ser-

FIG. 11. Activation of NF-jB
via the canonical pathway and
putative sites for redox-regulation.
TAK1, activated by IL-1R, TNFR,
or TLR signaling, phosphorylates
IKKb in the IKK complex (see Fig.
10). IKKb phosphorylates IjB at
serines (Ser) 32 and 36 leading to
the ubiquitination and degrada-
tion of IjB. Deliberated p65/p50
becomes phosphorylated by pro-
tein kinase A, catalytic subunit
(PKAc) at Ser276 in p65, and is
translocated into the nucleus.
There it binds together with
the coactivators CBP and p300 to
the NF-jB responsive element
in the promoters of target genes.
For binding to DNA, cysteine 62 in
p50, which can be oxidized to a
sulfenic acid forming a mixed
disulfide with GSH in the cytosol,
has to be reduced in the nucleus
by the Trx/TrxR or Grx system or
by the base excision repair enzyme
apurinic/apyrimidinic endonucle-
ase/redox factor-1 (APE1/Ref-1).
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phosphorylation and degradation of IjB via the proteasome
with only minor or absent phosphorylation at Tyr42 (149).

(iii) In the alternative pathway (also called noncanonical
pathway) IKKa is activated by the NF-jB inducing kinase-1
(NIK1). Activated IKKa phosphorylates p100, resulting in its
ubiquitination and processing to p52 (241, 337, 445). The
pathway is activated by certain members of the TNF-receptor
superfamily, such as CD40L (166), and thought to be neces-
sary for the adaptive immune response (38). Interestingly, the
alternative pathway also leads to the assembly of different
NF-jB elements in the nucleus (368).

For a more detailed description of these pathways, the
reader is referred to recent reviews in which also ubiquitina-
tion events are considered in more detail (147, 173, 368).

D. Redox regulation of NF-kB activation

In the years after the discovery of NF-jB, a series of studies
revealed that (i) most, if not all, agents activating NF-jB
trigger the formation of O2

� - /H2O2 via NOX or are oxidants
by themselves such as superoxide, H2O2 or LOX products; (ii)
in some cell lines, NF-jB activation can be triggered by H2O2

or organic hydroperoxides in the absence of any physiological
stimulus; (iii) NF-jB activation is inhibited by a broad range of
chemically unrelated antioxidants. The findings were com-
piled in a hypothesis paper of 1997 (128) with the above title
and summarized as follows: ‘‘This complex cascade of phos-
phorylation and dephosphorylation is modulated by redox
reactions of unknown nature in the sense that the oxidant
status increases the phosphorylation and degradation of IjB.
NF-jB action, however, requires a Trx-dependent reduced
status in the nucleus. Upstream kinase(s) and or phospha-
tase(s) prone to thiolation or oxidation of vicinal SH groups
are at present considered the best candidates mediating the
redox regulation of NF-jB.’’ In essence, the hypothesis has
remained attractive, could be corroborated by detailed in-
sights, and can be amended by novel system components.

Nevertheless, the seemingly convincing picture of a strict
dependence of NF-jB activation on oxidants of the early
nineties has since been controversially discussed. Main ar-
guments were, for instance, that compounds labeled as anti-
oxidants exerted effects that were unrelated with their
antioxidant potential. For instance, the presumed antioxidant
pyrrolidine dithiocarbamate (PDTC) inhibited IL-1-mediated
NF-jB activation not due to an antioxidant function but rather
by the modification of thiols in the IL-1R/IRAK1 complex
(477). Similarly, an attempt to correlate the antioxidant func-
tion of N-acetyl cysteine (NAC) and PDTC with their potential
to inhibit TNFa-induced NF-jB activation failed. Instead,
NAC decreased the affinity of the receptor for TNFa and
PDTC inhibited IjB ubiquitin ligase (168). Conflicting obser-
vations were also made with H2O2 itself. A critical review
analyzing 40 articles on NF-jB activation by H2O2 alone or in
conjunction with suitable cytokines revealed that H2O2 did
not consistently lead to NF-jB activation: an activation of NF-
jB was observed just in one third of the investigations,
whereas in one-third H2O2 inhibited NF-jB activation and
had no effect whatsoever in another third (358). This puzzling
scenario is hard to explain. Revealingly, bolus administrations
of 1 mM and beyond tended to inhibit NF-jB activation, and
the authors recommended more physiological approaches in
analyzing the problem (84, 358). The most decisive aspect of

the role of H2O2, however, appeared to be the cellular system
and the prevailing NF-jB-activating pathway (358). A regu-
latory function of H2O2 or similar oxidants in NF-jB activa-
tion has, nevertheless, to be inferred from experiments with
genetically modified organisms and cells overproducing or
being deficient in peroxidases. In mice deficient in GPx1, in-
flammatory responses, which likely are mediated by NF-jB,
are consistently enhanced irrespective of being triggered by a
PAMP-like LPS (211) or by viral infections (23, 24). Similarly,
mice deficient in both GPx1 and GPx2 spontaneously devel-
oped an ileocolitis, when the gut was only colonized with
apathogenic bacteria (108). Inversely, cells overexpressing
catalase (434), GPx1 (261), GPx4 (45, 46), or Prx2 (237) dis-
played a dampened NF-jB activation, whereas modulation of
SOD activity remained ambiguous (306, 434). Collectively, the
meanwhile accumulated knowledge does no longer corrob-
orate the concept that H2O2 acts as a direct activator or
obligatory mediator of NF-jB activation, but rather supports
the activation by other stimuli (148).

1. The source of the oxidants. In most of the schemes
illustrating redox-regulated NF-jB activation, activating
ROS, like a deus ex machina, show up in the center of an ex-
ploding star, leaving open the problems of the chemical na-
ture and biological source of the magic activator. Intriguingly,
however, a list of compounds known to induce O2

� - forma-
tion in phagocytes already in 1985 (126) almost coincides with
the one of NF-jB enhancers published by Schreck et al. in 1991
(438). It comprises a variety of PAMPs, antibodies, calcium
ionophores, phorbolesters, substrates/products of LOX, and
lipid mediators of inflammation. The two lists become prac-
tically congruent just by adding the pro-inflammatory cyto-
kines IL-1 and TNFa to the older one. It incidentally was this
pronounced similarity of activators of NOX and NF-jB
enhancers that led to the concept of NF-jB activation by
oxidants (128). It now corroborates that PAMPs or pro-
inflammatory cytokines, when activating their respective re-
ceptors, simultaneously activate NOX and/or LOX enzymes.

The ability of calcium and PKC activators such as phorbol
esters to trigger an oxidative burst in phagocytes had for long
revealed a role of PKC-type enzymes in linking receptor oc-
cupation to the activation of NOX. Members of the PKC
family are known to regulate many cellular processes (258)
(see sections II.D.3 and III.C.3) and have meanwhile been
shown to activate NOX- and LOX-type enzymes (see section
IV.D.1), and to also interfere with the NF-jB system at other
sites (see section IV.D.2). As mentioned in section II.D.3, they
are characterized by redox-sensitive zinc finger domains.
While they are activated by oxidation of the cysteine residues
that are coordinated to zinc (152, 153), they may be inactivated
by oxidation or alkylation of their catalytic cysteines (154). It,
thus, appears conceivable that they amplify an NOX- or LOX-
mediated oxidative response but contribute to its termination
under stronger oxidative conditions.

Involvement of NOX has been convincingly shown in
p47phox - / - mice. p47phox is an indispensable component of
the phagocytic NOX complex that further contains p22phox,
p40phox, the GTP-binding protein Rac-1, and the flavo-
cytochrome gp91phox as the O2

� - producing NOX2 (14). Ac-
cordingly, in the lungs of mice deficient in this essential
activator the activation of NF-jB elicited by pathogens or LPS
was impaired (253, 414). Similarly, in human aortic endothelial
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cells TLR4-mediated superoxide production and NF-jB acti-
vation were shown to depend on the homologous NOX4. A
knockdown of NOX4 inhibited IjB degradation and binding
of p65 to DNA (365). Mechanistically, an interaction of the C-
terminal region of NOX4 with the Toll/IL-1 receptor (TIR)
domain of TLR4 was discussed which now is known to be
linked by MyD88 (290). Also, the source of IL-1-induced
O2
� - /H2O2 production in MCF7 cells was shown to be an

NOX. The H2O2 thereby produced was reported to activate
NIK-mediated phosphorylation on IjB probably by the inhi-
bition of a phosphatase, since ocadaic acid mimicked the IL-1
effect (284).

The precise link between ligand occupation of TLRs and the
activation of NOX systems is not yet entirely clear. In the
possibly analogous growth factor signaling the activation of
NOX1 is achieved by sequential activation of phosphatidyl-
inositol-3-kinase (PI3K), formation of GTP-loaded Rac-1, and
recruitment of phagocytic oxidase (phox) subunits to the
membrane to assemble the active NOX complex (366). The
PI3K pathway appears also to be generally activated through
TLRs (313), whereby MyD88 links PI3K to the receptor (266)
and PI3K produces the phosphatidyl inositol phosphates to
form the platform where phox subunits can bind (106, 232)
(Fig. 12). A similar sequence may, therefore, be envisaged for
Rac-1 activation for NOX2 activation in phagocytes. The
pivotal TLR-activated kinase for the phosphorylation of
p47phox (30) and p67phox (533) in human monocytes is PKCd,

which in turn is activated by SYK and Src kinases associated
with the zymosan-recognizing receptor Dectin-1, which in
turn cooperates with TLR2 in the induction of inflammatory
responses (142).

Novel mechanisms linking NF-jB activating receptors to
NOX have recently been proposed. The TNFR proved to be
coupled to NOX1 via riboflavin kinase (RFK), formerly known
as flavokinase. RFK bridges TNFR1 and NOX1 via binding of
the TNFR1-death-domain to the NOX subunit p22phox. In cells
deficient in RFK, TNF-induced O2

� - production was in-
hibited (525). Oakley et al. (353) highlighted the involvement
of lipid rafts in the synchronized activation of NF-jB and
NOX2 by IL-1b. Both IL-1R1 and NOX2 were found coloca-
lized in lipid rafts. Upon IL-1 stimulation MyD88 was re-
cruited to IL-1R1 and endocytosed into endosomes together
with Rac-1 and NOX2 in a caveolin-dependent manner. H2O2

produced in this complex facilitated TNFR-associated factor
(TRAF6) association with the receptor complex, thereby
building a redox-active signaling platform that was called
redoxosome (354) (Fig. 13). Recruitment of receptors together
with NOX enzymes into specific membrane domains could be
the missing link between receptor activation and the myste-
rious coactivation of O2

� - /H2O2-producing enzymes. Com-
partmentalized NOX activation and redox signaling has
recently been reviewed by Ushio-Fukai (494).

The NOX family is, however, not the only one of interest in
the context of redox regulation of NF-jB. A steadily increas-

FIG. 12. Upstream kinases
and redox-sensitive phos-
phatases in NF-jB activa-
tion. Upon binding of stimuli
to their receptors, which can
be RTKs, TLRs or TNFRs,
PI3-kinase is recruited to
the membrane and binds to
RTKs via its Src homolog-2
(SH2) domain to autopho-
sphorylated tyrosines (72), to
TLR via direct interaction with
the receptor and MyD88 [re-
viewed in ref. (290)], and to
TNFR via riboflavin kinase
(525). Once localized at the
membrane, the p110 catalytic
subunit of PI3K phosphory-
lates phosphatidylinositol-4,5-
bisphosphate (PIP2) at the 3¢
position of its inositol residue
forming PIP3. PIP3 recruits
Akt and phosphoinositide-
dependent protein kinase-1
(PDK1), the latter phosphory-

lating Akt at T308 and S493 in the regulatory domain. Akt thus activated phosphorylates multiple downstream targets one of
them being IKKb. Other IKKb phosphorylating enzymes are TAK1, activated in the canonical pathway, and mitogen-activated
protein kinase (MAPK) kinase kinase-3 (MEKK3), which can be activated by G-protein-coupled receptors (GPCR). PPs coun-
teracting the involved kinases are the dual substrate phosphatases PP2A and PP2C. PP2A has been shown to colocalize
with Akt and this way inhibits PDK1 action. It also reverses MEKK3 activation. PP2Cb reverses Akt-catalyzed IKK phosphor-
ylation and PP2Cg-2 de-phosphorylates TAK1-phosphorylated IKK. The lipid phosphatases PTEN and Src homology-2 (SH2)-
domain-containing inositide phosphatase (SHIP-1) reverse the PI3K signal by removing the phosphate groups at position 3¢
(phosphatase and tensin homologue [PTEN]) or 5¢ (SHIP-1). All phosphatases in the scheme can be inactivated by oxidative
modification of cysteine residues. The oxidizing signal comes from NADPH oxidase (NOX) enzymes that are also activated by
receptor-bound PI3K there producing the inositol phospholipid products to which phagocytic oxidase (phox) subunits can bind
(107, 232).
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ing number of observations document that a coactivation of
LOX may be equally important. Overexpression of GPx4,
which preferentially reduces lipid hydroperoxides, almost
abrogated IL-1b-induced NF-jB activation in endothelial
cells, whereas changes in GPx1 had a minor effect (45). Si-
milarly, lipid peroxidation and not H2O2 was shown to en-
hance the activation of NF-jB by TNF in the human
endothelial cell line ECV304, whereas it appeared not to be
involved in IL-1-induced NF-jB activation (43). The 5-LOX
inhibitor AA861 inhibited NF-jB activation in parallel with
leukotriene B4 production in A549 cells (70). By similar ap-
proaches Bonizzi et al. demonstrated that NF-jB activation by
IL-1b depends on 5-LOX in lymphoid cells, but not in epi-
thelial cells, whereas it depended on NOX in monocytes (39).
More recently, activation of TLR8 was demonstrated to in-
duce the phosphorylation of the cytosolic phospholipase A2a
(cPLA2a) and to promote 5-LOX translocation, thus stimu-
lating the synthesis of inflammatory leukotrienes (165). The
pivotal kinase involved in activating 5-LOX is likely PKCa,
which has for long been known to phosphorylate cPLA2 (285).

The precise mechanisms how the activation of TNFRs or
TLRs coactivates NOXs and/or LOXs likely vary with the
receptor type, the stimulus, and the tissue. In any case, how-
ever, the NF-jB activation consistently occurs under condi-
tions in which the production of O2

� - /H2O2 and lipid

hydroperoxides is drastically enhanced, which warrants a
serious consideration of the interference of these oxidants
with the NF-jB-activating cascades.

2. Modulation of NF-jB activation via redox-sensitive
phosphorylation. As outlined NF-jB activation appears to
benefit from oxidative events in the cytosol that result in in-
creased phosphorylation of many of its components, thus
facilitating nuclear import and ultimately transactivation. A
general PTK/PTP imbalance causing an increased NF-jB ac-
tivity is indeed observed in aged and LPS-treated rats (226). In
principle, such enhanced phosphorylation state may be
achieved by oxidative activation of protein kinases or oxida-
tive inactivation of phosphatases (see section II.D.3). In par-
ticular, the p65 subunit of NF-jB requires phosphorylation at
multiple sites for translocation, transactivation, and other
activities (Fig. 14). These phosphorylations involve several
kinases, as has been amply reviewed in refs. (147, 172, 173,
363, 501). Phosphorylation of p65 and release from IjB were,
in fact, the first regulatory steps of the cascade observed (341,
343) and found to be required for DNA binding of NF-jB and
the recruitment of coactivators. The possible regulation of NF-
jB via oxidative kinase activation has lately been reviewed
under thorough consideration of possible methodological
artefacts and tissue specificities (363). A somewhat bold
summary of this review would be that oxidative modification
of kinases has so far not been convincingly shown to be in-
volved in in vivo NF-jB activation, whereas oxidative inacti-
vation is commonly observed.

The Ser/Thr kinase Akt, which itself is activated by phos-
phorylation at Thr308 and Ser473 via the PI3K pathway,
phosphorylates p65 in its DNA-binding domain, the precise
site being unknown (62) (Fig. 14). Akt itself is redox sensitive,
being inactivated by H2O2 due to disulfide formation between
Cys297 and 311 and reactivated by Grx (338). The cAMP-
dependent kinase PKAc phosphorylates p65 in the cytosol at
Ser276 (535), as do the mitogen- and stress-activated protein
kinases (MSK)-1/2 in the nucleus (500). These phosphoryla-
tions facilitate release from the cytosolic complex or enhance
transcriptional activity, respectively (500, 534). The activity of
protein kinase A (PKA), though, is inhibited by oxidants,
whereas the redox-sensitivity of the MSKs (and ribosomal S6
kinase 1 [RSK-1], see below) appears not to be investigated
(363). PKC-type kinases have been reported to be activated by
H2O2 and other oxidants (153) due to oxidation of Zn-coor-
dinated cysteines in their N-terminal regulatory domain (152),
but inactivated by cysteine oxidation/alkylation of the cata-
lytic domains, the prevailing event at a particular phase of the
activation process remaining unclear (154). PKCf, which in-
teracts with the NF-jB activation cascade at multiple sites,
also phosphorylates Ser311 of p65 (279), thereby promoting
association with the coactivator CBP (102), but, like other
PKCs, also PKCf is inactivated, for example, by peroxynitrite
(252). CK2 phosphorylates p65 at Ser529 with so far unknown
consequences (32, 505) and at Thr435, which decreases HDAC
binding (352). Apparently, the redox-sensitivity of this kinase
also remains to be investigated. IKKb and IKKe phosphorylate
p65 at Ser468, which supports nuclear import (316), whereas
phosphorylation by GSK3b rather inhibited the activity of p65
(53). More recently, Ser468-phosphorylated p65 has been
shown to be preferentially ubiquitinated and degraded in the
nucleus, leading to the termination of NF-jB-dependent gene

FIG. 13. Redoxosome formation in IL-1 signaling. Re-
doxosome (redox active endosomes which produce O2

� - /
H2O2) formation has been demonstrated for the activation of
NOX2 by IL-1 in MCF7 cells (354). After docking of IL-1 to
IL-1R1 MyD88 is recruited as effector, and initiates endo-
some formation. Then, Rac-1 in its GTP-bound conformation
together with superoxide dismutase 1 (SOD1) is transferred
to the membrane, resulting in the recruitment of the second
effector, NOX2 with all its subunits. O2

� - produced by NOX
leaves the endosome via anionic channels (AC) and is dis-
mutated to H2O2 by SOD1. This creates an oxidative envi-
ronment, which promotes docking of IRAK and TRAF6 to
the receptor complex finally leading to NF-jB activation. An
analogous pathway works in TNF signaling where TRADD
and RIP1 are recruited instead of MyD88 and TRAF2 instead
of TRAF6.
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expression (143, 307). Finally, p65 is phosphorylated at Ser536
by RSK-1 and, more typically, by IKKs. Phosphorylation at
Ser536 is widely considered to be the decisive event that fa-
cilitates the release of p50/p65 from IjB in the cytosol (16, 303,
457), although in T-cells it appears to delay nuclear import
(316). However, the phosphorylation at Ser536 also plays an
important role in the nucleus, where it prevents recruitment of
HDAC C3 to chromatin, allows its own acetylation at Lys310
by p300 (185) and impairs affinity to nuclear IjB and, thus,
export from the nucleus (36). IKKa has indeed been reported
to be recruited to the nucleus together with p65 and to there
phosphorylate chromatin-bound p65 (185). IKKb, the key
player in NF-jB activation (16, 416), is redox sensitive in a
sense that it cannot account for an activation of NF-jB by
oxidants either. IKKb can become directly oxidized by H2O2

at Cys179. This cysteine residue is located between the Ser
residues 177 and 181, which have to be phosphorylated for
activation. In consequence, oxidation of the residue prevents
phosphorylation and results in inhibition of IKKb (260, 363).
By analogy, oxidative inactivation may also be assumed for
IKKa and IKKe. A seemingly contradictory report claiming an
oxidative activation of IKKa and b associated with enhanced
phosphorylation at Ser180 or 181, respectively (231), is likely
explained by H2O2-mediated inhibition of phosphatases (see
below). In this context it may be revealing that Cys179 of IKKb
can also be alkylated by 15d-PGJ2. The modification of IKKb
with this bulky residue proved to be equally inhibitory, likely
due to prevention of IKKb phosphorylation. Since 15d-PGJ2 is
a product of NF-jB-induced COX2, it is considered to con-
tribute to the resolution of inflammation via IKKb modifica-
tion (408).

Thus, the enhanced phosphorylation state observed dur-
ing, and obligatory for, NF-jB activation cannot likely be at-
tributed to oxidative modification of any of the kinases with
the possible exception of PKCs and oxidatively activated
RTKs that initiate the atypical pathway (339) (see also section
II.D.3). In contrast, oxidative inhibition of PPs at each level of
the activation cascade may well account for the often seen
enhanced NF-jB activation under oxidizing conditions. A
systematic RNAi screen of phosphatases in mouse astrocytes
identified a total of 19 phosphatases regulating NF-jB tran-
scriptional activity. In particular, the PP2A-type enzymes
were found associated with the IKK, NF-jB, and TRAF2
complexes (286). Depending on the cell type, the NF-jB acti-
vation mechanism and cross-talking signaling cascades, even
more and other phosphatases may come into play (Fig. 12).

The central event in the typical pathway, IKKb activation
by phosphorylation via TAK1, could be reversed by PP2A (92)
or PP2Cg-2 (179) and that of IKKa by PP2Cb (384). Equally,
IKKb phosphorylation by the lysophosphatidic acid-induced
MAP kinase kinase kinase (MEKK3) is counteracted by PP2A
(465). TNFa-mediated IKKb activation is reversed by PP2Ca
and b (466). Similarly, the phosphorylation of p65 (Fig. 14) at
Ser468 is reversed by PP1/PP2A (53), whereas the nuclear
Ser/Thr-specific phosphatase PP4 was shown to act on
Thr435 (526). Most recently, the wild-type p53-induced
phosphatase-1 (WIP1), also known as PP2Cd, has been iden-
tified as a key phosphatase for the most important p65
phosphorylation site Ser536 and, accordingly, is considered to
act as a shut-off device of the NF-jB system (66). Interestingly,
NF-jB upregulates WIP1 expression, thus contributing to the
termination of its activity (299). Upstream events, in particular
the PI3K/Akt pathway that substantially contributes to NF-
jB activation by IL-1b, TNFa, and LPS (233), offer further
possibilities for oxidative interference via phosphatase inhi-
bition (Fig. 12): PI3K phosphorylates phosphatidyl inositol 3,4
bisphosphate [PIP(3,4)P2] to phosphatidyl inositol 3,4,5 tri-
sphosphate [PIP(3,4,5)P3]. Interference with NF-jB activation
by phosphatases is possible already at these early steps, since
formation of PIP(3,4,5)P3 is reversed by the action of PTEN
and SHIP-1. PIP(3,4,5)P3 in turn activates the phosphoinosi-
tide-dependent protein kinase-1 (PDK1). PDK1 phos-
phorylates Akt at Thr308 and Ser473, and its inactivating
de-phosphorylation is again achieved by PP2A (291). Akt can
by itself phosphorylate IKKa at Tyr23 and this phosphoryla-
tion is required for the phosphorylation of IjB (16).

Out of the numerous phosphatases that are possibly in-
volved in counteracting NF-jB activation (298) a great deal
can be inactivated by reversible or irreversible thiol oxidation,
glutathionylation, or other mechanism involving oxidative
processes, PTEN, SHIP-1, PP2A-, and PP2C-type enzymes
being the most quoted suspects.

3. Regulation of NF-jB by redoxin systems. Trx, the
prototype of the redoxins that is characterized by the WCGPC
motif, has for long been recognized to interfere with NF-jB
activation (128); transient cytosolic overexpression of Trx
dampened NF-jB activation upon stimulation by phorbo-
lester (429), whereas in the nucleus Trx was demonstrated to
be of pivotal importance to keep the p50 subunit of NF-jB in
the reduced state, which is required for DNA binding (170).
These early findings for the first time revealed that the NF-jB

FIG. 14. Phosphorylation sites of p65
and kinases and phosphatases involved.
Phosphorylation at Ser276 prevents in-
teraction of the Rel homology domain
(RHD) with the C-terminus of p65.
Thereby, DNA binding and interaction
with CBP and p300 is facilitated. Simi-
larly, Ser311 phosphorylation enhances
the interaction with CBP/p300. Phos-
phorylation at Thr435 promoter- and cell-

type-specifically decreases histone deacetylase (HDAC) binding after TNF stimulation. Dephosphorylation by PP4 (526)
appears to be cell type and promoter specific. Phosphorylation at Ser468 supports nuclear import. Phosphorylation at Thr505
inhibits transactivation activity due to increased association with HDAC1. The consequence of Ser529 phosphorylation is
unclear; that of Ser536 affects transcriptional acitivity in a cell-specific way. For more detailed information see text (see section
IV.D.2).
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system responds to redox events that are at best indirectly
related to the then already widely accepted redox sensitivity
of the phosphorylation/de-phosphorylation balance.

In contrast to the situation in apoptotic signaling (see sec-
tion II.D.1) (415), a direct interaction of cytosolic Trx with any
of the components of the NF-jB system could not be corrob-
orated. In this context Trx appears to be replaced by other
redoxins (see below). Inhibition of NF-jB activation by cyto-
solic Trx is now likely explained by its role as substrate of Prx I
and II, which compete for hydroperoxides that facilitate NF-
jB activation via other mechanisms (398) (see section II.E). In
the nucleus, however, Trx directly interacts with p50. While in
the redox circuits of lower organisms reduced Trx is often
used to shut off redox signaling (see Figs. 1 and 2; section II),
an opposite role is adopted in the mammalian NF-jB system:
it reduces critical cysteines of p50, thereby enabling DNA
binding of the p50/p65 complex and initiating target gene
activation. Cys62 within the N-terminal region of p50 has
been identified as the pivotal residue (483), which was a
surprise, since this cysteine is most easily oxidized in the cy-
toplasm. However, when NF-jB has entered the nucleus,
Cys62 is rapidly reduced by either Trx/TrxR (169, 184, 315) or
apyrimidinic endonuclease 1/redox factor 1 (APE1/Ref-1) (7,
346). Similarly, NF-jB, which is translocated to mitochondria
upon stimulation by apoptotic signals, including TNFa (529),
is kept active via reduction of p65 by Trx2 (386). The response
is complex: NF-jB negatively regulates the expression of
proteins for oxidative phosphorylation (OXPHOS). Simulta-
neously, however, Trx2 interacts with the glucocorticoid
receptor, which enhances OXPHOS expression. Also, TNFa-
driven mitochondrial O2

� - formation and apoptosis is in-
hibited by Trx2 (386). It is further discussed that activated
mitochondrial NF-jB might be translocated back to the cy-
tosol and the nucleus to initiate transcription of antiapoptotic
genes such as MnSOD (386). The mechanism of p65/Trx2
interaction in mitochondria has not yet been clarified but is
thought to be analogous to that of p50/Trx1 interaction, be-
cause only oxidized p65 was found to be bound to (reduced)
Trx2, which suggests the conventional disulfide reductase
activity to be involved (386).

Also, Grxs, characterized by the CPYC motif, interact with
the NF-jB system at several levels. Apart from de-glutathio-
nylating kinases and phosphatases (see sections II.D.3 and
IV.D.2), Grx have been implicated in direct interaction with
p50 and p65. Oxidation of the critical Cys62 to a sulfenic acid
followed by S-glutathionylation has been elucidated as fur-
ther mechanism for inhibition of DNA binding (376). Also, S-
glutathionylation of the p65 subunit inhibited its binding to
DNA (388). The reacting cysteine has not been identified; it
might be Cys38 in the DNA-binding loop, since this cysteine is
also a target for nitrosylation (147). Both glutathionylations
are reversed by Grx (376, 388).

Another redoxin, the TRP 14 (TRP14), which is character-
ized by a WCPDC motif, was shown to inhibit TNFa-induced
NF-jB activation by the typical pathway (223) (Fig. 4D). As its
congeners, TRP14 acts as a disulfide reductase, its substrate
being the LC8. In thereduced form LC8 binds to IjB and in-
hibits its phosphorylation by IKKs and subsequent degrada-
tion. By maintaining LC8 in the reduced state, TRP14 prevents
cytosolic activation of NF-jB. Exposure to oxidants or treat-
ment with TNFa, IL-1, or LPS known to signal via H2O2 pro-
duction leads to the formation of LC8 dimers in which two

molecules are linked via a disulfide bridge (515), resulting in
its dissociation from IjB (224, 227). This mode of redox-de-
pendent inhibition of protein activities by interaction with
binding partners is analogous to the association of Trx to ASK-
1, an upstream activator of the c-Jun N-terminal kinase (INK)
and p-38 MAPK signaling pathways (415) (Fig. 4A). In con-
trast, in the NF-jB system it is not the redoxin itself that blocks
signaling but the redoxin substrate LC8. This seemingly tiny
difference opens up the still unresolved question how regu-
lation by TRP14/LC8 interaction is integrated into the meta-
bolic environment. Shutting-off NF-jB signaling thus
activated appears to be clarified. Oxidized TRP14 is reduced
by the cytosolic form of Trx reductase TrxR1, but not by the
mitochondrial TrxR2 (222, 224). Remains the questions how
the activating oxidation of LC8 is achieved. Certainly, LC8
could be considered the sensor for ROOH. However, oxida-
tive linking of two remote cysteines in a dimeric protein (see
Fig. 4D) is a priori not likely to happen spontaneously, nor has
this possibility so far been supported experimentally. TRP14
having a redox potential ( - 257 mV) (222) between those of
Trxs and Grxs might be able to catalyze thiol/disulfide ex-
change both ways and thus might be the ROOH acceptor that
oxidizes LC8, but the reaction of TRP14 with H2O2 is report-
edly just four times as fast as that of Trx, which has been rated
as disappointingly slow (224). The possibility that TRP14, in
analogy to other redoxins, might be oxidized by an ROOH-
sensing Prx has evidently been ruled out experimentally (224).
We are thus left with the options that LC8 itself has the ca-
pacity to sense ROOH or is oxidized by a still unknown up-
stream redox sensor.

Most recently, also Nrx has been demonstrated to be a
specific negative regulator of LPS-induced TLR4-mediated
signaling (171). Nrx, like tryparedoxin (see section II.D.1),
belongs to the redoxin subfamily that is characterized by a
WCPPC motif. In mammals, Nrx appears to be the only re-
doxin displaying this particular motif (137). It had so far been
primarily discussed as a redox-sensitive regulator of the Wnt/
b-catenin pathway (Fig. 4B). In this context reduced Nrx
noncovalently binds to the adaptor protein Dvl, thereby si-
lencing Wnt-responsive signaling. Oxidation of the WCPPC
motif in Nrx leads to dissociation from Dvl and, in conse-
quence, to activation of the transcription factor b-catenin. In
TLR4-dependent signaling Nrx was found to be bound to the
adaptor protein Fli-1 (for flightless in Drosophila), and control
experiments with truncated mutants revealed that the
WCPPC motif is essential for binding to Fli-1 (171). Moreover,
LPS-triggered TLR4 stimulation and NF-jB activation was
substantially enhanced in cells from Nrx - / - mice, which
corroborates the functional relevance of Nrx/Fli-1 interaction
(Fig. 4C). In respect to the mechanism of the inhibition of
TLR4 signaling by Nrx, complex formation between Fli-1 and
the adaptor protein MyD88 comes into play. MyD88 is es-
sential for NF-jB activation mediated by TLRs and IL-1R
where it recruits IRAKs to the receptor complexes (Fig. 10)
(219, 244, 290, 427). Fli-1 inhibits TLR signaling through
binding to MyD88 (507) and sequestering the adaptor in the
cytosol. This sequestration of MyD88 has now been shown to
require Nrx forming a ternary complex of Fli-1, MyD88, and
Nrx (171).

Whether this novel adaptor function of Nrx is redox-
controlled remains to be established. It is tempting to speculate
that Nrx, like in the Wnt/b-catenin pathway, is released by
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oxidation, thus allowing TLR signaling to proceed. Interest-
ingly, two more sequence-related proteins were shown to
similarly bind to Fli-1: the rod-derived cone viability factor
(RdCVF), expressed by photoreceptors and the chromosome 9
open reading frame 121 (C9orf121) protein (171). The former
has the active site motif ACPQC, which can be rated as po-
tentially active in disulfide reduction, in the latter the homol-
ogous sequence is RCAPS, which is incompatible with
disulfide reductase activity but nevertheless could lead to the
formation of mixed disulfides. However, also inactive Cys to
Ser mutants of Nrx did bind to Fli-1, which implies that the
active site of the redoxins is not likely involved in their inter-
action with Fli-1, but leaves open that redox-state-dependent
structural changes affect protein/protein interaction. Alter-
native mechanisms, though, cannot be ruled out, since Nrx also
interacts with other proteins such as, for example, HDAC6,
Dvl1-3 (171), and the PP2A (137). The routes leading to oxi-
dation and reduction of Nrx remain to be worked out. For the
prototype tryparedoxin the oxidizing partner is a Prx, whereas
the reduction is achieved by a typical flavin-dependent dis-
ulfide reductase mediated by the low-molecular-weight thiol
trypanothione (199, 349). The search for an analogous meta-
bolic context may be helpful in finally defining the precise role
of this novel redox mediator in transcriptional activation.

E. Termination of NF-kB signaling

Out of the 39,679 publications with the keyword NF-jB
(PubMed by July 29, 2010) only a vanishing proportion deals
with the termination of signaling, which therefore is still
poorly understood (173). This obvious lack of interest is quite
surprising, since termination of the signaling cascade is piv-
otal to the problem why an exposure to PAMPs, DAMPs, or
pro-inflammatory cytokines only exceptionally turns into a
fulminant or chronic inflammation. In fact, the over 100 genes
activated by NF-jB comprise also those encoding pro-in-
flammatory cytokines, whereby NF-jB would trigger per-
petuation and even amplification of an inflammatory
response, if not adequately balanced. Clearly, the organism
requires tools that discriminate between an irrelevant expo-
sure to bacterial structures or local tissue damage from sys-
temic infections or polytrauma, respectively.

An essential way to terminate NF-jB signaling is the re-
synthesis of IjBs, which is controlled by NF-jB itself (128,
401). Thereby, not only the resting state of the NF-jB system
can be re-established by sequestering the transcription factor
in the cytosol; also nuclear degradation of p65 is initiated. In
particular IjBa binds to NF-jB dimers in the nucleus and
transports them back to the cytosol as inactive complex. Nu-
clear export of p65 via IjBa binding is facilitated by nitration
of Tyr66 and Tyr152 and nitrosation of Cys38 on p65 (147,
367). IjBa also dissociates p65 from DNA, facilitates its pro-
teasomal degradation in the nucleus, and, thus, terminates
transcription (340, 413). Simultaneously, NF-jB activity may
be terminated by binding p50/p50 dimers, which have for
long been recognized to inhibit NF-jB-mediated transcription
(15). Oxidation or nitrosation of the critical Cys62 of p50 also
contributes to nuclear export of NF-jB (147). Finally, binding
of NF-jB to IjBa and nuclear export is facilitated by de-
acetylation of p65 through the HDAC3. HDAC3 appears to be
negatively affected by phosphorylation, nitration, or carbon-
ylation (206, 523).

Surprisingly, IKKa, which is part of the central activation
complex in the typical pathway and essential for activating
the alternative pathway (see section IV.C), proved to adopt
the role of a terminator in TLR4-mediated typical NF-jB sig-
naling (271, 272). In macrophages stimulated with LPS, IKKa
repressed NF-jB activity by enhancing the proteasomal deg-
radation of p65. The biological relevance of this novel role of
IKKa is evidenced by a sepsis-like response and enhanced
mortality upon LPS stimulation as well as enhanced bacterial
clearance in mice bearing an inactive IKKa variant (272).

The NF-jB system not only manages its own termination by
de novo synthesis of system components that have been de-
graded during the activation process, but also via expression of
other target genes. Particular interesting examples are iNOS,
LOXs, and COX2. The iNOS product �NO, as long as it does
not react to ONOO - by simultaneous O2

� - formation, is
clearly protective in the context of inflammation (196). The
main products of 5-LOX, leukotriene B4 and D4, are clearly
pro-inflammatory, but the lipoxins derived from 5-LOX or
other LOX are currently considered to be key mediators of the
resolution of inflammation (447). COX2, generally rated as the
prototype of a pro-inflammatory enzyme, is, however, also
Janus-faced, since some of its many products play distinct
roles depending on the inflammatory phase: (i) PGE2, being
responsible for the classical signs of inflammation such as pain,
swelling, and redness, also inhibits superoxide formation in
chemokine-stimulated neutrophils (375). PGE2 also interferes
with NF-jB activation by selectively inhibiting nuclear import
of p65, thus favoring a nuclear accumulation of inhibitory
p50/p50 dimers in synovial fibroblasts (150). (ii) Prostacyclin
(PGI2) known to strongly inhibit platelet aggregation and to
cause vasodilatation (496), also inhibits leukocyte adherence to
the endothelial layer (44). Further, metabolically stable PGI2

analogs (129) were shown to dampen PAMP-triggered O2
� -

formation in polymorphonuclear leukocytes (PMNs) (462)
and protected rats against a lethal endotoxin dosage (435). The
massive rise in PGI2 levels consistently observed in septic
conditions may therefore be re-interpreted to beneficially in-
terfere with the deadly scenario resulting from a massive
TLR4-mediated NF-jB activation rather than to kill patients
(124, 295, 530). (iii) An activation of Nrf2 and a simultaneous
inhibition of NF-jB activity were observed in smooth muscle
cells overexpressing GPx4 or 15-LOX (20). Subsequent upre-
gulation of HO-1 inhibited IL-1-induced NF-jB activation and
expression of VCAM-1. Similarly, disruption of Nrf2 enhanced
NF-jB activity, production of pro-inflammatory cytokines,
and ICAM expression in the brain of mice (225). (iv) More
recently, COX2-derived cyclopentenone prostaglandins, in
particular 15d-PGJ2, have been implicated in the resolution of
inflammation (145). 15d-PGJ2 is a ligand of PPARc (195) and
thereby acts as a repressor of LPS-stimulated AP-1, STAT1,
and NF-jB activation (402). Being a strong electrophile, 15d-
PGJ2 can react with susceptible cysteines in a set of cytosolic
and nuclear proteins (422), one of them being Keap1 (189). By
targeting Keap1, 15d-PGJ2 activates Nrf2 and, thus, initiates
gene transcription with an overall anti-inflammatory result
(see sections III.B and III.D) (Fig. 15).

The latest concept on resolution of inflammation implicates
NOX-derived H2O2 as the major mediator to terminate in-
flammatory processes (441). This proposal obviously conflicts
with the wide-spread belief that the role of the coactivation of
NOXs by cytokine, TNF, and TLR occupation consist in for-
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tifying signaling to NF-jB. However, by means of a model of
sterile lung inflammation triggered by intratracheal applica-
tion of zymosan or LPS, the authors unambiguously demon-
strated that inflammation was exaggerated and more
progressive in mice deficient in phagocytic NOX2 as com-
pared to wild-type mice. In parallel, whole lung NF-jB acti-
vation was dramatically increased and persisted for at least 6
days in the NOX2-deficient mice; in consequence, the release
of NF-jB-dependent production of cytokines such as TNFa,
granulocyte colony-stimulating factor (G-CSF), and IL-17 was
similarly increased and prolonged in broncho-alveolar lavage
macrophages from the deficient mice. The enhanced response
was observed irrespective of p47phox or gp91phox being
knocked out, and practically identical results were obtained
with peripheral blood monocytes of chronic granulomatous
disease patients with a defective NOX. Clearly, NOX-derived
H2O2 in macrophages and monocytes rather inhibited than
supported NF-jB activation. The mechanism remains to be
established, but conceivably oxidative inhibition of NF-jB-
activating kinases in these systems is more important than
that of the counteracting phosphatases. Also, Keap1, the key
player in Nrf2 activation, has recently been shown to down-
regulate NF-jB activation by priming IKKb to degradation via
ubiquitination (273). More importantly, the classical role of
Keap1 as sensor in the Nrf2 system in part explains the un-
expected role of H2O2 as terminator of NF-jB activation. Nrf2
activation in NOX-deficient macrophages stimulated with
zymosan was completely abrogated, whereas it was clearly
detectable in control cells already 1 h after zymosan exposure
(441). Moreover, Nrf2 - / - mice behaved similar to NOX-
deficient mice, and the wild-type phenotype could almost
be restored in NOX-deficient mice by administration of
a compound (1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-
oyl]imidazole) that activates Nrf2 via direct, that is, H2O2-
independent Keap1 modification (441).

In conclusion, activation of the Keap1/Nrf2 system be it by
products of unspecific lipid peroxidation, cyclopentenone

prostaglandins, or NOX-derived H2O2, appears to be the
prominent mechanism to terminate the NF-jB-driven im-
mune response.

F. Synopsis of the NF-kB system

NF-jB is a pleiotropic transcription factor that regulates
expression of more than hundred genes that collectively
dominate the innate and acquired immune response and as-
sociated inflammation. NF-jB is activated via different re-
ceptor families which signal to NF-jB by distinct
phosphorylation cascades, the common denominator being
release from an inhibitory cytosolic complex and nuclear
import of the active transcription factor, which typically is the
p50/p65 heterodimer. Receptor occupation that leads to NF-
jB activation is regularly associated with activation of NOX-
type enzymes, the nature of which depends on the receptor
type. Concomitant activation of LOX has also been observed.
Redox regulation of the activating phosphorylation cascades
has been debated since the discovery of the system and re-
mains a matter of debate 20 years thereafter. Likely this issue
has to be more critically viewed under consideration of the
heterogeneity of the pathways. By triggering the production
of its own stimuli such as IL-1 and TNFa, the system tends to
become self-amplifying, which raises the question of termi-
nation. Restoring the resting state involves nuclear export,
de novo synthesis of cascade components that were degraded
during the activation process and synthesis of enzymes that
produce molecules cross-talking to antagonizing systems, in
particular to the anti-inflammatory Keap1/Nrf2 system. In
this context, Nrf2 activation via modification or oxidation of
Keap1 by COX products such as 15d-PGJ2, H2O2 or other
oxidants arising from coactivation of NOX- and LOX-type
enzymes are most attractive candidates. The NF-jB system,
thus, generates the signals required for Nrf2 activation and
thereby complements the hormetic response to a broad scope
of exogenous challenges.

FIG. 15. NF-jB and Nrf2, the Yin
and Yang of the inflammatory re-
sponse. Occupation of receptors by
pathogen-associated molecular pat-
terns, damage-associated molecular
pattern (DAMPs), TNFa, or IL-1 leads
to superoxide formation in the re-
doxosome by NOX. H2O2 formed by
SOD favors activation of NF-jB at
multiple sites though enhancing pro-
tein phosphorylation, but also oxidizes
Keap1 in the Nrf2 system. While NF-jB
tends to enhance and perpetuate the
inflammatory response by triggering
the expression of pro-inflammatory
cytokines, Nrf2 activation through
Keap1 oxidation dampens pro-inflam-
matory signaling by expression of
peroxidases and other anti-inflamma-
tory proteins. As E3-ligase, Keap1 also
primes IKKb to degradation via ubi-
quitination, thereby directly interfering
with NF-jB activation. For sake of clarity, only NOX-derived H2O2 is shown as oxidant signal. Depending on the cellular
system and the inflammatory stimulus, NOX-derived H2O2 may be supported or replaced by mitochondrial H2O2, lipox-
ygenase products, and S-alkylating electrophiles derived there from.
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V. Loose Ends and Perspectives

It was neither our intention nor a realistic option to in-
depth review what has been published on redox-dependent
transcriptional gene activation since this topic became a hot
issue about two decades ago. We rather tried to clarify basic
chemical principles that might reasonably work in redox-
regulation of biological processes and to demonstrate the
relevance of these principles to two seemingly well-docu-
mented examples of redox-regulated mammalian transcrip-
tion systems, the Nrf2 and the NF-jB systems, which, acting
in concert, appear to be the key players in the hormetic and
inflammatory responses to exogenous stressors (456). Need-
less to state that we ended up with a considerable number of
loose ends.

Plausible regulatory circuits to adapt life to environmental
oxidant changes have been worked out for procaryotes and
lower eukaryotes such as yeast (333) (see sections II.A and
II.D.1) and trypanosomatids (452). In these cases, not more
than two dozen of solid investigations were needed to gen-
erate a concise and satisfying picture on the signaling mole-
cules, the sensors, the transducer(s), affected genes, and
modulating mechanisms (see Figs. 1 and 2). When switching
to the best investigated redox-responsive mammalian tran-
scription systems we chose as paradigms, the Keap1/Nrf2
(see section III) and the NF-jB system (see section IV), we felt
confronted with a horror scenario: thousands of related
original publications and hundreds of reviews were unable to
generate a comprehensive and generally accepted concept
and the daily increment of about 10 publications, which often
conflicted with seemingly established views or opened up
new perspectives, permanently forced us to revise our article.
We therefore have to apologize for just delivering a snap shot
of current opinions, which, beyond, is biased by a chemical/
enzymological point of view.

For sure, the difficulties in understanding redox regulation
in mammalian organisms are easily explained by the com-
plexity of the systems. However, these inherent difficulties are
not the only reasons for the persistent confusion. Major defi-
ciencies one stumbles across in the field are (i) lack of chemical
precision, (ii) lack of (bio)chemical kinetics, and (iii) insuffi-
cient consideration of time and spatial organization of bio-
logical processes.

To (i): The persistent reluctance to name the chemical entity
supposed to exert a biological effect does not solve problems;
the current talking of signaling by poorly defined chemicals
such as ROS, NRS, or radical species simply widens the range
of chemical reactions to unpredictability. It is, however, nei-
ther impossible nor irrelevant to define the chemical entity
that is supposed to signal. As outlined in section II, signaling
by radicals is rather the exception than the rule and is likely
restricted to �NO and O2

� - ; the most common oxidant sig-
naling molecule is H2O2; it may be a LOX product, under
special conditions also ONOO - , and under severe oxidative
challenge an electrophilic break-down product of oxidized
lipids. Knowing this, the possibly resulting chemistry is de-
fined and its relevance under biological conditions amply
documented by related enzymological studies. Making better
use of the accumulated knowledge on the reaction mecha-
nisms of, for example, thiol peroxidases and S-transferases
will certainly be helpful to further define modifications of
proteins relevant to regulatory processes. Another source of

confusion is the uncritical use of the term ‘‘antioxidant’’ for a
huge number of chemically unrelated compounds that have
the only common denominator to react with most aggressive
oxygen-centered radicals such as �OH in physiologically
meaningless in vitro settings. In a biological context, these
compounds may indeed act as antioxidants in the chemical
definition, which means compounds interfering with an oxi-
dant-initiated free-radical-mediated chain reaction. Yet, ex-
perimental evidence supporting this concept is very scarce.
More likely the antioxidants are simply reductants, S-modi-
fying agents, redox-cyclers, cofactors, or constituents of en-
zymes, or display their own pharmacodynamic profile that
sometimes is unrelated to redox chemistry. Facing these un-
certainties, one can hardly expect conclusive data from un-
critically exposing tissue cultures or animals to massive
dosages of antioxidants. A revealing example is the mislead-
ing historical name ARE for EpRE, the target element of Nrf2
(see section III.B). The term ‘‘antioxidant-responsive element’’
was coined because the element responded to test-tube anti-
oxidants that in vivo produced O2

� - or H2O2 due to autoxi-
dation or redox cycling.

To (ii): The lack of kinetic data in redox regulation is a
problem indeed. It has become fashionable to declare signal-
ing components with reactive cysteines to be sensors for
H2O2, ROOH, peroxynitrite, or alkylants (see section II.D).
These assignments, however, are overwhelmingly based on
swampy grounds. After having screened the pertinent liter-
ature, we are aware of a total of 3 investigations (11, 87, 459)
that documented the reactivity of such cysteines in presumed
sensors that are not peroxidases by appropriate kinetic mea-
surements: the only satisfying case was OxyR. With a rate
constant of 105 M - 1 s - 1 this sensor is kinetically competitive
enough to sense H2O2 in the presence of competing peroxi-
dases. In contrast, the known rate constants for oxidative in-
activation of phosphatases had to be rated as noncompetitive
(87, 459) (see section II.D.3). For all remaining thiol-based
H2O2 sensors experimental data that would corroborate their
kinetic competiveness are missing. The kinetoplast system
(see section II.D.1) works with a tryparedoxin peroxidase as
H2O2 sensor for which competitive rate constants have been
established (349, 489, 490). The H2O2 sensors of the yeast
systems (see section II.D.1) may by analogy be regarded as
competitive, as they are related Prxs or equally efficient GPx-
type peroxidases (487). A sensing function of the mammalian
Keap1 is corroborated by circumstantial evidence. For the
phosphatases, kinases, redoxins, and others, a direct sensing
function is rather unlikely (134), which promises future sur-
prises. Moreover, the interpretation of redox changes in reg-
ulatory proteins obtained in vitro is often impeded by the
experimental settings in which they are generated. Tissue
cultures, if not adequately supplemented, tend to be deficient
in selenium and, thus, in GPxs (278) and Trx reductases (308).
Being thereby deprived of both GSH- and Trx-dependent
peroxidase systems, protein oxidations may occur upon H2O2

challenge that are physiologically irrelevant, but even well-
supplemented culture cells, when suspended a medium up to
10 mM H2O2 (358), may be anticipated to have their reductive
capacities (GSH and Trx pools) exhausted within minutes,
allowing the excess H2O2 to attack protein thiols that physi-
ologically would never be affected. In short, whereas the
chemical principles of redox regulation by protein thiol
modifications have quite convincingly been worked out, the
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physiological relevance of individual proposals may often be
questioned, because of missing kinetic data and testing con-
ditions that favor the generation of artefacts.

To (iii): The most challenging task ahead, however, is the
resolution of system kinetics at a more extended time scale.
The activation of transcription factors generally operates by
hit and run mechanisms: receptor occupation followed by
downstream processes. Receptor activation and downstream
signaling requires milliseconds to minutes; target genes ex-
pression extends into hours and days; and the consequences
thereof, if cell recruitment and differentiation is involved, may
take weeks. Cross-talk between different transcription factor
systems already occurs in the early phases, if signaling com-
ponents are shared, but regularly dominates later stages. The
need of a more serious consideration of these aspects is, again,
revealed by the Yin and Yang interplay of NF-jB and Nrf2
(Fig. 15). Depending on kind, strength, and persistence of a
PAMP or DAMP exposure, a hormetic response without any
obvious inflammatory process, a self-healing or chronic in-
flammation, or a deadly septic crisis may be triggered. The
adaptive response to a subcritical challenge likely reflects the
early and delayed counteracting activation of Nrf2. The latter,
in concert with various growth factor systems, also contrib-
utes to self-healing inflammation. The switch to chronic in-
flammation, if not explained by persistent challenge, is poorly
understood. Septic shock, finally, the prototype of an oxida-
tive stress disease, presents as an extreme dysbalance of sev-
eral transcription factor systems and may become lethal at
various stages and by different pathogenic mechanisms. The
early phase is undoubtedly caused by a massive over-
activation of NF-jB due to PAMP or DAMP exposure with
oxidative burst in phagocytes and excessive expression of
adhesion factors, which, in combination with vasoconstriction
and intravascular coagulation, leads to endothelial dysfunc-
tion, collapse of the microcirculation, tissue hypoxia, and
multiorgan failure. Later counteracting events such as acti-
vation of the fibrinolytic system and vasodilation due to ex-
orbitant production of PGI2 and �NO may resolve the
circulatory block, but inevitably result in a critical drop in
blood pressure, but even if the early crises of septicemia are
overcome, patients tend to die weeks later in a status of im-
mune paralysis (37). Evidently, the final outcome of a septic
shock has nothing in common with the initial event which in
essence is the beneficial activation of the innate immune re-
sponse to cope with intruded pathogens or tissue damage.
The concommittant oxidative burst will not only activate Nrf2
but also enhance signaling through all pathways that posi-
tively respond to oxidants; NF-jB not only induces circula-
tory collaps but also promotes TNFa-mediated apoptosis;
tissue ischemia must trigger the hypoxic response; resump-
tion of circulation may result in reperfusion injury; the neu-
ronal and hormonal alarm that accompanies the entire
process alerts a lot more signaling cascades; and with pro-
gressing time primary target cells such as PMNs and macro-
phages undergo apoptosis and are replaced by populations of
lymphocytes responding differently to different signals, anti-
inflammatory cytokines becoming predominant. As net out-
come, the exaggerated activation of the self-protective innate
immune response turns over weeks into a life-threatening
anergy of the immune system (37, 369).

A clinical exploitation of the emerging knowledge clearly
demands a better understanding of the long-term conse-

quences of a transcription factor activation, which result from
multiple and poorly understood cross-talks with other sys-
tems. Nevertheless, modulation of the NF-jB or Nrf2 system
has for long been, and still is, an attractive clinical perspective,
in particular for the treatment of inflammatory diseases and
the prevention of cancer. However, the complexity of an in-
flammatory response we could only briefly address, as well as
the fragmentary knowledge, hampers a fast clinical im-
plementation, and sepsis may again serve to demonstrate the
inherent difficulties. Already in the eighties therapeutic suc-
cess in sepsis, polytrauma, and reperfusion injury was ex-
pected from preventing tissue damage due to PAMP- or
DAMP-induced oxidative burst and acute inflammatory re-
sponses (85, 404). Numerous animal experiments were per-
formed with application of SOD alone (436) or together with
catalase (510) to remove excess O2

� - , H2O2, or ONOO - (25),
thiol- or selenium-based antioxidants (509), iron chelators to
prevent Fenton chemistry (25), TNFa (132) or LPS antibodies
(390, 404) or IL-1 antagonists (356, 502), mostly with encour-
aging results in well defined experimental settings. But none
of these intervention strategies has so far been crowned by
clinically success. The major reason for the failure of these
strategies has to be seen in their limited feasibility under
clinical conditions: first of all, at the time of clinical diagnosis,
the self-amplifying inflammatory cascades are already too
advanced for a meaningful intervention. Second, animal
sepsis models that are designed for, for example, a precisely
defined LPS dosage and an exact time point of intervention
after challenge can hardly be extrapolated to the clinical sit-
uation with usually unknown onset and overlapping phases
of the inflammatory process. Finally, all experimental strate-
gies mentioned above focus on the correction of early dysre-
gulation in septicaemia and it remains to be explored if any
intervention with the early oxidant inflammatory processes
can improve the overall clinical outcome. If so, a prophylactic
blockade of the early inflammatory response still deserves
interest in the treatment of polytrauma, where the sepsis-like
syndrome develops with a predictable delay of two to 3 days.

More convincingly, hopes for better therapy of inflam-
mation are based on the hormetic character of the NF-jB -
Nrf2 interplay. It has for long been known that a sub-critical
dosage of LPS induces tolerance to a lethal one (26),
whereby pronounced cross-tolerance between LPS, other
PAMPs, hyperbaric oxygen and inflammatory cytokines (IL-
1, TNF) is observed (57). The mechanism of tolerance de-
velopment is not fully understood (110). Inhibition of NF-jB
transcriptional activity by p50 homodimers appears to be
involved (537). However, circumstantial evidence suggests
that this kind of tolerance development is, in part at least,
caused by oxidative activation of the Keap1/Nrf2 system
(see section III). As the latter can also be activated by nat-
ural and presumably safe electrophiles that by themselves
do not necessarily induce any oxidative damage, such
compounds are being considered for prophylactic treatment
of high risk groups. However, this option still awaits a
systematic clinical exploration.

A logical extrapolation of this hormetic concept seems to be
the application of Nrf2 activators for prevention of inflam-
mation-associated carcinogenesis. Indeed, many natural
compounds activating Nrf2 such as sulfuraphane, curcumin,
resveratrol, flavonoles and catechins are currently being
promoted for chemoprevention. However, since evolution
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has designed the Keap1/Nrf2 axis as a system that only works
on demand and for a limited time, there are good reasons to be
concerned about the long term effects of a permanent Nrf2
activation. Liver damage due to persistent Nrf2 activation,
although so far only documented for autophagy-deficient
mice (257), may be taken as a warning.

The few spot-light may suffice to demonstrate clinical spin-
offs are showing up at the horizon. However, as outlined in
this article, the regulatory systems are extremely complex and
a lot of gray and black areas have to be filled with solid data,
before reliable predictions on any interference strategy can
safely be made. The steps from bench to bedside, therefore,
will hardly be quick ones.
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30. Bey EA, Xu B, Bhattacharjee A, Oldfield CM, Zhao X, Li Q,
Subbulakshmi V, Feldman GM, Wientjes FB, and Cathcart
MK. Protein kinase C delta is required for p47phox phos-
phorylation and translocation in activated human mono-
cytes. J Immunol 173: 5730–5738, 2004.

31. Bindoli A, Fukuto JM, and Forman HJ. Thiol chemistry in
peroxidase catalysis and redox signaling. Antioxid Redox
Signal 10: 1549–1564, 2008.

32. Bird TA, Schooley K, Dower SK, Hagen H, and Virca GD.
Activation of nuclear transcription factor NF-kappaB by
interleukin-1 is accompanied by casein kinase II-mediated
phosphorylation of the p65 subunit. J Biol Chem 272: 32606–
32612, 1997.

33. Birringer M, Pilawa S, and Flohé L. Trends in selenium
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Abbreviations Used

15d-PGJ2¼ 15-deoxy-D12;14-prostaglandin J2

AhR¼ aryl hydrocarbon receptor
AP-1¼ activating protein-1
ARE¼ antioxidant responsive element

ARNT¼ aryl hydrocarbon receptor nuclear
translocator

ASK-1¼ apoptosis signal-regulating kinase-1
Atf1¼ activating transcription factor-1, cyclic

AMP dependent
ATF4¼ activation transcription factor-4

Atg¼ autophagy-related
b-TrCP¼ b-transducing repeat containing protein

Bach1¼BTB and CNC homology-1
BTB¼ broad complex/tramtrac/bric-a-brac

bZIP¼ basic leucine zipper
CBP¼CREB-binding protein

Cdc25¼ cell division cycle 25, dual specificity
phosphatase from yeast

CDK¼ cyclin-dependent kinase
CDNB¼ chloro-dinitrobenzene
c-FOS¼ cellular protooncogene which forms with

c-jun the AP-1 transcription factor
complex

cIAPs¼ cellular inhibitor of apoptosis proteins
CK2¼ casein kinase-2

CNC¼Cap’n Collar
CNTF¼ ciliary neurotrophic factor

COX¼ cyclooxygenase
CREB¼ cAMP response element binding protein
Crm1¼ chromosome region maintenance
Cul3¼Cullin-3
Cys¼ cysteine

DAMP¼damage-associated molecular pattern
DGR¼double glycine repeat
DLG¼Asp-Leu-Gly
DSP¼dual specificity phosphatase
Dvl¼dishevelled

ECH¼ erythroid cell-derived protein with CNC
homology

EGF¼ epidermal growth factor
Egr¼ early growth response

ELAM¼ endothelium leukocyte adhesion molecule
EpRE¼ electrophile responsive element
ERK¼ extracellular signal-regulated kinase

ETGE¼Glu-Thr-Gly-Glu
Fli-1¼flight less (drosophila)

FOXO¼ Forkhead box O
Fra-1¼ c-Fos-related antigen 1

Fyn¼membrane associated nonreceptor
protein tyrosine kinase, of the Src family

G-CSF¼ granulocyte colony-stimulating factor
GPCR¼G-protein-coupled receptor

GPx¼ glutathione peroxidase
GR¼ glucocorticoid receptor
Grx¼ glutaredoxin

GSH¼ glutathione
GSK3b¼ glycogen synthase kinase-3b
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Abbreviations Used (Cont.)

GSSG¼ glutathione disulfide
GST¼ glutathione-S-transferase

HAT¼histone acetylase
HDAC¼histone deacetylase

HIF-1¼hypoxia-inducible factor 1
HNE¼ 4-hydroxy-nonenal
HO-1¼heme oxygenase-1

ICAM¼ intercellular adhesion molecule-1
IKK¼ IjB kinase
IL-1¼ interleukin-1

iNOS¼ induced NO synthase
IRAK¼ IL-1R-associated kinase
IRP1¼ iron response element-binding protein 1
IVR¼ intervening region
JNK¼ c-jun N-terminal kinase

Keap1¼ kelch-like ECH-associated protein-1
LAR¼ leukocyte-common antigen-related

(phosphatase)
LC8¼dynein light chain 8
LOX¼ lipoxygenase
LPS¼ lipopolysaccharide
Maf¼musculo-aponeurotic fibrosarcoma

MAPK¼mitogen-activated protein kinase
MCP-1¼monocyte chemotactic protein-1
MEKK¼MAP kinase kinase kinase
MIP-1¼macrophage inflammatory protein-1

MnSOD¼manganese superoxide dismutase
MSK¼mitogen- and stress-activated protein kinase

MyD88¼myeloid differentiation factor 88
NAC¼N-acetyl cysteine
Neh¼Nrf2-ECH homology

NEMO¼NF-jB essential modulator
NES¼nuclear export signal

NF-jB¼nuclear transcription factor of bone
marrow-derived lymphocytes

NGF¼nerve growth factor
NLS¼nuclear localization signal

NOX¼NADPH oxidase
NQO1¼NADPH quinone oxidoreductase

Nrx¼nucleoredoxin
Ohr¼ organic hydroperoxide resistance

OhrR¼ organic hydroperoxide resistance repressor
Orp1¼GPx3-like protein in Saccharomyces

cerevisiae
OxyR¼ transcription factor which regulates genes

induced by oxidative stress in Salmonella
typhimurium and Escherichia coli

p300¼ transcriptional coactivator with HAT activity
PAMP¼pathogen-associated molecular pattern

Pap1¼ transcription factor regulation hydrogen
peroxide induced responses in S. pombe

PDGF¼platelet-derived growth factor
PDK1¼phosphoinositide-dependent protein kinase-1
PDTC¼pyrrolidine dithiocarbamate
PERK¼PKR-like endoplasmic reticulum kinase
PerR¼ transcription factor regulating gene

expression in response to H2O2

PEST¼proline glutamic acid serine and
threonine-rich peptide sequence

PGE2¼prostaglandin E2

PGI2¼prostacyclin
Phox¼phagocytic oxidase

PI3K¼phosphatidyl-inositol-3-kinase
PIP¼phosphoinositol phospholipid

PKAc¼protein kinase A, catalytic domain
PKC¼protein kinase C
PKR¼protein kinase R, eukaryotic translation

initiation factor-2a kinase-2
PMN¼polymorpho nuclear leukocytes

PP¼protein phosphatase
Prx¼peroxiredoxin
PSP¼protein serine/threonine phosphatase

PTEN¼phosphatase and tensin homologue
PTP¼protein tyrosine phosphatase
Rac¼ small GTPase of the family of Rac proteins

Rbx1¼RING box protein 1
RFK¼ riboflavin kinase

RHD¼Rel homology domain
RING¼ really interesting new gene

RIP¼ receptor interacting protein
RNAP¼RNA polymerase

RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species
RSK¼ ribosomal S6 kinase
RTK¼ receptor tyrosine kinase

Ser¼ serine
SH2¼ Src homology-2

SHIP¼ SH2-domain-containing inositide
phosphatase

SOD¼ superoxide dismutase
SoxR¼ transcriptional regulator in response

to superoxide generating compounds
SQSTM1¼ sequestosome 1

Src¼ cellular and sarcoma, tyrosine kinase
Srx1¼ sulfiredoxin-1

SUMO¼ small ubiquitin-like modifier
SYK¼ spleen tyrosine kinase
TAD¼ transactivation domain

TAK1¼TGFb-activated kinase
Thr¼ threonine
TIR¼Toll/IL-1 receptor

TIRAP¼TIR-domain-containing adaptor protein
TLR¼Toll-like receptor
TNF¼ tumor necrosis factor

TNFR¼TNF receptor
TRADD¼TNF-associated receptor death domain

TRAF¼TNFR-associated factor
TRAM¼TRIF-related adaptor molecule

TRIF¼Toll-receptor-associated activator
of interferon

TRP14¼ thioredoxin-related protein-14
Trx¼ thioredoxin

Tsa1¼first characterized peroxiredoxin
in S. cerevisiae

TTF¼ thyroid transcription factor
Tyr¼ tyrosine

UGT¼UDP-glucuronyl transferase
UMCSBP¼universal minicircle sequence binding protein

USF¼upstream stimulatory factor
VCAM¼vascular cell adhesion molecule

VHR¼Vaccinia H1-related (phosphatase)
XIAP¼X-linked inhibitor of apoptosis protein
WIP1¼wild-type p53-induced phosphatase-1

Wnt¼wingless and Int 1
Yap1¼AP-1 like transcription factor

from yeast
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